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C H A P T E R  1 

Introduction to Calculus  

1.4 Velocity and Distance 

The right way to begin a calculus book is with calculus. This chapter will jump 
directly into the two problems that the subject was invented to solve. You will see 
what the questions are, and you will see an important part of the answer. There are 
plenty of good things left for the other chapters, so why not get started? 

The book begins with an example that is familiar to everybody who drives a car. 
It is calculus in action-the driver sees it happening. The example is the relation 
between the speedometer and the odometer. One measures the speed (or velocity); 
the other measures the distance traveled. We will write v for the velocity, and f for 
how far the car has gone. The two instruments sit together on the dashboard: 

Fig. 1.1 Velocity v and total distance f (at one instant of time). 

Notice that the units of measurement are different for v and f.The distance f is 
measured in kilometers or miles (it is easier to say miles). The velocity v is measured 
in km/hr or miles per hour. A unit of time enters the velocity but not the distance. 
Every formula to compute v from f will have f divided by time. 

The central question of calculus is the relation between v and f. 
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Can you find v if you know f ,  and vice versa, and how? If we know the velocity over 
the whole history of the car, we should be able to compute the total distance traveled. 
In other words, if the speedometer record is complete but the odometer is missing, 
its information could be recovered. One way to do it (without calculus) is to put in 
a new odometer and drive the car all over again at the right speeds. That seems like 
a hard way; calculus may be easier. But the point is that the information is there. 
If we know everything about v,  there must be a method to find f .  

What happens in the opposite direction, when f is known? If you have a complete 
record of distance, could you recover the complete velocity? In principle you could drive 
the car, repeat the history, and read off the speed. Again there must be a better way. 

The whole subject of calculus is built on the relation between u and f .  The question 
we are raising here is not some kind of joke, after which the book will get serious 
and the mathematics will get started. On the contrary, I am serious now-and the 
mathematics has already started. We need to know how to find the velocity from a 
record of the distance. (That is called &@erentiation, and it is the central idea of 
dflerential calculus.) We also want to compute the distance from a history of the 
velocity. (That is integration, and it is the goal of integral calculus.) 

Differentiation goes from f to v; integration goes from v to f .  We look first 
at examples in which these pairs can be computed and understood. 

CONSTANT VELOCITY 

Suppose the velocity is fixed at v = 60 (miles per hour). Then f increases at this 
constant rate. After two hours the distance is f = 120 (miles). After four hours 
f = 240 and after t hours f = 60t. We say that f increases linearly with time-its 
graph is a straight line. 

4 velocity v ( t )  4 distancef ( t )  

v 2 4 0 ~ ~ s 1 ~ = " = 6 04 
Area 240 : I 

time t time t 

Fig. 1.2 Constant velocity v =60 and linearly increasing distance f=60t. 

Notice that this example starts the car at full velocity. No time is spent picking up 
speed. (The velocity is a "step function.") Notice also that the distance starts at zero; 
the car is new. Those decisions make the graphs of v and f as neat as possible. One 
is the horizontal line v = 60. The other is the sloping line f = 60t. This v, f ,  t relation 
needs algebra but not calculus: 

if v is constant and f starts at zero then f = vt. 
The opposite is also true. When f increases linearly, v is constant. The division by 
time gives the slope. The distance is fl = 120 miles when the time is t 1  = 2 hours. 
Later f' =240 at t ,  = 4. At both points, the ratio f / t  is 60 miles/hour. Geometrically, 
the velocity is the slope of the distance graph: 

change in distance - vtslope = - v.change in time t 



-- 

1.1 Velocity and Distance 

Fig. 1.3 Straight lines f = 20 + 60t (slope 60) and f = -30t (slope -30). 

The slope of the f-graph gives the v-graph. Figure 1.3 shows two more possibilities: 

1. The distance starts at 20 instead of 0. The distance formula changes from 60t 
to 20 + 60t. The number 20 cancels when we compute change in distance-so 
the slope is still 60. 

2. When v is negative, the graph off  goes downward. The car goes backward and 
the slope of f  = -30t is v = -30. 

I don't think speedometers go below zero. But driving backwards, it's not that safe 
to watch. If you go fast enough, Toyota says they measure "absolute valuesw-the 
speedometer reads + 30 when the velocity is - 30. For the odometer, as far as I know 
it just stops. It should go backward.? 

VELOCITY vs. DISTANCE: SLOPE vs. AREA 

How do you compute f' from v? The point of the question is to see f = ut on the 
graphs. We want to start with the graph of v and discover the graph off.  Amazingly, 
the opposite of slope is area. 

The distance f is the area under the v-graph. When v is constant, the region under 
the graph is a rectangle. Its height is v, its width is t ,  and its area is v times t .  This is 
integration, to go from v to f by computing the area. We are glimpsing two of the 
central facts of calculus. 

1A The slope of the f-graph gives the velocity v. The area under the v-graph 
gives the distance f. 

That is certainly not obvious, and I hesitated a long time before I wrote it down in 
this first section. The best way to understand it is to look first at more examples. The 
whole point of calculus is to deal with velocities that are not constant, and from now 
on v has several values. 

EXAMPLE (Forward and back) There is a motion that you will understand right away. 
The car goes forward with velocity V, and comes back at the same speed. To say it 
more correctly, the velocity in the second part is - V. If the forward part lasts until 
t = 3, and the backward part continues to t = 6,  the car will come back where it started. 
The total distance after both parts will be f = 0. 

+This actually happened in Ferris Bueller's Day 08,when the hero borrowed his father's sports 
car and ran up the mileage. At home he raised the car and drove in reverse. I forget if it 
worked. 
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1u(r) = slope of f ( t )  

Fig. 1.4 Velocities + V and -V give motion forward and back, ending at f(6)=0. 

The v-graph shows velocities + V and -V. The distance starts up with slope + V 
and reaches f = 3V. Then the car starts backward. The distance goes down with slope 
-V and returns to f = 0 at t = 6 .  

Notice what that means. The total area "under" the v-graph is zero! A negative 
velocity makes the distance graph go downward (negative slope). The car is moving 
backward. Area below the axis in the v-graph is counted as negative. 

FUNCTIONS 

This forward-back example gives practice with a crucially important idea-the con-
cept of a "jiunction." We seize this golden opportunity to explain functions: 

The number v(t) is the value of the function t. at the time t. 

The time t is the input to the function. The velocity v(t) at that time is the output. 
Most people say "v oft" when they read v(t). The number "v of 2" is the velocity 
when t = 2. The forward-back example has v(2) = + V and v(4) = - V. The function 
contains the whole history, like a memory bank that has a record of v at each t. 

It is simple to convert forward-back motion into a formula. Here is v(t): 

The ,right side contains the instructions for finding v(t). The input t is converted into 
the output + V or - V. The velocity v(t) depends on t. In this case the function is 
"di~continuo~s,~ 'because the needle jumps at t = 3. The velocity is not dejined at that 
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads 
to trouble.) The graph off' has a corner, and we can't give its slope. 

The problem also involves a second function, namely the distance. The principle 
behind f(t) is the same: f (t) is the distance at time t. It is the net distance forward, 
and again the instructions change at t = 3. In the forward motion, f(t) equals Vt as 
before. In the backward half, a calculation is built into the formula for f(t): 

At the switching time the right side gives two instructions (one on each line). This 
would be bad except that they agree: f (3)= 3 V . v h e  distance function is "con- 

?A function is only allowed one ~:alue,f'(r)  at each time ror ~ ( t )  
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tinuous." There is no jump in f, even when there is a jump in v. After t = 3 the distance 
decreases because of -Vt. At t = 6 the second instruction correctly gives f (6) = 0. 

Notice something more. The functions were given by graphs before they were given 
by formulas. The graphs tell you f and v at every time t-sometimes more clearly 
than the formulas. The values f (t) and v(t) can also be given by tables or equations 
or a set of instructions. (In some way all functions are instructions-the function 
tells how to find f at time t.) Part of knowing f is knowing all its inputs and 
outputs-its domain and range: 

The domain of a function is the set of inputs. The range is the set of outputs. 

The domain of f consists of all times 0 < t < 6. The range consists of all distances 
0 <f(t) < 3V. (The range of v contains only the two velocities + V and -V.) 
We mention now, and repeat later, that every "linear" function has a formula 
f (t) = vt + C. Its graph is a line and v is the slope. The constant C moves the line up 
and down. It adjusts the line to go through any desired starting point. 

SUMMARY: MORE ABOUT FUNCTIONS 

May I collect together the ideas brought out by this example? We had two functions 
v and f.  One was velocity, the other was distance. Each function had a domain, 
and a range, and most important a graph. For the f-graph we studied the slope 
(which agreed with v). For the v-graph we studied the area (which agreed with f). 
Calculus produces functions in pairs, and the best thing a book can do early is to 
show you more of them. 

input t + function f -, output f (t) " { input 2 + function u + output v(2) 1 the 
domain input 7 + f (t) = 2t + 6 + f (7)= 20 rangein 

Note about the definition of a function. The idea behind the symbol f (t) is absolutely 
crucial to mathematics. Words don't do it justice! By definition, a function is a "rule" 
that assigns one member of the range to each member of the domain. Or, a function 
is a set of pairs (t, f (t)) with no t appearing twice. (These are "ordered pairs" because 
we write t before f (t).) Both of those definitions are correct-but somehow they are 
too passive. 

In practice what matters is the active part. The number f (t) is produced from the 
number t. We read a graph, plug into a formula, solve an equation, run a computer 
program. The input t is "mapped" to the output f(t), which changes as t changes. 
Calculus is about the rate of change. This rate is our other function v. 

Fig. 1.5 Subtracting 2 from f affects the range. Subtracting 2 from t affects the domain. 
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It is quite hard at the beginning, and not automatic, to see the difference between 
f (t) - 2 and f (t - 2). Those are both new functions, created out of the original f (t). 
In f (t)- 2, we subtract 2 from all the distances. That moves the whole graph down. 
In f ( t  - 2), we subtract 2 from the time. That moves the graph over to the right. 
Figure 1.5 shows both movements, starting from f (t) = 2t + 1. The formula to find 
f (t - 2) is 2(t - 2) + 1, which is 2t - 3. 

A graphing calculator also moves the graph, when you change the viewing window. 
You can pick any rectangle A < t < B, C <f(t)  < D. The screen shows that part of 
the graph. But on the calculator, the function f ( t )remains the same. It is the axes that 
get renumbered. In our figures the axes stay the same and the function is changed. 

There are two more basic ways to change a function. (We are always creating new 
functions-that is what mathematics is all about.) Instead of subtracting or adding, 
we can multiply the distance by 2. Figure 1.6 shows 2f (t). And instead of shifting the 
time, we can speed it up. The function becomes f(2t). Everything happens twice as 
fast (and takes half as long). On the calculator those changes correspond to a 
"zoom"-on the f axis or the t axis. We soon come back to zooms. 

0 I t 0 I t 0 
domain 1 1 112 

Fig. 1.6 Doubling the distance or speeding up the time doubles the slope. 

1.1 EXERCISES 
Each section of the book contains read-through questions. They 
allow you to outline the section yourself-more actively than 
reading a summary. This is probably the best way to remember 
the important ideas. 

Starting from f(0)  = 0 at constant velocity v ,  the distance 
function is f ( t)= a . When f ( t )  = 55t the velocity is 
v = b . When f(t) = 55t + 1000 the velocity is still c 
and the starting value is f (0)= d . In each case v is the 

e of the graph off .  When f is negative, the graph 
of s goes downward. In that case area in the t.-graph 
counts as h . 

Forward motion from f (0)= 0 to f (2)= 10 has v = i . 
Then backward motion to f (4)= 0 has v = i . The dis- 
tance function is f (t)= 5t for 0 < t < 2 and then f (t)= k 

(not -5t). The slopes are I and m . The distance 
f(3) = n . The area under the v-graph up to time 1.5 is 

o . The domain o f f  is the time interval P , and the 
range is the distance interval q . The range of v(t) is only 
-1 . 

The value off (t) = 3t + 1 at t = 2 is f (2) = s . The value 
19 equals f ( t ). The difference f (4)-f (1) = u . That 
is the change in distance, when 4 - 1 is the change in v . 
The ratio of those changes equals w , which is the x 
of the graph. The formula for f (t) + 2 is 3t + 3 whereas 
f (t + 2) equals Y . Those functions have the same z 
as f :  the graph of f (t)+ 2 is shifted A and f (t + 2) is 
shifted B . The formula for f (5t) is C . The formula 
for 5f ( t )is D . The slope has jumped from 3 to E . 
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The set of inputs to a function is its F . The set of 
outputs is its G . The functions f (t) = 7 + 3(t -2) and 
f(t) = vt + C are t~ . Their graphs are I with slopes 
equal to J and K . They are the same function, if 
v =  L a n d C =  M . 
Draw the velocity graph that goes with each distance graph. 

1 If I f 

3 Write down three-part formulas for the velocities u(t) in 
Problem 2, starting from v(t) = 2 for 0 < t < 10. 

4 The distance in l b  starts with f (t) = 10- lot for 0 < t < 1. 
Give a formula for the second part. 

5 In the middle of graph 2a find f (15) and f (12) and f (t). 

6 In graph 2b find f(1.4T). If T= 3 what is f(4)? 

7 Find the average speed between t = 0 and t = 5 in graph 
la. What is the speed at t = 5? 

8 What is the average speed between t = 0 and t = 2 in graph 
1 b? The average speed is zero between t = 3and t = . 
9 (recommended) A car goes at speed u = 20 into a brick 

wall at distance f -4. Give two-part formulas for v(t) and 
f (t) (before and after), and draw the graphs. 

10 Draw any reasonable graphs of v(t) and f(t) when 
(a) the driver backs up, stops to shift gear, then goes fast; 
(b) the driver slows to 55 for a police car; 
(c) in a rough gear change, the car accelerates in jumps; 
(d) the driver waits for a light that turns green. 

11 Your bank account earns simple interest on the opening 
balance f (0). What are the interest rates per year? 

12 The earth's population is growing at v = 100 million a 
year, starting from f = 5.2 billion in 1990. Graph f (t) and find 
f (2000). 

Draw the distance graph that goes with each velocity graph. 
Start from f = 0 at t = 0 and mark the distance. 

13a 13b 

15 Write down formulas for v(t) in Problem 14, starting with 
v = -40 for 0 < t < 1. Find the average velocities to t = 2.5 
and t = 3T. 

16 Give 3-part formulas for the areas f (t) under v(t) in 13. 

17 The distance in 14a starts with f (t)= -40t for 0 < t < 1. 
Find f (t) in the other part, which passes through f = 0at t = 2. 

18 Draw the velocity and distance graphs if v(t) = 8 for 
O < t < 2 ,  f ( t ) = 2 0 + t  for 2 < t < 3 .  

19 Draw rough graphs of y = and y = ,/=and 
y = f i -4. They are "half-parabolas" with infinite slope at 
the start. 

20 What is the break-even point if x yearbooks cost 
$1200 + 30x to produce and the income is 40x? The slope of 
the cost line is (cost per additional book). If it goes 
above you can't break even. 

21 What are the domains and ranges of the distance functions 
in 14a and 14b-all values of t and f (t) if f (0)= O? 
22 What is the range of u(t) in 14b? Why is t = 1 not in the 
domain of v(t) in 14a? 

Problems 23-28 involve linear functions f (t)= vt + C. Find the 
constants v and C. 

23 What linear function has f (0)= 3 and f (2) = -1  l? 
24 Find two linear functions whose domain is 0 < t d 2 and 
whose range is 1 df (t)< 9. 
25 Find the linear function with f(1) = 4 and slope 6. 

26 What functions have f (t + 1)=f (t)+ 2? 

27 Find the linear function with f (t + 2) =f (t) + 6 and 
f (1)= lo. 
28 Find the only f = vt that has f (2t) = 4f (t). Show that every 
f = +at2 has this property. To go times as far in 
twice the time, you must accelerate. 
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29 Sketch the graph of f(t) = 15 -2tl (absolute value) for 
It(< 2 and find its slopes and range. 
30 Sketch the graph off (t) = 4 - t -14 - t( for 2 < t 6 5 and 
find its slope and range. 
31 Suppose v = 8 up to time T, and after that v = -2. Starting 
from zero, when does f return to zero? Give formulas for v(t) 
and f (t). 
32 Suppose v = 3 up to time T= 4. What new velocity will 
lead to f (7) = 30 if f (0) = O? Give formulas for u(t) and f (t). 
33 What function F(C) converts Celsius temperature C to 
Fahrenheit temperature F? The slope is , whish is 
the number of Fahrenheit degrees equivalent to 1°C. 
34 What function C(F) converts Fahrenheit to Celsius (or 
Centigrade), and what is its slope? 
35 What function converts the weight w in grams to the 
weight f (w) in kilograms? Interpret the slope of f (w). 
36 (Newspaper of March 1989) Ten hours after the accident 
the alcohol reading was .061. Blood alcohol is eliminated at 
.015 per hour. What was the reading at the time of the acci- 
dent? How much later would it drop to .04 (the maximum set 
by the Coast Guard)? The usual limit on drivers is .10 percent. 

Which points between t = 0 and t = 5 can be in the domain of 
f (t)? With this domain find the range in 37-42. 

37 f(t) = ,/= 38 f (t) = I/-
39 f (t) = ( t-41 (absolute value) 40 f (t) = l/(t -4).? 

43 (a) Draw the graph off (t) = i t  + 3 with domain 0 Q t d 2. 
Then give a formula and graph for 
(b) f ( t )  + 1 (c) f ( t  + 1) 
(dl 4f (0  (e) f (40. 

44 (a) Draw the graph of U(t) = step function = (0 for t < 0, 
1 for t > 0). Then draw 
(b) U(t) + 2 ( 4  U(t + 2) 
( 4  3UW (e) U(3t). 

45 (a) Draw the graph of f (t) = t + 1 for -1 Q t 6 1. Find 
the domain, range, slope, and formula for 
(b) 2f (0  ( 4  f (t -3) (d) -f (0 (el f k t ) .  

46 If f (t) = t - 1 what are 2f (3t) and f (1 -t) and f (t - I)? 
47 In the forward-back example find f (* T )and f(3T). Verify 
that those agree with the areas "under" the v-graph in 
Figure 1.4. 

48 Find formulas for the outputs fl(t) and fi(t) which come 
from the input t: 

(1) inside = input * 3 (2) inside + input + 6 
output = inside + 3 output t inside* 3 

Note BASIC and FORTRAN (and calculus itself) use = 
instead of t.But the symbol t or := is in some ways better. 
The instruction t + t + 6 produces a new t equal to the old t 
plus six. The equation t = t + 6 is not intended. 
49 Your computer can add and multiply. Starting with the 
number 1 and the input called t, give a list of instructions to 
lead to these outputs: 

f1 ( t )= t2+ t  f2(t)=fdfdt))  f3(t)=f1(t+l)-
50 In fifty words or less explain what a function is. 

The last questions are challenging but possible. 
51 If f (t) = 3t - 1 for 0 6 t Q 2 give formulas (with domain) 
and find the slopes of these six functions: 

(a) f (t + 2) (b) f ( t )  + 2 ( 4  2f ( 0  
( 4  f (2t) (e) f (- t) (f) f ( f  (t)). 

52 For f (t) = ut + C find the formulas and slopes of 
(a) 3f (0 + 1 (b) f(3t + 1) (c) 2f(4t) 
(dl f (- t) (el f (0  -f (0) (f) f ( f  (t)). 

53 (hardest) The forward-back function is f (t) = 2t for 
O<t  ~ 3 ,  f ( t )=  12-2t for 3 6 t d 6 .  Graph f(f(t)) and find 
its four-part formula. First try t = 1.5 and 3. 
54 (a) Why is the letter X not the graph of a function? 

(b) Which capital letters are the graphs of functions? 
(c) Draw graphs of their slopes. 

1.2 Calculus Without Limits 

The next page is going to reveal one of the key ideas behind calculus. The discussion 
is just about numbers-functions and slopes can wait. The numbers are not even 
special, they can be any numbers. The crucial point is to look at their differences: 

Suppose the numbers are f =  0 2 6 7 4 9 
Their differences are v = 2 4 1 - 3 5  

The differences are printed in between, to show 2 -0 = 2 and 6 -2 = 4 and 7 -6 = 1. 
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Notice how 4 - 7 gives a negative answer -3. The numbers in f can go up or down,
the differences in v can be positive or negative. The idea behind calculus comes when
you add up those differences:

2+4+1-3+5=9
The sum of differences is 9. This is the last number on the top line (in f). Is this an
accident, or is this always true? If we stop earlier, after 2 + 4 + 1, we get the 7 in f.
Test any prediction on a second example:

Suppose the numbers are f= 1 3 7 8 5 10
Their differences are v = 2 4 1 -3 5

The f's are increased by 1. The differences are exactly the same-no change. The
sum of differences is still 9. But the last f is now 10. That prediction is not right, we
don't always get the last f.

The first f is now 1. The answer 9 (the sum of differences) is 10 - 1, the last f
minus the first f. What happens when we change the f's in the middle?

Suppose the numbers are f= 1 5 12 7 10
Their differences are v = 4 7 -5 3

The differences add to 4 + 7 - 5 + 3 = 9. This is still 10 - 1. No matter what f's we
choose or how many, the sum of differences is controlled by the first f and last f.
If this is always true, there must be a clear reason why the middle f's cancel out.

The sum of differences is (5 - 1) + (12 - 5) + (7 - 12) + (10 - 7) = 10 - 1.
The 5's cancel, the 12's cancel, and the 7's cancel. It is only 10 - 1 that doesn't cancel.
This is the key to calculus!

EXAMPLE 1 The numbers grow linearly: f= 2 3 4 5 6 7
Their differences are constant: v = 1 1 1 1 1

The sum of differences is certainly 5. This agrees with 7 - 2 =fast -ffirst. The numbers
in v remind us of constant velocity. The numbers in f remind us of a straight line
f= vt + C. This example has v = 1 and the f's start at 2. The straight line would
come from f= t + 2.

EXAMPLE 2 The numbers are squares: f= 0 1 4 9 16
Their differences grow linearly: v = 1 3 5 7

1 + 3 + 5 + 7 agrees with 42 = 16. It is a beautiful fact that the first j odd numbers
always add up to j2. The v's are the odd numbers, the f's are perfect squares.
Note The letter j is sometimes useful to tell which number in f we are looking at.
For this example the zeroth number is fo = 0 and the jth number is fj =j2. This is a
part of algebra, to give a formula for the f's instead of a list of numbers. We can also
use j to tell which difference we are looking at. The first v is the first odd number
v, = 1. The jth difference is the jth odd number vj = 2j- 1. (Thus v4 is 8 - I = 7.) It
is better to start the differences with j = 1, since there is no zeroth odd number vo.

With this notation the jth difference is vj =fj -f -1. Sooner or later you will get
comfortable with subscripts like j and j - 1, but it can be later. The important point
is that the sum of the v's equals flast -first. We now connect the v's to slopes and the
f's to areas.
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4= 7v4

v3 = 5

v2 = 3

1 =I

f4= 1

f 3 =9

f2=4

t f, = 1 t
1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase in v = 1, 3, 5, 7. Squares in the distances f= 0, 1, 4, 9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v and
the squares in f. Notice an important difference between the v-graph and the f-graph.
The graph of f is "piecewise linear." We plotted the numbers in f and connected
them by straight lines. The graph of v is "piecewise constant." We plotted the differ-
ences as constant over each piece. This reminds us of the distance-velocity graphs,
when the distance f(t) is a straight line and the velocity v(t) is a horizontal line.

Now make the connection to slopes:
distance up change in fThe slope of the f-graph is distance change indistance across change in t

Over each piece, the change in t (across) is 1. The change in f (upward) is the difference
that we are calling v. The ratio is the slope v/1l or just v. The slope makes a sudden
change at the breakpoints t = 1, 2, 3, .... At those special points the slope of the
f-graph is not defined-we connected the v's by vertical lines but this is very
debatable. The main idea is that between the breakpoints, the slope of f(t) is v(t).

Now make the connection to areas:
The total area under the v-graph is flast -ffirst

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is 1. The heights of the rectangles are the v's. So the areas also
equal the v's, and the total area is the sum of the v's. This area is flast -first.

Even more is true. We could start at any time and end at any later time
-not necessarily at the special times t = 0, 1, 2, 3, 4. Suppose we stop at t = 3.5.
Only half of the last rectangular area (under v = 7) will be counted. The total area is
1 + 3 + 5 + 2(7) = 12.5. This still agrees with flast -first = 12.5 - 0. At this new ending
time t = 3.5, we are only halfway up the last step in the f-graph. Halfway between
9 and 16 is 12.5.

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise linear f(t) and piecewise constant v(t). In Chapter 5
that restriction will be overcome.

Notice that a proof of 1 + 3 + 5 + 7 = 42 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase.
The area of the triangle is ½. base . height = -4 8, which is the perfect 9quare 42
When there are j rectangles instead of 4, we get .j. 2j =j2 for the area.

0~~~~~~~ 1 nrdcin oCluu
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The next examples show other patterns, where f and v increase exponentially or 
oscillate around zero. I hope you like them but I don't think you have to learn them. 
They are like the special functions 2' and sin t and cos t-except they go in steps. 
You get a first look at the important functions of calculus, but you only need algebra. 
Calculus is needed for a steadily changing velocity, when the graph off is curved. 

The last example will be income tax-which really does go. in steps. Then Sec- 
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working 
with limits. That will take us from algebra to calculus. 

EXPONENTIAL VELOCITY AND DISTANCE 

Start with the numbers f = 1,2,4,8, 16. These are "powers of 2." They start with the 
zeroth power, which is 2' = 1. The exponential starts at 1 and not 0. After j steps there 
are j factors of 2, and & equals 2j. Please recognize the diflerence between 2j and j2  
and 2j. The numbers 2j grow linearly, the numbers j2grow quadratically, the numbers 
2' grow exponentially. At j = 10 these are 20 and 100 and 1024. The exponential 2' 
quickly becomes much larger than the others. 

The differences off = 1,2,4,8, 16 are exactly v = 1,2,4,8.. We get the same beauti- 
ful numbers. When the f's are powers of 2, so are the v's. The formula vj  = 2"-' is 
slightly different from & = 2j, because the first v is numbered v,. (Then v, = 2' = 1. 
The zeroth power of every number is 1, except that 0' is meaningless.) The two graphs 
in Figure 1.8 use the same numbers but they look different, because f is piecewise 
linear and v is piecewise constant. 

1 2 3 4 1 2 3 4 
Fig. 1.8 The velocity and distance grow exponentially (powers of 2). 

Where will calculus come in? It works with the smooth curve f (t)= 2'. This expo- 
nential growth is critically important for population and money in a bank and the 
national debt. You can spot it by the following test: v(t) is proportional to f (t). 
Remark The function 2' is trickier than t2. For f = t2 the slope is v = 2t. It is 
proportional to t and not t2. For f = 2' the slope is v = c2', and we won't find the 
constant c = .693 ... until Chapter 6. (The number c is the natural logarithm of 2.) 
Problem 37 estimates c with a calculator-the important thing is that it's constant. 

OSCILLATING VELOCITY AND DISTANCE 

We have seen a forward-back motion, velocity V followed by -V. That is oscillation 
of the simplest kind. The graph off  goes linearly up and linearly down. Figure 1.9 
shows another oscillation that returns to zero, but the path is more interesting. 

The numbers in f are now 0, 1, 1,0, -1, -l,O. Since f6 = 0 the motion brings us 
back to the start. The whole oscillation can be repeated. 
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The differences in v are 1,0, -1, -1,0, 1. They add up to zero, which agrees with 
Jast -Airst. It is the same oscillation as in f (and also repeatable), but shifted in time. 

The f-graph resembles (roughly) a sine curve. The v-graph resembles (even more 
roughly) a cosine curve. The waveforms in nature are smooth curves, while these are 
"digitized"-the way a digital watch goes forward in jumps. You recognize that the 
change from analog to digital brought the computer revolution. The same revolution 
is coming in CD players. Digital signals (off or on, 0 or 1 )  seem to win every time. 

The piecewise v and f start again at t = 6. The ordinary sine and cosine repeat at 
t =2n. A repeating motion is periodic-here the "period" is 6 or 2n. (With t in degrees 
the period is 360-a full circle. The period becomes 2n when angles are measured in 
radians. We virtually always use radians-which are degrees times 2n/360.) A watch 
has a period of 12 hours. If the dial shows AM and PM, the period is . 

Fig. 1.9 Piecewise constant "cosine" and piecewise linear "sine." They both repeat. 

A SHORT BURST O F  SPEED 

The next example is a car that is driven fast for a short time. The speed is V until 
the distance reaches f = 1, when the car suddenly stops. The graph of f goes up 
linearly with slope V ,  and then across with slope zero: 

V upto  t = T  Vt up to t = T 
v(t) = f (0= 0 after t = T 1 after t = T 

This is another example of "function notation." Notice the general time t and the 
particular stopping time T. The distance is f (t). The domain off (the inputs) includes 
all times t 3 0. The range of f (the outputs) includes all distances 0 ff < 1. 

Figure 1.10 allows us to compare three cars-a Jeep and a Corvette and a Maserati. 
They have different speeds but they all reach f = 1. So the areas under the v-graphs 
are all 1. The rectangles have height V and base T = 1/ V. 

v~ EQUAL AREAS EQUAL DISTANCES I I  

Maserati delta II function 
I I 
II steD 

vc - - - - - 7  1 
I Corvette 

v~ I 

I Jeep 
I 

T~ T~ 
Fig. 1.10 Bursts of speed with V, TM= Vc Tc = 'V, T,= 1. Step function has infinite slope. 

Optional remark It is natural to think about faster and faster speeds, which means 
steeper slopes. The f-graph reaches 1 in shorter times. The extreme case is a step 
function, when the graph of f goes straight up. This is the unit step U(t) ,which is 
zero up to t =0 and jumps immediately to U = 1 for t >0. 
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What is the slope of the step function? It is zero except at the jump. At that moment,
which is t = 0, the slope is infinite. We don't have an ordinary velocity v(t)-instead
we have an impulse that makes the car jump. The graph is a spike over the single
point t = 0, and it is often denoted by 6-so the slope of the step function is called
a "delta function." The area under the infinite spike is 1.

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates-to explain "how
taxes work." Note especially the difference between tax rates and tax brackets and
total tax. The rates are v, the brackets are on x, the total tax is f.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15,.28,.31.

Suppose you are single with taxable income of x dollars (Form 1040, line 37-after
all deductions). These are the 1991 instructions from the Internal Revenue Service:

If x is not over $20,350, the tax is 15% of x.

If $20,350 < x < $49,300, the tax is $3052.50 + 28% of the amount over $20,350.
If x is over $49,300, the tax is $11,158.50 + 31% of the amount over $49,300.

The first bracket is 0 < x < $20,350. (The IRS never uses this symbol <, but I think
it is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300.
The top bracket x > $49,300 pays tax at the top rate of 31%. But only the income in
that bracket is taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Those are not average
rates, they are marginal rates. Total tax divided by total income would be the average
rate. The marginal rate of.28 or .31 gives the tax on each additional dollar of income-
it is the slope at the point x. Tax is like area or distance-it adds up. Tax rate is like
slope or velocity-it depends where you are. This is often unclear in the news media.

A• 1 on -'.U IO

sup 180 =slope60 11,158-across 3
f(2)= 40

S• slpe 20 3,052-

k tax to pay f(x)
31%tax rate =slope .28

15% taxable income
I I Y

2 5 2 5 20,350 49,300
Fig. 1.11 The tax rate is v, the total tax is f. Tax brackets end at breakpoints.

Question What is the equation for the straight line in the top bracket?
Answer The bracket begins at x = $49,300 when the tax is f(x) = $11,158.50. The
slope of the line is the tax rate .31. When we know a point on the line and the slope,
we know the equation. This is important enough to be highlighted.

Section 2.3 presents this "point-slope equation" for any straight line. Here you see it
for one specific example. Where does the number $11,158.50 come from? It is the tax
at the end of the middle bracket, so it is the tax at the start of the top bracket.

v2 = 60

ov = 20
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Figure 1.11 also shows a distance-velocity example. The distance at t = 2 is 
f (2)= 40 miles. After that time the velocity is 60 miles per hour. So the line with 
slope 60 on the f-graph has the equation 

f (t) = starting distance + extra distance =40 + 60(t -2). 
The starting point is (2'40). The new speed 60 multiplies the extra time t -2. The 
point-slope equation makes sense. We now review this section, with comments. 

Central idea Start with any numbers in f. Their differences go in v. Then the sum 
of those differences is ha,,-ffirst. 

Subscript notation The numbers are f,, fl ,  ... and the first difference is v, =fl-f,. 
A typical number is fi and the jth difference is v j  =fi -fi- . When those differences 
are added, all f's in the middle (like f,) cancel out: 

Examples fi =j or j2or 2'. Then vj = 1 (constant) or 2j - 1 (odd numbers) or 2'- '. 

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise 
constant. The area under the v-graph from any t,,,,, to any ten, equals f (ten,)-f (t,,,,,). 

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate 
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units. 

1.2 EXERCISES 
Read-through questions 
Start with the numbers f = 1,6,2,5. Their differences are 
v = a .The sum of those differences is b .This is equal 
to f,,,, minus c . The numbers 6 and 2 have no effect on 
this answer, because in (6 - 1)+ (2 -6) + (5 -2) the numbers 
6 and 2 d . The slope of the line between f(0) = 1 and 
f (1) = 6 is e . The equation of that line is f (t) = f . 

With distances 1, 5, 25 at unit times, the velocities are 
g . These are the h of the f-graph. The slope of the 

tax graph is the tax i . If f(t) is the postage cost for t 
ounces or t grams, the slope is the i per k . For 
distances 0, 1,4,9 the velocities are I . The sum of the 
first j odd numbers is fi = m . Then flo is n and the 
velocity ulo is 0 . 

The piecewise linear sine has slopes P . Those form a 
piecewise q cosine. Both functions have r equal to 
6, which means that f (t + 6) = s for every t. The veloci- 
ties v = 1,2,4,8, ... have vj = t . In that case fo = 1 and 
jj.= u . The sum of 1,2,4,8, 16 is v . The difference 
2J -2'- ' equals w . After a burst of speed V to time T, 
the distance is x . If f(T) = 1 and V increases, the burst 
lasts only to T = Y . When V approaches infinity, f (t) 
approaches a function. The velocities approach a 

A function, which is concentrated at t = 0 but has area 
B under its graph. The slope of a step function is c . 

Problems 1-4 are about numbers f and differences v. 

1 From the numbers f = 0,2,7,10 find the differences u and 
the sum of the three v's. Write down another f that leads 
to the same v's. For f =  0,3,12,10 the sum of the u's is 
still . 
2 Starting from f = 1,3,2,4 draw the f-graph (linear pieces) 

and the v-graph. What are the areas "under" the u-graph that 
add to 4 - l? If the next number in f is 11, what is the area 
under the next v? 
3 From v = 1,2, 1'0, -1 find the f's starting at fo = 3. 

Graph v and f. The maximum value of f occurs when 
v =  . Where is the maximum f when u = 1,2,1, -l?  
4 For f = 1, b, c, 7 find the differences vl  ,u2, v, and add 

them up. Do the same for f = a, b, c, 7. Do the same for 
f =a, b, c, d. 

Problems 5-11 are about linear functions and constant slopes. 
5 Write down the slopes of these linear functions: 

(a) f ( t )=  1.lt (b) f ( t )=  1 -2t (c) f ( t )=4+  5(t -6). 
Compute f (6) and f (7) for each function and confirm that 
f (7) -f (6) equals the slope. 
6 If f (t) = 5 + 3(t - 1) and g(t) = 1.5 + 2S(t - 1) what is 

h(t) =f (t) -g(t)? Find the slopes of f, g, and h. 
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=Suppose ~ ( t )  2 for t < 5 and v(t) =3 for t > 5. 
(a) If f (0)=0 find a two-part formula for f (t). 
(b) Check that f (10) equals the area under the graph of 
v(t) (two rectangles) up to t = 10. 
Suppose u(t) = 10 for t < 1/10, v(t) =0 for t > 1/10. Start- 

ing from f (0)= 1 find f (t) in two pieces. 
9 Suppose g(t) =2t + 1 and f (t)=4t. Find g(3) and f (g(3)) 

and f(g(t)). How is the slope of f(g(t)) related to the slopes 
of f and g? 
10 For the same functions, what are f (3) and g(f (3)) and 
g(f (t))? When t is changed to 4t, distance increases 
times as fast and the velocity is' multiplied by . 
11 Compute f (6) and f (8) for the functions in Problem 5. 
Confirm that the slopes v agree with 

f (8)-f (6) -- change in fslope = 8 -6 change in t ' 

Problems 12-18 are based on Example 3 about income taxes. 
12 What are the income taxes on x=$10,000 and 
x =$30,000 and x =$50,000? 
13 What is the equation for income tax f(x) in the second 
bracket $20,350 <x <$49,300? How is the number 1 1,158.50 
connected with the other numbers in the tax instructions? 
14 Write the tax function F(x) for a married couple if the IRS 
treats them as two single taxpayers each with taxable income 
x/2. (This is not done.) 
15 In the 15% bracket, with 5% state tax as a deduction, the 
combined rate is not 20% but . Think about the tax 
on an extra $100. 
16 A piecewise linear function is continuous when f (t) at the 
end of each interval equals f (t) at the start of the following 
interval. If f (t)= 5t up to t = 1 and v(t) =2 for t > 1, define 
f beyond t = 1 so it is (a) continuous (b) discontinuous. 
(c) Define a tax function f(x) with rates .15 and .28 so you 
would lose by earning an extra dollar beyond the breakpoint. 
17 The difference between a tax credit and a deduction from 
income is the difference between f (x)-c and f (x -d). Which 
is more desirable, a credit of c = $1000 or a deduction of 
d =$1000, and why? Sketch the tax graphs when f (x)= .15x. 
18 The average tax rate on the taxable income x is a(x) = 
f (x)/x. This is the slope between (0,O) and the point (x, f (x)). 
Draw a rough graph of a(x). The average rate a is below the 
marginal rate v because . 
Problems 19-30 involve numbers fo, f,,f2, ...and their differ- 
ences vj =& -&-, .They give practice with subscripts 0, . . .,j. 
19 Find the velocities v,, v2, v3 and formulas for vj and &: 
(a) f= l ,3 ,5 ,7  ... (b) f=0,1,0,1, ... (c) f=O,$,$,i ,... 

20 Find f,, f2, f3 and a formula for fi with fo =0: 
(a) v=l ,2 ,4 ,8,... (b) u = - l , l , - l , l ,  ... 

21 The areas of these nested squares are 12, 22, 32, . . . . What 
are the areas of the L-shaped bands (the differences between 
squares)? How does the figure show that I + 3 + 5 +7 =42? 

22 From the area under the staircase (by rectangles and then 
by triangles) show that the first j whole numbers 1 to j add 
up to G2+&. Find 1 +2 + .-.+ 100. 
23 If v=1,3,5 ,... then&=j2.  If v =  I, 1, 1 ,... then &= 

. Add those to find the sum of 2,4,6, ...,2j. Divide 
by 2 to find the sum of 1,2,3, ...,j. (Compare Problem 22.) 
24 True (with reason) or false (with example). 

(a) When the f's are increasing so are the 0's. 
(b) When the v's are increasing so are the f's. 
(c) When the f's are periodic so are the 0's. 
(d) When the v's are periodic so are the f 's. 

25 If f(t)= t2, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

26 If f (t)= t2 + t, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 
27 If & =j2+j + 1 find a formula for vj. 

28 Suppose the 0's increase by 4 at every step. Show by 
example and then by algebra that the "second difference" 
&+ -2& +&- ,equals 4. 

29 Suppose fo =0 and the v's are 1, 3, 4, $, 4, 4, 4, .... For 
which j does & = 5? 
30 Show that aj =&+,-2fj +fj- ,always equals vj+ ,-vj. If 
v is velocity then a stands for . 
Problems 31-34 involve periodic f's and v's (like sin t and 
cos t). 
31 For the discrete sine f=O, 1, 1,0, -1, -1,O find the 
second differences al =f2 -2f1 +.fo and a2 =f, -2f2 +fland 
a3. Compare aj with &. 
32 If the sequence v,, v2, ... has period 6 and wl, w2, ... has 
period 10, what is the period of v, + w,, v2 + w2, ...? 
33 Draw the graph of f(t) starting from fo =0 when v = 1, 
-1, -1, 1. If v has period 4 find f(12), f(l3), f(lOO.l). 
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34 Graph f(t) from f o = O  to f 4 = 4  when v =  1,2, l,O. If v 44 Graph the square wave U(t) -U(t - 1). If this is the veloc- 
has period 4, find f (1 2) and f (1 4) and f (1 6). Why doesn't f ity v(t), graph the distance f(t). If this is the distance f (t), 
have period 4? graph the velocity. 

Problems 35-42 are about exponential v's and f 's. 45 Two bursts of speed lead to the same distance f = 10: 
35 Find the v's for f = 1,3,9,27. Predict v, and vj. Algebra v =  tot=.001 v = v t o t =  . 
gives 3j - 3j- = (3 - 1)3j- '. As V+ co the limit of the f (t)'s is 
36 Find 1 + 2 + 4 +  +32 and also 1 + j + d +  +&.- a -

46 Draw the staircase function U(t) + U(t - 1)+ U(t -2). Its 
37 Estimate the slope of f (t)=2' at t =0. Use a calculator slope is a sum of three functions. 
to compute (increase in f )/(increase in t) when t is small: 

f (t) -f (0) 2 - 1 2.l - 1 2.O' - 1 2.0°1 - 1 47 Which capital letters like L are the graphs of functions 
- and -and -and - when steps are allowed? The slope of L is minus a delta func- t 1 .I .o1 .001 . tion. Graph the slopes of the others. 

38 Suppose fo = I and vj  = 2fi - ,. Find f,. 48 Write a subroutine FINDV whose input is a sequence 
39 (a) From f = 1, j , b ,  find v,, v,, v ,  and predict vj. fo, f,, ...,f, and whose output is v,, v,, ...,v,. Include 

(b) Check f3 -fo = v, + v2 + v3 and fi-A- = vj. graphical output if possible. Test on fi = 2j and j2 and 2j. 

40 Suppose vj  = rj. Show that fi = (rj' '- l)/(r- 1) starts 49 Write a subroutine FINDF whose input is v,, ...,v, and 
from fo = 1 and has fj-fi-, = uj. (Then this is the correct fo, and whose output is fo, f,,  ...,f,. The default value of fofi = 1 + r + + r j  = sum of a geometric series.) is zero. Include graphical output if possible. Test vj =j. 
41 From fi =(- 1)' compute vj. What is v,  + v2 + + vj? 50 If FINDV is applied to the output of FINDF, what 
42 Estimate the slope of f (t) = et at t = 0. Use a calculator sequence is returned? If FINDF is applied to the output of 
that knows e (or else take e = 2.78) to compute FINDV, what sequence is returned? Watch fo. 

f(t)-f(0) - e - 1 e.' - 1 e-O1- 1 51 Arrange 2j and j2and 2' and 4in increasing order and -and -t 1 . I  .01 - (a) when j is large: j =9 (b) when j is small: j =&. 
Problems 43-47 are about U(t) = step from 0 to 1 at t =0. 52 The average age of your family since 1970 is a piecewise 
43 Graph the four functions U(t - 1) and U(t) -2 and U(3t) linear function A(t). Is it continuous or does it jump? What 
and 4U(t). Then graph f (t) =4U(3t - 1)-2. is its slope? Graph it the best you can. 

1.3 The Velocity at an Instant 

We have arrived at the central problems that calculus was invented to solve. There 
are two questions, in opposite directions, and I hope you could see them coming. 

1. If the velocity is changing, how can you compute the distance traveled? 
2. If the graph of f(t) is not a straight line, what is its slope? 

Find the distance from the velocity, find the velocity from the distance. Our goal is 
to do both-but not in one section. Calculus may be a good course, but it is not 
magic. The first step is to let the velocity change in the steadiest possible way. 
Question 1 Suppose the velocity at each time t is v(t) = 2t. Find f (t). 
With zr= 2t, a physicist would say that the acceleration is constant (it equals 2). The 
driver steps on the gas, the car accelerates, and the speedometer goes steadily up. 
The distance goes up too-faster and faster. If we measure t in seconds and v in feet 
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet 
per second. After 44 seconds the speed is 88 feetlsecond (which is 60 miles/hour). 
The acceleration is clear, but how far has the car gone? 
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Question 2 The distance traveled by time t is f ( t )= t2 .  Find the velocity v(t). 

The graph off ( t )= t2  is on the right of Figure 1.12. It is a parabola. The curve starts 
at zero, when the car is new. At t = 5 the distance is f = 25. By t = 10, f reaches 100. 

Velocity is distance divided by time, but what happens when the speed is changing? 
Dividing f =  100 by t = 10 gives v = 10-the average veEocity over the first ten 
seconds. Dividing f = 121 by t = 11 gives the average speed over 11 seconds. But how 
do we find the instantaneous velocity-the reading on the speedometer at the exact 
instant when t = lo? 

change in 
distance 
( t  + h)2 -

time t t t + h  t 

Fig. 1.12 The velocity v =2t is linear. The distance f= t2 is quadratic. 

I hope you see the problem. As the car goes faster, the graph of t 2  gets steeper- 
because more distance is covered in each second. The average velocity between t = 10 
and t = 11 is a good approximation-but only an approximation-to the speed at 
the moment t = 10. Averages are easy to find: 

average velocity is f (1 1) -f (10) -- 121 - 100 
= 21.11- 10 1 

The car covered 21 feet in that 1 second. Its average speed was 21 feetlsecond. Since 
it was gaining speed, the velocity at the beginning of that second was below 21. 

Geometrically, what is the average? It is a slope, but not the slope of the curve. 
The average velocity is the slope of a straight line. The line goes between two points 
on the curve in Figure 1.12. When we compute an average, we pretend the velocity 
is constant-so we go back to the easiest case. It only requires a division of distance 
by time: 

change in faverage velocity = 
change in t ' 

Calculus and the Law You enter a highway at 1 :00. If you exit 150 miles away at 
3 :00, your average speed is 75 miles per hour. I'm not sure if the police can give you 
a ticket. You could say to the judge, "When was I doing 75?" The police would have 
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to admit that they have no idea-but they would have a definite feeling that you 
must have been doing 75 sometime.? 

We return to the central problem-computing v(10) at the instant t = 10. The 
average velocity over the next second is 21. We can also find the average over the 
half-second between t = 10.0 and t = 10.5. Divide the change in distance by the change 
in time: 

f (10.5) -f (10.0) - (10.5)2- (10.0)2- 110.25 - 100 = 20.5. 
10.5 - 10.0 .5 .5 

That average of 20.5 is closer to the speed at t = 10. It is still not exact. 
The way to find v(10) is to keep reducing the time interval. This is the basis for 

Chapter 2, and the key to differential calculus. Find the slope between points that are 
closer and closer on the curve. The "limit" is the slope at a single point. 

Algebra gives the average velocity between t = 10 and any later time t = 10 + h. 
The distance increases from lo2 to (10 + h)l. The change in time is h. So divide: 

This formula fits our previous calculations. The interval from t = 10 to t = 11 had 
h = 1, and the average was 20 + h = 21. When the time step was h =i,the average 
was 20 + 4= 20.5. Over a millionth of a second the average will be 20 plus 
1/1,000,000-which is very near 20. 
Conclusion: The velocity at t = 10 is v = 20. That is the slope of the curve. It agrees 
with the v-graph on the left side of Figure 1.12, which also has v(10) = 20. 

We now show that the two graphs match at all times. If f (t) = t 2  then v(t) = 2t. 
You are seeing the key computation of calculus, and we can put it into words before 
equations. Compute the distance at time t + h, subtract the distance at time t, and 
divide by h. That gives the average velocity: 

This fits the previous calculation, where t was 10. The average was 20 + h. Now the 
average is 2t + h. It depends on the time step h, because the velocity is changing. But 
we can see what happens as h approaches zero. The average is closer and closer to 
the speedometer reading of 2t, at the exact moment when the clock shows time t: 

I 1E As h approaches zero, the average velooity 2t + h approaches v(t )  = 2t. I 
Note The computation (3) shows how calculus needs algebra. If we want the whole 
v-graph, we have to let time be a "variable." It is represented by the letter t. Numbers 
are enough at the specific time t = 10 and the specific step h = 1-but algebra gets 
beyond that. The average between any t and any t + h is 2t + h. Please don't hesitate 
to put back numbers for the letters-that checks the algebra. 

+This is our first encounter with the much despised "Mean Value Theorem." If the judge can 
prove the theorem, you are dead. A few u-graphs and f-graphs will confuse the situation 
(possibly also a delta function). 
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There is also a step beyond algebra! Calculus requires the limit of the average. As 
h shrinks to zero, the points on the graph come closer. "Average over an interval" 
becomes "velocity at an instant.'' The general theory of limits is not particularly 
simple, but here we don't need it. (It isn't particularly hard either.) In this example 
the limiting value is easy to identify. The average 2t + h approaches 2t, as h -, 0. 

What remains to do in this section? We answered Question 2-to find velocity 
from distance. We have not answered Question 1. If v(t) = 2t increases linearly with 
time, what is the distance? This goes in the opposite direction (it is integration). 

The Fundamental Theorem of Calculus says that no new work is necessary. Zfthe 
slope o f f  (t) leads to v(t), then the area under that v-graph leads back to the f-graph. 
The odometer readings f = t2 produced speedometer readings v = 2t. By the Funda- 
mental Theorem, the area under 2t should be t2. But we have certainly not proved 
any fundamental theorems, so it is better to be safe-by actually computing the area. 

Fortunately, it is the area of a triangle. The base of the triangle is t and the height 
is v = 2t. The area agrees with f (t): 

area = i(base)(height)= f(t)(2t)= t2. (4) 

EXAMPLE 1 The graphs are shifted in time. The car doesn't start until t = 1. Therefore 
v =  0 and f = O  up to that time. After the car starts we have v =  2(t - 1) and 
f = (t - You see how the time delay of 1 enters the formulas. Figure 1.13 shows 
how it affects the graphs. 

Fig. 1.13 Delayed velocity and distance. The pairs v = at + b and f= $at2+ bt. 

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity 
changes from v = 2t to v = at. The acceleration is the slope ofthe velocity curve! The 
distance is also proportional to a, but notice the factor 3: 

acceleration a 9 velocity v = at 9 distance f = fat2. 
If a equals 1, then v = t and f = f t2. That is one of the most famous pairs in calculus. 
If a equals the gravitational constant g, then v = gt is the velocity of a falling body. 
The speed doesn't depend on the mass (tested by Galileo at the Leaning Tower of 
Pisa). Maybe he saw the distance f = &gt2more easily than the speed v = gt. Anyway, 
this is the most famous pair in physics. 
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EXAMPLE 3 Suppose f (t) = 3t + t2. The average velocity from t to t + h is 

f (t + h) -f (t) - 3(t + h) + (t + h)2 - 3t - t2 -Vave = h h 

The change in distance has an extra 3h (coming from 3(t + h) minus 3t). The velocity 
contains an additional 3 (coming from 3h divided by h). When 3t is added to the 
distance, 3 is added to the velocity. If Galileo had thrown a weight instead of dropping 
it, the starting velocity vo would have added vot to the distance. 

FUNCTIONS ACROSS TIME 

The idea of slope is not difficult-for one straight line. Divide the change in f by 
the change in t. In Chapter 2, divide the change in y by the change in x. Experience 
shows that the hard part is to see what happens to the slope as the line moves. 

Figure 1.l4a shows the line between points A and B on the curve. This is a "secant 
line." Its slope is an average velocity. What calculus does is to bring that point B 
down the curve toward A. 

1 speed 

Fig. 1.14 Slope of line, slope of curve. Two velocity graphs. Which is which? 

. Question I What happens to the "change in f "-the height of B above A? 
Answer The change in f decreases to zero. So does the change in t. 

Question 2 As B approaches A, does the slope of the line increase or decrease? 
Answer I am not going to answer that question. It is too important. Draw another 
secant line with B closer to A. Compare the slopes. 

This question was created by Steve Monk at the University of Washington-where 
57% of the class gave the right answer. Probably 97% would have found the right 
slope from a formula. Figure 1.14b shows the opposite problem. We know the veloc- 
ity, not the distance. But calculus answers questions about both functions. 

Question 3 Which car is going faster at time t = 3/4? 
Answer Car C has higher speed. Car D has greater acceleration. 

Question 4 If the cars start together, is D catching up to C at the end? Between 
t = $  and t = 1, do the cars get closer or further apart? 
Answer This time more than half the class got it wrong. You won't but you can see 
why they did. You have to look at the speed graph and imagine the distance graph. 
When car C is going faster, the distance between them . 
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To repeat: The cars start together, but they don't finish together. They reach the 
same speed at t = 1, not the same distance. Car C went faster. You really should draw 
their distance graphs, to see how they bend. 

These problems help to emphasize one more point. Finding the speed (or slope) is 
entirely different from finding the distance (or area): 

1. To find the slope of the f-graph at a'particular time t, you don't have to know 
the whole history. 

2. To find the area under the v-graph up to a particular time t, you do have to 
know the whole history. 

A short record of distance is enough to recover v(t). Point B moves toward point A. 
The problem of slope is local-the speed is completely decided by f (t) near point A. 

In contrast, a short record of speed is not enough to recover the total distance. We 
have to know what the mileage was earlier. Otherwise we can only know the increase 
in mileage, not the total. 

1.3 EXERCISES 
Read-through questions 

Between the distances f (2) = 100 and f (6)= 200, the average 
velocity is a . If f(t) = i t 2  then f (6)= b and 
f(8) = c . The average velocity in between is d . The 
instantaneous velocities at t = 6 and t = 8 are e and 

f . 

The average velocity is computed from f (t) and f (t + h) by 
uave= g . If f ( t ) = t 2  then o,,,= h . From t = l  to 
t = 1.1 the average is 1 . The instantaneous velocity 
is the I of u,,,. If the distance is f (t)= +at2 then the 
velocity is u(t) = k and the acceleration is 1 . 

On the graph of f(t), the average velocity between A and 
B is the slope of m . The velocity at A is found by n . 
The velocity at B is found by 0 . When the velocity is 
positive, the distance is P . When the velocity is increas- 
ing, the car is q . 
1 Compute the average velocity between t = 5 and t = 8: 

(a) f (0= 6t (b) f (t)= 6t + 2 
(c) f(t) =+at2 (d) f(t)=' t- t2 
( 4  f ( t )  = 6 (f) u(t) = 2t 

2 For the same functions compute [ f(t + h) -f (t)]/h. This 
depends on t and h. Find the limit as h -,0. 

3 If the odometer reads f (t) = t2 + t (f in miles or kilo- 
meters, t in hours), find the average speed between 

(a) t = l  and t = 2  
(b) t = 1 and t = 1.1 
(c) t = l  a n d t = l + h  
(d) t = 1 and t = .9 (note h = - .l) 

4 For the same f (t) = t2 + t, find the average speed between 
(a) t = O a n d l  (b) t = O a n d +  (c) t=Oandh.  

5 In the answer to 3(c), find the limit as h + 0. What does 
that limit tell us? 

6 Set h = 0 in your answer to 4(c). Draw the graph of 
f(t)= t2 + t and show its slope at t = 0. 

7 Draw the graph of v(t) = 1 + 2t. From geometry find 
the area under it from 0 to t. Find the slope of that area 
function f (t). 
8 Draw the graphs of v(t) = 3 -2t and the area f(t). 
9 True or false 

(a) If the distance f (t) is positive, so is v(t). 
(b) If the distance f (t) is increasing, so is u(t). 
(c) If f (t) is positive, v(t) is increasing. 
(d) If v(t) is positive, f (t) is increasing. 

10 If f(t) = 6t2 find the slope of the f-graph and also the 
v-graph. The slope of the u-graph is the 

11 Iff (t) = t 2  what is the average velocity between t = .9 and 
t = 1.1? What is the average between t -h and t + h? 
12 (a) Show that for f (t) = *at2 the average velocity between 

t -h and t +'h is exactly the velocity at t. 
(b) The area under v(t) = at from t -h to t + h is exactly 
the base 2h times 

13 Find f (t) from u(t) = 20t iff (0) = 12. Also if f (1) = 12. 
14 True or false, for any distance curves. 

(a) The slope of the line from A to B is the average velocity 
between those points. 
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(b) Secant lines have smaller slopes than the curve. Find the area under u(t) between t =0 and t = 1,2,3,4,5,6. 
(c) If f (t) and F(t) start together and finish together, the Plot those points f (1),. . . ,f (6) and draw the complete piece- 
average velocities are equal. wise parabola f (t). 
(d) If v(t) and V(t) start together and finish together, the 21 Draw the graph of f (t) = (1- t2( for 0 < t <2. Find a 
increases in distance are equal. three-part formula for u(t). 

15 When you jump up and fall back your height is y =2t - t2 22 Draw the graphs of f (t) for these velocities (to t =2): 
in the right units. (a) v(t) = 1 - t 

(a) Graph this parabola and its slope. (b) ~ ( t )  = 11 - tl 
(b) Find the time in the air and maximum height. (c) ~ ( t )  =(1 - t) + 1 1 - t 1. 
(c) Prove: Half the time you are above y =2. 23 When does f (t) = t2 -3t reach lo? Find the average 

Basketball players "hang" in the air partly because of (c). velocity up to that time and the instantaneous velocity at that 
16 Graph f (t) = t2 and g(t) =f (t) -2 and h(t) =f (2t), all time. 
from t =0 to t = 1. Find the velocities. 24 If f (t) =*at2 + bt + c, what is v(t)? What is the slope of 
17 (Recommended) An up and down velocity is v(t) =2t for v(t)? When does f (t) equal 41, if a =b =c = I? 
t < 3, v(t) = 12 -2t for t 2 3. Draw the piecewise parabola 25 If f (t) = t2 then v(t) =2t. Does the speeded-up function 
f(t). Check that f (6)=area under the graph of u(t). f(4t) have velocity v(4t) or 4u(t) or 4v(4t)? 
18 Suppose v(t) = t for t <2 and v(t) = 2 for t 2 2. Draw the 26 If f (t) = t - t2 find v(t) and f (3t). Does the slope of f (3t) 
graph off (t) out to t = 3. equal v(3t) or 3v(t) or 3v(3t)? 
19 Draw f (t) up to t =4 when u(t) increases linearly from 27 For f (t) = tZ  find vaVe(t) between 0 and t. Graph vave(t) 

(a) 0 to 2 (b) - I t 0 1  (c) -2 to 0. and v(t). 

how can you find 20 (Recommended) Suppose v(t) is the piecewise linear sine 28 If you know the average velocity uaVe(t), 
function of Section 1.2. (In Figure 1.8 it was the distance.) the distance f (t)? Start from f (0)=0. 

1.4 Circular Motion 

This section introduces completely new distances and velocities-the sines and cosines 
from trigonometry. As I write that last word, I ask myself how much trigonometry it 
is essential to know. There will be the basic picture of a right triangle, with sides cos t 
and sin t and 1. There will also be the crucial equation (cos t )2+ (sin t )2= 1, which 
is Pythagoras' law a' + b2 = c2. The squares of two sides add to the square of the 
hypotenuse (and the 1 is really 12). Nothing else is needed immediately. If you don't 
know trigonometry, don't stop-an important part can be learned now. 

You will recognize the wavy graphs of the sine and cosine. W e  intend to Jind the 
slopes of those graphs. That can be done without using the formulas for sin(x + y) 
and cos (x + y)-which later give the same slopes in a more algebraic way. Here it is 
only basic things that are needed.? And anyway, how complicated can a triangle be? 

Remark You might think trigonometry is only for surveyors and navigators (people 
with triangles). Not at all! By far the biggest applications are to rotation and vibration 
and oscillation. It is fantastic that sines and cosines are so perfect for "repeating 
motionw-around a circle or up and down. 

?Sines and cosines are so important that I added a review of trigonometry in Section 1.5. But 
the concepts in this section can be more valuable than formulas. 
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1 
f = sin t 

1 sin t 
- 1 

COS t 

Fig. 1.15 As the angle t changes, the graphs show the sides of the right triangle. 

Our underlying goal is to offer one more example in which the velocity can be 
computed by common sense. Calculus is mainly an extension of common sense, but 
here that extension is not needed. We will find the slope of the sine curve. The straight 
line f = v t  was easy and the parabola f = +at2 was harder. The new example also 
involves realistic motion, seen every day. We start with circular motion, in which the 
position is given and the velocity will be found. 

A ball goes around a circle of radius one. The center is at x = 0, y = 0 (the origin). 
The x and y coordinates satisfy x 2  + y2 = 12, to keep the ball on the circle. We specify 
its position in Figure 1.16a by giving its angle with the horizontal. And we make the 
ball travel with constant speed, by requiring that the angle is equal to the time t. The 
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1. 
The angle is measured in radians rather than degrees, so a full circle is completed at 
t = 271 instead of t = 360. 

The ball starts on the x axis, where the angle is zero. Now find it at time t: 

The ball is at the point where x= cos t and y = sin t. 

This is where trigonometry is useful. The cosine oscillates between 1 and -1, as the 
ball goes from far right to far left and back again. The sine also oscillates between 1 
and - 1, starting from sin 0 = 0. At time 7112 the sine (the height) increases to one. 
The cosine is zero and the ball reaches the top point x = 0, y = 1. At time 71 the cosine 
is -1 and the sine is back to zero-the coordinates are (- 1,O). At t = 271 the circle 
is complete (the angle is also 271), and x = cos 27~ = 1, y = sin 271 = 0. 

vertical 
velocity 

vertical 
distance 

Fig. 1.16 Circular motion with speed 1, angle t, height sin t, upward velocity cos t .  
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Important point: The distance around the circle (its circumference) is 2nr = 2n, 
because the radius is 1. The ball travels a distance 2n in a time 2n. The speed equals 
1. It remains to find the velocity, which involves not only speed but direction. 

Degrees vs. radians A full circle is 360 degrees and 271 radians. Therefore 

1 radian = 36012~ degrees = 57.3 degrees 

1 degree = 2711360 radians = .01745 radians 

Radians were invented to avoid those numbers! The speed is exactly 1, reaching t 
radians at time t. The speed would be .01745, if the ball only reached t degrees. The 
ball would complete the circle at time T = 360. We cannot accept the division of the 
circle into 360 pieces (by whom?), which produces these numbers. 

To check degree mode vs. radian mode, verify that sin lo  z .017 and sin 1 = 34. 

VELOCITY OF THE BALL 

At time t, which direction is the ball going? Calculus watches the motion between t 
and t + h. For a ball on a string, we don't need calculus-just let go. The direction 
of motion is tangent to the circle. With no force to keep it on the circle, the ball goes 
oflon a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging 
around on a chain, the force is from the center. When the thrower lets go, the hammer 
takes off-and it is an art to pick the right moment. (I once saw a friend hit by a 
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that 
same tangent direction, when the points at t and t + h come close. 

The "velocity triangle" is in Figure 1.16b. It is the same as the position triangle, 
but rotated through 90". The hypotenuse is tangent to the circle, in the direction the 
ball is moving. Its length equals 1 (the speed). The angle t still appears, but now it is 
the angle with the vertical. The upward component of velocity is cos t, when the upward 
component of position is sin t. That is our common sense calculation, based on a 
figure rather than a formula. The rest of this section depends on it-and we check 
v = cos t at special points. 

At the starting time t = 0, the movement is all upward. The height is sin 0 = 0 and 
the upward velocity is cos 0 = 1. At time ~ 1 2 ,  the ball reaches the top. The height is 
sin 4 2  = 1 and the upward velocity is cos n/2 = 0. At that instant the ball is not 
moving up or down. 

The horizontal velocity contains a minus sign. At first the ball travels to the left. 
The value of x is cos t, but the speed in the x direction is -sin t. Half of trigonometry 
is in that figure (the good half), and you see how sin2 t + cos2 t = 1 is so basic. 
That equation applies to position and velocity, at every time. 

Application of plane geometry: The right triangles in Figure 1.16 are the same size 
and shape. They look congruent and they are-the angle t above the ball equals the 
angle t at the center. That is because the three angles at the ball add to 180". 

OSCILLATION: UP AND DOWN MOTION 

We now use circular motion to study straight-line motion. That line will be the y axis. 
Instead of a ball going around a circle, a mass will move up and down. It oscillates 
between y = 1 and y = - 1. The mass is the "shadow of the ball," as we explain in a 
moment. 
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There is a jumpy oscillation that we do not want, with v = 1 and v = -1. That 
"bang-bang" velocity is like a billiard ball, bouncing between two walls without 
slowing down. If the distance between the walls is 2, then at t = 4 the ball is back to 
the start. The distance graph is a zigzag (or sawtooth) from Section 1.2. 

We prefer a smoother motion. Instead of velocities that jump between +1 and -1, 
a real oscillation slows down to zero and gradually builds up speed again. The mass 
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully 
stretched. Then v is negative, as the mass goes the same distance in the opposite 
direction. Simple harmonic motion is the most important back and forth motion, 
while f = vt and f = fat2 are the most important one-way motions. 

) turn 

( . p = m s t ; / / / J  
U P   

fup = sin t 
down 

turn 

Fig. 1.17 Circular motion of the ball and harmonic motion of the mass (its shadow). 

How do we describe this oscillation? The best way is to match it with the ball on 
the circle. The height of the ball will be the height of the mass. The "shadow of the 
ball" goes up and down, level with the ball. As the ball passes the top of the 
circle, the mass stops at the top and starts down. As the ball goes around the bottom, 
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1. 

Figure 1.17a shows the mass at a typical time t. The height is y =f (t)= sin t, level 
with the ball. This height oscillates between f = 1 and f = -1. But the mass does not 
move with constant speed. The speed of the mass is changing although the speed of 
the ball is always 1 .  The time for a full cycle is still 2n, but within that cycle the mass 
speeds up and slows down. The problem is to find the changing velocity u. Since the 
distance is f = sin t, the velocity will be the slope of the sine curve. 

THE SLOPE OF THE SINE CURVE 

At the top and bottom (t = n/2 and t = 3~12) the ball changes direction and v = 0. 
The slope at the top and bottom of the sine curve is zero.? At time zero, when the ball 
is going straight up, the slope of the sine curve is v = 1. At t = n,when the ball and 
mass and f-graph are going down, the velocity is v = -1. The mass goes fastest at 
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum 
or minimum. The velocity triangle yields v at every time t. 

To find the upward velocity of the mass, look at the upward velocity of the ball. 
Those velocities are the same! The mass and ball stay level, and we know v from 
circular motion: The upward velocity is v = cos t. 

?That looks easy but you will see later that it is extremely important. At a maximum or 
minimum the slope is zero. The curve levels off. 
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Figure 1.18 shows the result we want. On the right, f = sin t gives the height. On 
the left is the velocity v = cos t. That velocity is the slope of the f-curve. The height 
and velocity (red lines) are oscillating together, but they are out of phase-just as 
the position triangle and velocity triangle were at right angles. This is absolutely 
fantastic, that in calculus the two most famous functions of trigonometry form a pair: 
The slope of the sine curve is given by the cosine curve. 

When the distance is f (t) = sin t, the velocity is v(t)= cos t .  

Admission of guilt: The slope of sin t was not computed in the standard way. 
Previously we compared (t + h)' with t2,and divided that distance by h. This average 
velocity approached the slope 2t as h became small. For sin t we could have done the 
same: 

change in sin t sin (t + h) - sin t 
average velocity = change in t 

--
h (1) 

This is where we need the formula for sin (t + h), coming soon. Somehow the ratio in 
(1) should approach cosmtas h -,0. (It d,oes.)The sine and cosine fit the same pattern 
as t2 and 2 t o u r  shortcut was to watch the shadow of motion around a circle. 

Fig. 1.I 8 v = cos t when f = sin t (red); v = -sin t when f = cos t (black). 

Question 1 What if the ball goes twice as fast, to reach angle 2t at time t? 
Answer The speed is now 2. The time for a full circle is only n. The ball's position 
is x = cos 2t and y = sin 2t. The velocity is still tangent to the circle-but the tangent 
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and 
-sin 2t enters the horizontal velocity. The difference is that the velocity triangle is 
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity 
is -2 sin 2t. Notice these 2's! 

Question 2 What is the area under the cosine curve from t = 0 to t = n/2? 
You can answer that, if you accept the Fundamental Theorem of Calculus-
computing areas is the opposite of computing slopes. The slope of sin t is cos t, so the 
area under cos t is the increase in sin t. No reason to believe that yet, but we use it 
anyway. 

From sin 0 = 0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus. 
No other method could compute the area under a cosine curve so fast. 
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THE SLOPE OF THE COSINE,CURVE 

I cannot resist uncovering another distance and velocity (another f-v pair) with no 
extra work. This time f is the cosine. The time clock starts at the top of the circle. 
The old time t = n/2is now t = 0.The dotted lines in Figure 1.18 show the new start. 
But the shadow has exactly the same motion-the ball keeps going around the circle, 
and the mass follows it up and down. The f-graph and v-graph are still correct, both 
with a time shift of 4 2 .  

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the 
cosine curve follows the negative of the sine curve. That is another famous pair, twins 
of the first: 

When the distance is f (t)= cos t, the velocity is v(t) = - sin t. 
You could see that coming, by watching the ball go left and right (instead of up and 
down). Its distance across is f = cos t. Its velocity across is v = -sin t. That twjn pair 
completes the calculus in Chapter 1 (trigonometry to come). We review the ideas: 

v is the velocity 
the slope of the distance curve 
the limit of average velocity over a short time 
the derivative of f. 

f is the distance 
the area under the velocity curve 
the limit of total distance over many short times 
the integral of v. 

Differential calculus: Compute v from f . Integral calculus: Compute f from v. 
With constant velocity, f equals vt. With constant acceleration, v = at and f = t a t  2. 

In harmonic motion, v = cos t and f = sin t .  One part of our goal is to extend that 
list-for which we need the tools of calculus. Another and more important part is 
to put these ideas to use. 

Before the chapter ends, may I add a note about the book and the course? The 
book is more personal than usual, and I hope readers will approve. What I write is 
very close to what I would say, if you were in this room. The sentences are spoken 
before they are written.? Calculus is alive and moving forward-it needs to be taught 
that way. 

One new part of the subject has come with the computer. It works with a finite 
step h, not an "infinitesimal" limit. What it can do, it does quickly-even if it cannot 
find exact slopes or areas. The result is an overwhelming growth in the range of 
problems that can be solved. We landed on the moon because f and v were so 
accurate. (The moon's orbit has sines and cosines, the spacecraft starts with v = at 
and f = )at2. Only the computer can account for the atmosphere and the sun's gravity 
and the changing mass of the spacecraft.) Modern mathematics is a combination of 
exact formulas and approximate computations. Neither part can be ignored, and I 
hope you will see numerically what we derive algebraically. The exercises are to help 
you master both parts. 

t o n  television you know immediately when the words are live. The same with writing. 
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The course has made a quick start-not with an abstract discussion of sets or 
functions or limits, but with the concrete questions that led to those ideas. You have 
seen a distance function f and a limit v of average velocities. We will meet more 
functions and more limits (and their definitions!) but it is crucial to study important 
examples early. There is a lot to do, but the course has definitely begun. 

1.4 EXERCISES 
Read-through questions 

A ball at angle t on the unit circle has coordinates x = a 
and y = b . It completes a full circle at t = c . Its speed 
is d . Its velocity points in the direction of the e , 
which is f to the radius coming out from the center. The 
upward velocity is g and the horizontal velocity is h . 

A mass going up and down level with the ball has height ' 

f(t)= i . This is called simple i motion. The velocity 
is u(t) = k . When t = n/2 the height is f = I and the 
velocity is v = m . If a speeded-up mass reaches f= sin 2t 
at time t, its velocity is v = n . A shadow traveling under 
the ball has f= cos t and v = o . When f is distance = 
area = integral, v is P = q = r . 

1 For a ball going around a unit circle with speed 1, 
(a) how long does it take for 5 revolutions? 
(b) at time t = 3n/2 where is the ball? 
(c) at t = 22 where is the ball (approximately)? 

2 For the same motion find the exact x and y coordinates 
at t = 2x13. At what time would the ball hit the x axis, if it 
goes off on the tangent at t = 2n/3? 

3 A ball goes around a circle of radius 4. At time t (when it 
reaches angle t) find 

(a) its x and y coordinates 
(b) the speed and the distance traveled 
(c) the vertical and horizontal velocity. 

4 On a circle of radius R find the x and y coordinates at 
time t (and angle t). Draw the velocity triangle and find the 
x and y velocities. 

5 A ball travels around a unit circle (raalus 1) with speed 3, 
starting from angle zero. At time t, 

(a) what angle does it reach? 
(b) what are its x and y coordinates? 
(c) what are its x and y velocities? This part is harder. 

6 If another ball stays n/2 radians ahead of the ball with 
speed 3, find its angle, its x and y coordinates, and its vertical 
velocity at time t. 

7 A mass moves on the x axis under or over the original 
ball (on the unit circle with speed 1). What is the position 
x =f (t)? Find x and v at t = 4 4 .  Plot x and v up to t = n. 

8 Does the new mass (under or over the ball) meet the old 
mass (level with the ball)? What is the distance between 
the masses at time t? 

9 Draw graphs of f(t) = cos 3t and cos 2nt and 271 cos t, 
marking the time axes. How long until each f repeats? 

10 Draw graphs of f = sin(t + n) and v = cos (t + n). This 
oscillation stays level with what ball? 

11 Draw graphs of f= sin ( 4 2  - t) and v = -cos (n/2 - t). 
This oscillation stays level with a ball going which way start- 
ing where? 

12 Draw a graph of f(t) = sin t + cos t. Estimate its greatest 
height (maximum f )  and the time it reaches that height. By 
computing f check your estimate. 

13 How fast should you run across the circle to meet the ball 
again? It travels at speed 1. 

14 A mass falls from the top of the unit circle when the ball 
of speed 1 passes by. What acceleration a is necessary to meet 
the ball at the bottom? 

Find the area under v = cos t from the change in f= sin t: 

15 from t = O  to t = n  j6 from t = 0 to t = n/6 

17 from t = O  to t = 2 n  18 from t = n/2 to t = 3x12. 

19 The distance curve f= sin 4t yields the velocity curve 
v = 4 cos 4t. Explain both 4's. 

20 The distance curve f = 2 cos 3t yields the velocity curve 
v = -6 sin 3t. Explain the -6. 

21 The velocity curve v = cos 4t yields the distance curve 
f = $ sin 4t. Explain the i. 
22 The velocity v = 5 sin 5t yields what distance? 



23 Find the slope of the sine curve at t = 4 3  from v = cos t. The oscillation x = 0, y = sin t goes (1)up and down (2)between 
Then find an average slope by dividing sin n/2 -sin 4 3  by -1 and 1 (3) starting from x = 0, y = 0 (4) at velocity 
the time difference 4 2  -43.  v = cos t. Find (1)(2)(3)(4) for the oscillations 31-36. 
24 The slope of f = sin t at t = 0 is cos 0 = 1. Compute 31 x=cost,  y=O 32 x = 0, y = sin 5t 
average slopes (sin t)/t for t = 1, .l, .01, .001. 

33 x=O, y=2sin(t+O) 34 x=cost,  y=cost  
The ball at x = cos t, y = sin t circles (1) counterclockwise 35 x=O, y=-2cos i t  36 x=cos2t, y=sin2t 
(2)with radius 1 (3)starting from x = 1, y = 0 (4)at speed 1. 
Find (1)(2)(3)(4) for the motions 25-30. 37 If the ball on the unit circle reaches t degrees at time t, 

find its position and speed and upward velocity. 
25 x=cos3t, y=-sin3t 

38 Choose the number k so that x = cos kt, y = sin kt com- 
26 x = 3 cos 4t, y = 3 sin 4t pletes a rotation at t = 1. Find the speed and upward velocity. 
27 x = 5 sin 2t, y = 5 cos 2t 39 If a pitcher doesn't pause before starting to throw, a balk 

is called. The American League decided mathematically that 
there is always a stop between backward and forward motion, 
even if the time is too short to see it. (Therefore no balk.) Is 

30 x =cos (- t), y = sin (- t) that true? 

1.5 A Review of Trigonometry 

Trigonometry begins with a right triangle. The size of the triangle is not as important 
as the angles. We focus on one particular angle-call it 8-and on the ratios between 
the three sides x, y, r. The ratios don't change if the triangle is scaled to another 
size. Three sides give six ratios, which are the basic functions of trigonometry: 

n r 1 cos 8 = -
x 

= 
near side set 8 =  - =  -

r hypo tenuse x cos 8 

sin 8 = -
y 

= 
opposite side csc 8 = -r = -1 

r hypotenuse y sin 8R 
X 

I y  
y opposite side x 1 tan 8 = - = cot g = - = -

Fig. 1.19 x near side y tan 8 

Of course those six ratios are not independent. The three on the right come directly 
from the three on the left. And the tangent is the sine divided by the cosine: 

Note that "tangent of an angle" and "tangent to a circle" and "tangent line to a 
graph" are different uses of the same word. As the cosine of 8 goes to zero, the tangent 
of 8 goes to infinity. The side x becomes zero, 8 approaches 90", and the triangle is 
infinitely steep. The sine of 90" is y/r = 1. 

Triangles have a serious limitation. They are excellent for angles up to 90°, and 
they are OK up to 180", but after that they fail. We cannot put a 240" angle into a 
triangle. Therefore we change now to a circle. 
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Fig. 1.20 Trigonometry on a circle. Compare 2 sin 8 with sin 28 and tan 8 (periods 2n, n, n). 

Angles are measured from the positive x axis (counterclockwise). Thus 90" is 
straight up, 180" is to the left, and 360" is in the same direction as 0". (Then 450" is 
the same as 90°.) Each angle yields a point on the circle of radius r. The coordinates 
x and y of that point can be negative (but never r). As the point goes around the 
circle, the six ratios cos 8, sin 9, tan 8, .. . trace out six graphs. The cosine waveform 
is the same as the sine waveform-just shifted by 90". 

One more change comes with the move to a circle. Degrees are out. Radians are 
in. The distance around the whole circle is 2nr. The distance around to other points 
is Or. We measure the angle by that multiple 8. For a half-circle the distance is m, 
so the angle is n radians-which is 180". A quarter-circle is 4 2  radians or 90". 
The distance around to angle 8 is r times 8. 

When r = 1 this is the ultimate in simplicity: The distance is 8. A 45" angle is Q of 
a circle and 27118 radians-and the length of the circular arc is 27~18.Similarly for 1": 

360" = 2n radians 1" = 27~1360radians 1 radian = 3601271 degrees. 
An angle going clockwise is negative. The angle -n /3  is -60" and takes us 4of the 
wrong way around the circle. What is the effect on the six functions? 

Certainly the radius r is not changed when we go to -8. Also x is not changed 
(see Figure 1.20a). But y reverses sign, because -8 is below the axis when +8 is 
above. This change in y affects y/r and y / x  but not xlr: 

The cosine is even (no change). The sine and tangent are odd (change sign). 
The same point is 2 of the right way around. Therefore 2 of 2n radians (or 300") 

gives the same direction as -n /3  radians or -60". A diflerence of 2n makes no 
di$erence to x ,  y, r.  Thus sin 8 and cos 8 and the other four functions have period 27~. 
We can go five times or a hundred times around the circle, adding 10n or 200n to 
the angle, and the six functions repeat themselves. 

EXAMPLE Evaluate the six trigonometric functions at 8 = 2n/3 (or 8 = -4 4 3 ) .  
This angle is shown in Figure 1.20a (where r = 1). The ratios are 

cos 8 = x/r  = -1/2 sin 8 = y/r = &/2 tan 8 = y /x  = -& 
sec e = - 2 csc e = 2/& cot e =  -i/d 

Those numbers illustrate basic facts about the sizes of four functions: 

The tangent and cotangent can fall anywhere, as long as cot 8 = l/tan 8. 
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The numbers reveal more. The tangent -3 is the ratio of sine to cosine. The 
secant -2 is l/cos 8. Their squares are 3 and 4 (differing by 1). That may not seem 
remarkable, but it is. There are three relationships in the squares of those six numbers, 
and they are the key identities of trigonometry: 

Everything flows fvom the Pythagoras formula x2 + y2 = r2. Dividing by r2 gives 
( ~ / r ) ~+ (y/r)2= 1. That is cos2 8+ sin28= 1. Dividing by x2 gives the second identity, 
which is 1 + ( y / ~ ) ~  Dividing by y2 gives the third. All three will be needed = ( r / ~ ) ~ .  
throughout the book-and the first one has to be unforgettable. 

DISTANCES AND ADDITION FORMULAS 

To compute the distance between points we stay with Pythagoras. The points are in 
Figure 1.21a. They are known by their x and y coordinates, and d is the distance 
between them. The third point completes a right triangle. 

For the x distance along the bottom we don't need help. It is x, - xl (or Ix2 - x1I 
since distances can't be negative). The distance up the side is ly2 -y, 1. Pythagoras 
immediately gives the distance d: 

distance between points = d = J(x2 - x , ) ~+ (y2- y1)'. (1) 

x=coss  
y = sin s 

Fig. 1.21 Distance between points and equal distances in two circles. 

By applying this distance formula in two identical circles, we discover the cosine 
of s - t. (Subtracting angles is important.) In Figure 1.2 1 b, the distance squared is 

d2= (change in x ) ~  + (change in y)* 
= (COSs - cos t)* + (sin s - sin t)2. (2) 

Figure 1 . 2 1 ~  shows the same circle and triangle (but rotated). The same distance 
squared is 

d2= (cos(s - t) - + (sin (s - t))2. (3) 
Now multiply out the squares in equations (2) and (3). Whenever (co~ine)~ + (sine)2 
appears, replace it by 1. The distances are the same, so (2) = (3): 

(2) = 1 + 1 - 2 cos s cos t - 2 sin s sin t 
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After canceling 1 + 1 and then -2, we have the "addition formula" for cos (s - t): 

The cosine of s - t equals cos s cos t + sin s sin t. (4) 
The cosine of s + t equals cos s cos t - sin s sin t. (5) 

The easiest is t = 0. Then cos t = 1 and sin t = 0. The equations reduce to cos s = cos s. 
To go from (4) to (5) in all cases, replace t by - t. No change in cos t, but a "minus" 

appears with the sine. In the special case s =  t, we have cos(t + t )=  
(COS t)(cos t) - (sin t)(sin t). This is a much-used formula for cos 2t: 

Double angle: cos 2t = cos2 t - sin2 t = 2 cos2 t - 1 = 1 - 2 sin2 t. (6) 

I am constantly using cos2 t + sin2 t = 1, to switch between sines and cosines. 
We also need addition formulas and double-angle formulas for the sine of s - t 

and s + t and 2t. For that we connect sine to cosine, rather than (sine)2 to (co~ine)~.  
The connection goes back to the ratio y/r in our original triangle. This is the sine of 
the angle 0 and also the cosine of the complementary angle 7112 - 0: 

sin 0 = cos (7112 - 0) and cos 0 = sin (7112 - 0). (7) 

The complementary angle is 7112 - 0 because the two angles add to 7112 (a right angle). 
By making this connection in Problem 19, formulas (4-5-6) move from cosines to 
sines: 

sin (s - t) =sin s cos t - cos s sin t (8) 
sin(s + t) = sin s cos t + cos s sin t (9) 

sin 2t = sin(t + t) = 2 sin t cos t (10) 

I want to stop with these ten formulas, even if more are possible. Trigonometry is 
full of identities that connect its six functions-basically because all those functions 
come from a single right triangle. The x, y, r ratios and the equation x2 + y2 = r2 can 
be rewritten in many ways. But you have now seen the formulas that are needed by 
ca1culus.t They give derivatives in Chapter 2 and integrals in Chapter 5. And it is 
typical of our subject to add something of its own-a limit in which an angle 
approaches zero. The essence of calculus is in that limit. 

Review of the ten formulas Figure 1.22 shows d2 = (0 - $)2+ (1 - -12)~. 

71 71 71 71 71 71 71 71 71 cos - = cos - cos - + sin -71 sin - (s - t) sin -= sin - cos - - cos - sin -
6 2 3 2 3 6 2 3 2 3 

571 71 71 71 71 571 71 71 71 cos -= cos - cos - - sin - sin - (s + t) sin -= sin - cos - + cos -71 sin -6 2 3 2 3 6 2 3 2 3 
71 71 71 

(2t) sin 2 - = 2 sin - cos -3 3 3 
71 71sin - = cos -71 = 112cos 2 = sin - = -12 (4-0)6 3 6 3 

tcalculus turns (6) around to cos2 t =i(1 + cos 2t) and sin2 t =i(1 -cos 2t). 
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Fig. 1.22 

1.5 EXERCISES 
Read-through questions 
Starting with a a triangle, the six basic functions are the 

b of the sides. Two ratios (the cosine x/r and the c ) 
are below 1. Two ratios (the secant r/x and the d ) are 
above 1. Two ratios (the e and the f ) can take any 
value. The six functions are defined for all angles 8, by chang- 
ing from a triangle to a g . 

The angle 8 is measured in h . A full circle is 8 = i , 
when the distance around is 2nr. The distance to angle 8 is 

I . All six functions have period k . Going clockwise 
changes the sign of 8 and I and m . Since cos (- 9) = 
cos 8, the cosine is n . 

Coming from x2+ y2= r2 are the three identities 
sin2 8 + cos2 8 = 1 and 0 and P . (Divide by r2 and 

q and r .) The distance from (2, 5) to (3, 4) is 
d = s . The distance from (1, 0) to (cos (s -t), sin (s -t)) 
leads to the addition formula cos (s - t) = t . Changing 
the sign of t gives cos (s + t) = u . Choosing s = t gives 
cos 2t = v or w . Therefore i ( l +  cos 2t) = x , 
a formula needed in calculus. 

1 In a 60-60-60 triangle show why sin 30" =3. 
2 Convert x, 371, -7114 to degrees and 60°, 90°, 270" to 

radians. What angles between 0 and 2n correspond to 
8 = 480" and 8 = -I0? 
3 Draw graphs of tan 8and cot 8 from 0to 2n. What is their 

(shortest) period? 
4 Show that cos 28 and cos2 8 have period n and draw them 

on the same graph. 

5 At 8= 3n/2 compute the six basic functions and check 
cos2 8 + sin2 8, sec2 0 - tan2 8, csc2 8 -cot2 8. 

6 Prepare a table showing the values of the six basic func- 
tions at 8 = 0, 7114, n/3, ~ / 2 ,  n. 
7 The area of a circle is nr2. What is the area of the sector 

that has angle 8? It is a fraction of the whole area. 
8 Find the distance from (1, 0) to (0, 1)along (a) a straight 

line (b) a quarter-circle (c) a semicircle centered at (3,i). 

9 Find the distance d from (1,O) to (4, &/2) and show on 
a circle why 6d is less than 2n. 

10 In Figure 1.22 compute d2 and (with calculator) 12d. Why 
is 12d close to and below 2n? 

11 Decide whether these equations are true or false: 

sin 8 1 +cos 8 
(a) ------= ----1 -cos 8 sin 8 

sec 8 + csc 8 
= sin 8 + cos 8 (b) tan e +cot e 

(c) cos 8 -sec 8 = sin 0 tan 8 
(d) sin (2n -8) = sin 8 

12 Simplify sin (n -O), cos (n-8), sin (n/2 + 8), cos (n/2 + 8). 

13 From the formula for cos(2t + t) find cos 3t in terms of 
cos t. 

14 From the formula for sin (2t + t) find sin 3t in terms of 
sin t. 

15 By averaging cos (s - t) and cos (s + t) in (4-5) find a for- 
mula for cos s cos t. Find a similar formula for sin s sin t. 

16 Show that (cos t + i sin t)2 = cos 2t + i sin 2t, if i2 = -1. 

17 Draw cos 8 and sec 8 on the same graph. Find all points 
where cos B = sec 8. 

18 Find all angles s and t between 0 and 2n where sin (s + t) = 
sin s + sin t. 

19 Complementary angles have sin 8 = cos (n/2 -8). Write 
sin@+ t) as cos(n/2 -s - t) and apply formula (4) 
with n/2 -s instead of s. In this way derive the addition 
formula (9). 

20 If formula (9) is true, how do you prove (8)? 

21 Check the addition formulas (4-5) and (8-9) for 
s = t = n/4. 

22 Use (5) and (9) to find a formula for tan (s + t). 
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In 23-28 find every 8 that satisfies the equation. (1) show that the side PQ has length 
23 sin 8 =  -1 24 sec 8 = -2 d2=a2+b2-2ab cos 8 (law of cosines). 
25 sin 8 =cos 8 26 sin 8 =8 32 Extend the same!riangle to a parallelogram with its fourth 
27 sec2 8 +csc2 8 = 1 28 tan 8 = 0  corner at R =(a +b cos 0, b sin 8). Find the length squared of 

29 Rewrite cos 8 +sin 0 as f i sin(8+4) by choosing the 
the other diagonal OR. 

correct "phase angle" 4. (Make the equation correct at Draw graphs for equations 33-36, and mark three points. 
8 =0. Square both sides to check.) 33 y =sin 2x 34 y = 2  sin xx 
30 Match a sin x +b cos x with A sin (x +4). From equation 35 y =3 cos 2xx (9) show that a =A cos 4 and b =A sin 4. Square and add to 36 y=sin x+cos x 

find A = .Divide to find tan 4 =bla. 37 Which of the six trigonometric functions are infinite at 
31 Draw the base of a triangle from the origin 0 = (0'0) to what angles? 
P =(a, 0). The third corner is at Q =(b cos 8, b sin 8). What 38 Draw rough graphs or computer graphs of t sin t and 
are the side lengths OP and OQ? From the distance formula sin 4t sin t from 0 to 2n. 

1.6 1-Thousand Points of Light A  

The graphs on the back cover of the book show y = sin n. This is very different 
from y = sin x. The graph of sin x is one continuous curve. By the time it reaches 
x = 10,000, the curve has gone up and down 10,000/27r times. Those 1591 oscillations 
would be so crowded that you couldn't see anything. The graph of sin n has picked 
10,000 points from the curve-and for some reason those points seem to lie on more 
than 40 separate sine curves. 

The second graph shows the first 1000 points. They don't seem to lie on sine curves. 
Most people see hexagons. But they are the same thousand points! It is hard to believe 
that the graphs are the same, but I have learned what to do. Tilt the second graph 
and look from the side at a narrow angle. Now the first graph appears. You see 
"diamonds." The narrow angle compresses the x axis-back to the scale of the first 
graph. 

1- 

The effect of scale is something we don't think of. We understand it for maps. 
Computers can zoom in or zoom out-those are changes of scale. What our eyes see 
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depends on what is "close." We think we see sine curves in the 10,000 point graph, 
and they raise several questions: 

1. Which points are near (0, O)? 
2. How many sine curves are there? 
3. Where does the middle curve, going upward from (0, 0), come back to zero? 

A point near (0,O) really means that sin n is close to zero. That is certainly not true 
of sin 1 (1 is one radian!). In fact sin 1 is up the axis at .84, at the start of the seventh 
sine curve. Similarly sin 2 is .91 and sin 3 is .14. (The numbers 3 and .14 make us 
think of n. The sine of 3 equals the sine of n - 3. Then sin . l4  is near .14.) Similarly 
sin 4, sin 5, . . . , sin 21 are not especially close to zero. 

The first point to come close is sin 22. This is because 2217 is near n. Then 22 is 
close to 771, whose sine is zero: 

sin 22 = sin (7n - 22) z sin (- .01) z - .01. 
That is the first point to the right of (0,O) and slightly below. You can see it on 
graph 1, and more clearly on graph 2. It begins a curve downward. 

The next point to come close is sin 44. This is because 44 is just past 14n. 
44 z 14n + .02 so sin 44 z sin .02 z .02. 

This point (44, sin 44) starts the middle sine curve. Next is (88, sin 88). 
Now we know something. There are 44 curves. They begin near the heights sin 0, 

sin 1, . . . , sin 43. Of these 44 curves, 22 start upward and 22 start downward. I was 
confused at first, because I could only find 42 curves. The reason is that sin 11 equals 
- 0.99999 and sin 33 equals .9999. Those are so close to the bottom and top that you 
can't see their curves. The sine of 11 is near - 1 because sin 22 is near zero. It is 
almost impossible to follow a single curve past the top-coming back down it is not 
the curve you think it is. 

The points on the middle curve are at n = 0 and 44 and 88 and every number 44N. 
Where does that curve come back to zero? In other words, when does 44N come 
very close to a multiple of n? We know that 44 is 14n + .02. More exactly 44 is 
14n + .0177. So we multiply .0177 until we reach n: 

if N=n/.0177 then 44N=(14n+.0177)N3 14nN+n.  
This gives N = 177.5. At that point 44N = 7810. This is half the period of the sine 
curve. The sine of 7810 is very near zero. 

If you follow the middle sine curve, you will see it come back to zero above 7810. 
The actual points on that curve have n = 44 177 and n = 44 178, with sines just 
above and below zero. Halfway between is n = 7810. The equation for the middle sine 
curve is y = sin (nx/78lO). Its period is 15,620-beyond our graph. 

Question The fourth point on that middle curve looks the same as the fourth point 
coming down from sin 3. What is this "double point?" 
Answer 4 times 44 is 176. On the curve going up, the point is (176, sin 176). On the 
curve coming down it is (1 79, sin 179). The sines of 176 and 179 difler only by .00003. 

The second graph spreads out this double point. Look above 176 and 179, at the 
center of a hexagon. You can follow the sine curve all the way across graph 2. 

Only a little question remains. Why does graph 2 have hexagons? I don't know. 
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted 
points on straight lines as well as sine curves. Graph 3 shows y = fractional part of 
n/2x. Then he made a second copy, turned it over, and placed it on top. That 
produced graph 4-with hexagons. Graphs 3 and 4 are on the next page. 



36 1 Introduction to Calculus 

This is called a Moivt pattevn. If you can get a transparent copy of graph 3, and 
turn it slowly over the original, you will see fantastic hexagons. They come from 
interference between periodic patterns-in our case 4417 and 2514 and 1913 are near 
271. This interference is an enemy of printers, when color screens don't line up. It can 
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing 
Moire patterns move. There are good applications in engineering and optics-but 
we have to get back to calculus. 

1.7 Computing in Calculus 

Software is available for calculus courses-a lot of it. The packages keep getting 
better. Which program to use (if any) depends on cost and convenience and purpose. 
How to use it is a much harder question. These pages identify some of the goals, and 
also particular packages and calculators. Then we make a beginning (this is still 
Chapter 1) on the connection of computing to calculus. 

The discussion will be informal. It makes no sense to copy the manual. Our aim 
is to support, with examples and information, the effort to use computing to help 
learning. 

For calculus, the gveatest advantage of the computev is to o$er graphics. You see 
the function, not just the formula. As you watch, f ( x )  reaches a maximum or a 
minimum or zero. A separate graph shows its derivative. Those statements are not 
100% true, as everybody learns right away-as soon as a few functions are typed in. 
But the power to see this subject is enormous, because it is adjustable. If we don't 
like the picture we change to a new viewing window. 

This is computer-based graphics. It combines numerical computation with 
gvaphical computation. You get pictures as well as numbers-a powerful combination. 
The computer offers the experience of actually working with a function. The domain 
and range are not just abstract ideas. You choose them. May I give a few examples. 

EXAMPLE I Certainly x3 equals 3" when x = 3. Do those graphs ever meet again'? 
At this point we don't know the full meaning of 3", except when x is a nice number. 
(Neither does the computer.) Checking at x = 2 and 4, the function x3 is smaller 
both times: 23 is below 3* and 43 = 64 is below 34 = 81. If x3 is always less than 3" 
we ought to know-these are among the basic functions of mathematics. 
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The computer will answer numerically or graphically. At our command, it solves 
x3 = 3X. At another command, it plots both functions-this shows more. The screen 
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, 
they must cross again-because 3" is higher at 2 and 4. A crossing point near 2.5 is 
seen by zooming in. I am less interested in the exact number than its position-it 
comes before x = 3 rather than after. 

A few conclusions from such a basic example: 

1. A supercomputer is not necessary. 
2. High-level programming is not necessary. 
3. We can do mathematics without completely understanding it. 

The third point doesn't sound so good. Write it differently: We can learn mathematics 
while doing it. The hardest part of teaching calculus is to turn it from a spectator 
sport into a workout. The computer makes that possible. 

EXAMPLE 2 (mental computer) Compare x2 with 2X. The functions meet at x = 2. 
Where do they meet again? Is it before or after 2? 

That is mental computing because the answer happens to be a whole number (4). 
Now we are on a different track. Does an accident like Z4 = 42 ever happen again? 
Can the machine tell us about integers? Perhaps it can plot the solutions of xb = bx. 
I asked Mathernatica for a formula, hoping to discover x as a function of b-but the 
program just gave back the equation. For once the machine typed HELP icstead of 
the user. 

Well, mathematics is not helpless. I am proud of calculus. There is a new exercise 
at the end of Section 6.4, to show that we never see whole numbers again. 

EXAMPLE 3 Find the number b for which xb = bx has only one solution(at x = b). 
When b is 3, the second solution is below 3. When b is 2, the second solution (4) is 
above 2. If we move b from 2 to 3, there must be a special "double point"-where 
the graphs barely touch but don't cross. For that particular b-and only for that 
one value-the curve xb never goes above bx. 

This special point b can be found with computer-based graphics. In many ways it 
is the "center point of calculus." Since the curves touch but don't cross, they are 
tangent. They have the same slope at the double point. Calculus was created to work 
with slopes, and we already know the slope of x2. Soon comes xb. Eventually we 
discover the slope of bx, and identify the most important number in calculus. 

The point is that this number can be discovered first by experiment. 

EXAMPLE 4 Graph y(x) = ex- xe. Locate its minimum. 
The next example was proposed by Don Small. Solve x4 - 1 l x 3  + 5x - 2 = 0.The 

first tool is algebra-try to factor the polynomial. That succeeds for quadratics, and 
then gets extremely hard. Even if the computer can do algebra better than we can, 
factoring is seldom the way to go. In reality we have two good choices: 

1. (Mathematics)Use the derivative. Solve by Newton's method. 
2. (Graphics)Plot the function and zoom in. 

Both will be done by the computer. Both have potential problems! Newton's method 
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also 
fast-but solutions can be outside the viewing window. This particular function is 
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zero only once, in the standard window from -10 to 10. The graph seems to be 
leaving zero, but mathematics again predicts a second crossing point. So we zoom 
out before we zoom in. 

The use of the zoom is the best part of graphing. Not only do we choose the domain 
and range, we change them. The viewing window is controlled by four numbers. They 
can be the limits A <x <B and C d y d D. They can be the coordinates of two 
opposite corners: (A, C) and (B, D). They can be the center position (a, b) and the 
scale factors c and d. Clicking on opposite corners of the zoom box is the fastest way, 
unless the center is unchanged and we only need to give scale factors. (Even faster: 
Use the default factors.) Section 3.4 discusses the centering transform and zoom 
transform-a change of picture on the screen and a change of variable within the 
function. 

EXAMPLE 5 Find all real solutions to x4 - 1 lx3 + 5x - 2 =0. 

EXAMPLE 6 Zoom out and in on the graphs of y = cos 40x and y = x sin (llx). 
Describe what you see. 

U(AMpLE 7 What does y = (tan x - sin x)/x3 become at x = O? For small x the 
machine eventually can't separate tan x from sin x. It may give y = 0. Can you get 
close enough to see the limit of y? 

For these examples, and for most computer exercises in this book, a menu-driven 
system is entirely adequate. There is a list of commands to choose from. The user 
provides a formula for y(x), and many functions are built in. A calculus supplement 
can be very useful-MicroCalc or True BASIC or Exploring Calculus or MPP (in 
the public domain). Specific to graphics are Surface Plotter and Master Grapher and 
Gyrographics (animated). The best software for linear algebra is MATLAB. 

Powerful packages are increasing in convenience and decreasing in cost. They are 
capable of symbolic computation-which opens up a third avenue of computing in 
calculus. 

SYMBOLIC COMPUTATION 

In symbolic computation, answers can be formulas as well as numbers and graphs. 
The derivative of y = x2 is seen as "2x." The derivative of sin t is "cos t." The slope 
of bx is known to the program. The computer does more than substitute numbers 
into formulas-it operates directly on the formulas. We need to think where this fits 
with learning calculus. 

In a way, symbolic computing is close to what we ourselves do. Maybe too close- 
there is some danger that symbolic manipulation is all we do. With a higher-level 
language and enough power, a computer can print the derivative of sin(x2). So why 
learn the chain rule? Because mathematics goes deeper than "algebra with formulas." 
We deal with ideas. 

I want to say clearly: Mathematics is not formulas, or computations, or even proofs, 
but ideas. The symbols and pictures are the language. The book and the professor 
and the computer can join in teaching it. The computer should be non-threatening 
(like this book and your professor)-you can work at your own pace. Your part is 
to learn by doing. 

EXAMPLE 8 A computer algebra system quickly finds 100 factorial. This is loo! = 
(100)(99)(98)... (1). The number has 158 digits (not written out here). The last 24 
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digits are zeros. For lo! = 3628800 there are seven digits and two zeros. Between 10 
and 100, and beyond, are simple questions that need ideas: 

1. How many digits (approximately) are in the number N!? 
2. How many zeros (exactly) are at the end of N!? 

For Question 1,the computer shows more than N digits when N = 100. It will never 
show more than N2 digits, because none of the N terms can have more than N digits. 
A much tighter bound would be 2N, but is it true? Does N! always have fewer than 
2N digits? 

For Question 2, the zeros in lo! can be explained. One comes from 10, the other 
from 5 times 2. (10 is also 5 times 2.) Can you explain the 24 zeros in loo!? An idea 
from the card game blackjack applies here too: Count the$ves. 

Hard question: How many zeros at the end of 200!? 
The outstanding package for full-scale symbolic computation is Mathematica. It 

was used to draw graphs for this book, including y = sin n on the back cover. The 
complete command was List Plot [Table [Sin [n], (n, 10000)]]. This system has rewards 
and also drawbacks, including the price. Its original purpose, like MathCAD and 
MACSYMA and REDUCE, was not to teach calculus-but it can. The computer 
algebra system MAPLE is good. 

As  I write in 1990, DERIVE is becoming well established for the PC. For the 
Macintosh, Calculus TIL is a "sleeper" that deserves to be widely known. It builds 
on MAPLE and is much more accessible for calculus. An important alternative is 
Theorist. These are menu-driven (therefore easier at the start) and not expensive. 

I strongly recommend that students share terminals and work together. Two at a 
terminal and 3-5 in a working group seems to be optimal. Mathematics can be 
learned by talking and writing-it is a human activity. Our goal is not to test but to 
teach and learn. 
Writing in Calculus May I emphasize the importance of writing? We totally miss it, 
when the answer is just a number. A one-page report is harder on instructors as well 
as students-but much more valuable. A word processor keeps it neat. You can't 
write sentences without being forced to organize ideas-and part of yourself goes 
into it. 

I will propose a writing exercise with options. If you have computer-based graph- 
ing, follow through on Examples 1-4 above and report. Without a computer, pick a 
paragraph from this book that should be clearer and make it clearer. Rewrite it with 
examples. Identify the key idea at the start, explain it, and come back to express it 
differently at the end. Ideas are like surfaces-they can be seen many ways. 

Every reader will understand that in software there is no last word. New packages 
keep coming (Analyzer and EPIC among them). The biggest challenges at this 
moment are three-dimensional graphics and calculus workbooks. In 30, the problem 
is the position of the eye-since the screen is only 20. In workbooks, the problem is 
to get past symbol manipulation and reach ideas. Every teacher, including this one, 
knows how hard that is and hopes to help. 

GRAPHING CALCULATORS 

The most valuable feature for calculus-computer-based graphing-is available on 
hand calculators. With trace and zoom their graphs are quite readable. By creating 
the graphs you subconsciously learn about functions. These are genuinely personal 
computers, and the following pages aim to support and encourage their use. 
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Programs for a hand-held machine tend to be simple and short. We don't count 
the zeros in 100 factorial (probably we could). A calculator finds crossing points and 
maximum points to good accuracy. Most of all it allows you to explore calculus by 
yourself. You set the viewing window and define the function. Then you see it. 

There is a choice of calculators-which one to buy? For this book there was also 
a choice-which one to describe? To provide you with listings for useful programs, 
we had to choose. Fortunately the logic is so clear that you can translate the instruc- 
tions into any language-for a computer as well as a calculator. The programs given 
here are the "greatest common denominator" of computing in calculus. 

The range of choices starts with the Casio fx 7000G-the first and simplest, with 
very limited memory but a good screen. The Casio 7500,8000, and 8500 have increas- 
ing memory and extra features. The Sharp EL-5200 (or 9000 in Canada and Europe) 
is comparable to the Casio 8000. These machines have algebraic entry-the normal 
order as in y = x + 3. They are inexpensive and good. More expensive and much 
more powerful are the Hewlett-Packard calculators-the HP-28s and HP-48SX. 
They have large memories and extensive menus (and symbolic algebra). They use 
reverse Polish notation-numbers first in the stack, then commands. They require 
extra time and effort, and other books do justice to their amazing capabilities. It is 
estimated that those calculators could get 95 on a typical calculus exam. 

While this book was being written, Texas Instruments produced a new graphing 
calculator: the TI-81. It is closer to the Casio and Sharp (emphasis on graphing, easy 
to learn, no symbolic algebra, moderate price). With earlier machines as a starting 
point, many improvements were added. There is some risk in a choice that is available 
only At before this textbook is published, and we hope that the experts we asked are 
right. Anyway, our programs are Jbr the TI-81. It is impressive. 

These few pages are no substitute for the manual that comes with a calculator. A 
valuable supplement is a guide directed especially at calculus-my absolute favorites 
are Calculus Activities for Graphic Calculators by Dennis Pence (PWS-Kent, 1990 for 
the Casio and Sharp and HP-28S, 1991 for the TI-81). A series of Calculator Enhance- 
ments, using HP's, is being published by Harcourt Brace Jovanovich. What follows 
is an introduction to one part of a calculus laboratory. Later in the book, we supply 
TI-81 programs close to the mathematics and the exercises that they are prepared 
for. 

A few words to start: To select from a menu, press the item number and E N T E R .  
Edit a command line using D E L(ete) and I N S(ert). Every line ends with 
E N T E R .  For calculus select radians on the M 0 D E screen. For powers use * . For 
special powers choose x2, x- l ,  &.Multiplication has priority, so (-)3 + 2 x 2 
produces 1. Use keys for S I N ,  I F , I S, .. . When you press letters, I multiplies S . 

If a program says 3 + C ,  type 3 S T 0 C E N T E R .  Storage locations are A to Z 
or Greek 8. 

Functions A graphing calculator helps you (forces you?) to understand the concept 
of a function. It also helps you to understand specific functions-especially when 
changing the viewing window. 

To evaluate y = x2 - 2x just once, use the home screen. To define y(x) for repeated 
use, move to the function edit screen: Press M 0 D E, choose F u n c t io n, and press 
Y =. Then type in the formula. Important tip: for X on the TI-81, the key X I T is faster 
than two steps A L p h a X.  The Y = edit screen is the same place where the formula 
is needed for graphing. 
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Example Y I = X ~ - ~ XENTERontheY=screen. 4 ST0  X ENTERonthehome 
screen. Y 1 E N T E R on the Y-VARS screen. The screen shows 8, which is Y(4). The 
formula remains when the calculator is off. 

Graphing You specify the X range and Y range. (We should say X domain but we 
don't.) The screen is a grid of 96 x 64 little rectangles called "pixels." The first column 
of pixels represents X m i n and the last column is X m a x . Press R A N G E to reset. 
With X r e s = 1 the function is evaluated 96 times as it is graphed. X s c L and Y s c L 
give the spaces between ticks on the axes. 

The Z 0 0 M menu is a fast way to set ranges. Z 0 0 M S t a n d a r d gives the default 
-1O<x<10, -10<y<10. Z O O M  T r i g  gives - 2 n < x < h ,  - 3 < y < 3 .  

The keystroke G R A P H shows the graphing screen with the current functions. 
Example Set the ranges (-)2 < X < 3 and (-) 150 < Y 6 50. Press Y = and store 
Y1 = X  (in ~ A T H ) ~ - 2 8 X ~ + l 5 ~ + 3 6  E N T E R .  Press GRAPH. You won't see 
much of the graph! Press R A N G E and reset (-)I 0 < X < 30, (-)4000 < Y < 2300. 
Press G R A P H.  See a cubic polynomial. 

"Smart Graph" recalls the graph instantly without redrawing it, if no settings have 
changed. The D R A W  menu is for points, lines, and shaded regions. This is perfect for 
our piecewise linear functions-just connect the breakpoints with lines. In Section 3.6 
the lines show an iteration by its "cobweb." 
Programming This book contains programs that you can type in once and save. 
We chose Autoscaling, Newton's Method, Secant Method, Cobweb Iteration, and 
Numerical Integration. You will create others-to do calculations or to add features 
that are not available as single keystrokes. The calculator is like a computer, with a 
fairly small set of instructions. One digerence: Memory is too precious to store com- 
ments with the code. You have to see the logic by rereading the program. 

To enter the world of programming, press P R G M. Each P R G M submenu lists all 
programs by name-a digit, a letter, or 6 (37 names). The program title has up to 
eight characters. Select the E D I T submenu and press G for the edit screen. Type the 
title G R A P H S and press E N T E R .  Practice on this one: 

: " x ~ + x "  ST0 (Y-VARS) Y1 ENTER 
:"X-1" ST0 (Y-VARS) Y2 ENTER 
: ( P R G M ) ( I / O l  D i s p G r a p h  

The menus to call are in parentheses. Leave the edit screen with Q U  I T (not 
C L E A R -that erases the line with the cursor). Set the default window by Z 0 0 M 
S t a n d a r d .  

To execute, press P R G M ( E X E C G E N T E R .  The program draws the graphs. It 
leaves Y 1 and Y 2 on the Y = screen. To erase the program from the home screen, 
press (PRGM)(ERASE)G.  Practice again by creating P r gw 2 :F U N C . Type:TXST0 Y and : (PRGM) ( I / O ) D i  s p  Y. Movetothehomescreen,store 
X by 4 ST0 X ENTER, and execute by (PRGM) (EXEC12 ENTER. Also try 
X = - 1. When it fails to imagine i, select 1 :G o t  o E r r o r .  

Piecewise functions and Input (to a running program). The definition of a piecewise 
function includes the domain of each piece. Logical tests like " I F X 2 7 " determine 
which domain the input value X falls into. An I F statement only affects the following 
line-which is executed when T E S T = 1 (meaning true) and skipped when T E S T =0 
(meaning false). I F commands are in the P R G M ( C T L submenu; T E S T calls the 
menu of inequalities. 
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An input value X = 4 need not be stored in advance. Program P stops while 
running to request input. Execute with P E  N  T  E  R  after selecting the P R G M ( E X E  C  > 
menu. Answer ? with 4 and E N T  E  R. After completion, rerun by pressing E  N  T E R 
again. The function is y = 14 - x if x < 7, y = x if x > 7. 

P r g m P :  P I E C E S  
:Di s p  " x = "  P G R M  (I1 0 )  Ask for input 
: I n p u t  X PGRM ( 1 1 0 )  Screen ? E N T E R  X 
: 1 4 - X - + Y  First formula for all X 
: I f  7 < X  PRGM ( C T L )  T E S T  
: X + Y  Overwrite if T E S T = 1 
:D i s p  Y Display Y(X) 

Overwriting is faster than checking both ends A <X <B for each piece. Even faster: 
a whole formula (14 -X)(X < 7) + (X)(7 <X) can go on a single line using 1 and 0 
from the tests. Compute-store-display Y(X) as above, or define Y 1 on the edit screen. 

Exercise Define a third piece Y = 8 + X if X < 3. Rewrite P using Y 1 = . A product 
of tests ( 3 < X > ( X < 7 1 evaluates to 1 if all true and to 0 if any false. 

TRACE and ZOOM The best feature is graphing. But a whole graph can be like a 
whole book-too much at once. You want to focus on one part. A computer or 
calculator will trace along the graph, stop at a point, and zoom in. 

There is also Z 0  0  M 0 U T, to widen the ranges and see more. Our eyes work the 
same way-they put together information on different scales. Looking around the 
room uses an amazingly large part of the human brain. With a big enough computer 
we can try to imitate the eyes-this is a key problem in artificial intelligence. With 
a small computer and a zoom feature, we can use our eyes to understand functions. 

Press T R A C E to locate a point on the graph. A blinking cursor appears. Move 
left or right-the cursor stays on the graph. Its coordinates appear at the bottom of 
the screen. When x changes by a pixel, the calculator evaluates y(x). To solve y(x) = 0, 
read off x at the point when y is nearest to zero. To minimize or maximize y(x), read 
off the smallest and largest y. In all these problems, zoom in for more accuracy. 

To blow up a figure we can choose new ranges. The fast way is to use a Z 0  0  M 
command. Forapresetrange,use Z O O M  S t a n d a r d  or Z O O M  T r  ig.Toshrink 
or stretch by X F a c t or Y F a c t (default values 4), use Z 0  0  M In or Z 0  0  M 0  u  t . 
Choose the center point and press E N T E  R. The new graph appears. Change those 
scaling factors with Z 0  0  M S e t F a c t o r s . Best of all, create your own viewing 
window. Press Z 0 0 M Bo x . 

To draw the box, move the cursor to one corner. Press E N T E R and this point is 
a small square. The same keys move a second (blinking) square to the opposite 
corner-the box grows as you move. Press E  N  T  E  R, and the box is the new viewing 
window. The graphs show the same function with a change of scale. Section 3.4 will 
discuss the mathematics-here we concentrate on the graphics. 

EXAMPLE9 Place : Y l = X  s i n  ( 1 / X I  intheY=editscreen.PressZOOM T r i g  
for a first graph. Set X F a c t = 1 and Y F a c t = 2.5. Press Z 0  0  M In with center at 
(O,O).Toseealargerpicture,use X F a c t  = 10and Y F a c t  = 1.Then Zoom Out 
again. As X gets large, the function X sin ( l /X) approaches . 

Now return to Z 0  0  M T r i g . Z o o m In with the factors set to 4 (default). Zoom 
again by pressing E  N  T E R. With the center and the factors fixed, this is faster than 
drawing a zoom box. 
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EXAMPLE 10 Repeat for the more erratic function Y = sin (l/X). After Z0  0  M Tr ig , 
create a box to see this function near X = .01. The Y range is now 

Scaling is crucial. For a new function it can be tedious. A formula for y(x) does 
not easily reveal the range of y's, when A <x <B is given. The following program is 
often more convenient than zooms. It samples the function L= 19 times across the 
x-range (every 5 pixels). The inputs Xmin, Xmax, Y, are previously stored on other 
screens. After sampling, the program sets the y-range from C = Ymin to D = Ymax 
and draws the graph. 

Notice the loop with counter K. The loop ends with the command I S > ( K,L , 
which increases K by 1 and skips a line if the new K exceeds L. Otherwise the 
command G o t o 1 restarts the loop. The screen shows the short form on the left. 
Example: Y l  =x3+10x2-7x+42 with range Xrnin=-12 and Xrnax=lO. 
Set tick spacing X s c l = 4  and Yscl=250.  Execute with PRGM (EXEC) A 
E NTE R. For this program we also list menu locations and comments. 

PrgmA :AUTOSCL Menu (Submenu) Comment 
: A l l - O f f  Y -V A R S ( 0 F F Turn off functions 
:Xm in+A  V A R S  (RNG) Store X m i  n using ST0 
: 1 9 + L  Store number of evaluations (19) 
: (Xmax-A) / L +  H Spacing between evaluations 
: A + X  Start at x = A 
:Y1 + C  Y -V A R S ( Y ) Evaluate the function 
: C + D  Start C and D with this value 
:I+K Initialize counter K = 1 
: L b l  I PR G M ( C TL ) Mark loop start 
:AtKH + X Calculate next x 
:Y1 + Y  Evaluate function at x 
: I F  Y < C  PGRM (CTL) New minimum? 
: Y + C  Update C 
: I F  D c Y  PRGM (CTL) New maximum? 
: Y + D  Update D 
: I S >  (K,L) PRGM (CTL) Add 1 to K, skip G o t o  if > L  
: G o t o  1  PRGM (CTL) Loop return to L b l  1  
:YI-On Y - V A R S  ( O N )  Turnon Y1 
:C+Ymin  ST0 V A R S  ( R N G )  Set Y m i n = C  
:D+Ymax ST0 V A R S  (RNG) Set Ymax=D 
: D i s p G r a p h  PR G M ( I/ 0 1 Generate graph 
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C H A P T E R  2 

Derivatives  

2.1 The Derivative of a Function 

This chapter begins with the definition of the derivative. Two examples were in 
Chapter 1. When the distance is t 2 ,  the velocity is 2t. When f ( t )  = sin t we found 
v(t)= cos t. The velocity is now called the derivative o f f  (t). As we move to a more 
formal definition and new examples, we use new symbols f '  and dfldt for the 
derivative. 

2A At time t ,  the derivativef' ( t )or df /dt or v( t )  is 

f' ( t )= lim fCt -t At) -f (0 
( 1 )At+O At 

The ratio on the right is the average velocity over a short time At. The derivative, on 
the left side, is its limit as the step At (delta t )  approaches zero. 

Go slowly and look at each piece. The distance at time t + At is f (t  + At). The 
distance at time t is f ( t ) .  Subtraction gives the change in distance, between those 
times. We often write A f for this difference: A f =f (t  + At) -f (t) .  The average velocity 
is the ratio AflAt-change in distance divided by change in time. 

The limit of the average velocity is the derivative, if this limit exists: 

df - lim -.Af 
dt A t - 0  At 

This is the neat notation that Leibniz invented: Af/At  approaches df /dt. Behind the 
innocent word "limit" is a process that this course will help you understand. 

Note that Af is not A times f !  It is the change in f .  Similarly At is not A times t. 
It is the time step, positive or negative and eventually small. To have a one-letter 
symbol we replace At by h. 

The right sides of (1) and (2)contain average speeds. On the graph of f ( t ) ,  the 
distance up is divided by the distance across. That gives the average slope Af /At. 

The left sides of ( 1 )  and (2)are instantaneous speeds dfldt. They give the slope at 
the instant t. This is the derivative dfldt (when At and Af shrink to zero). Look again 
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at the calculation for f(t) = t2: 

--- f( t+At)-f( t)  - t2+2tAt+(At) ' - t2Af - =2t + At. 
At At At 

Important point: Those steps are taken before At goes to zero. If we set At =0 too 
soon, we learn nothing. The ratio Af/At becomes 010 (which is meaningless). The 
numbers Af and At must approach zero together, not separately. Here their ratio is 
2t +At, the average speed. 

To repeat: Success came by writing out (t + At)2 and subtracting t2 and dividing 
by At. Then and only then can we approach At =0. The limit is the derivative 2t. 

There are several new things in formulas (1) and (2). Some are easy but important, 
others are more profound. The idea of a function we will come back to, and the 
definition of a limit. But the notations can be discussed right away. They are used 
constantly and you also need to know how to read them aloud: 

f (t) ="f of t" = the value of the function f at time t 
At = "delta t" = the time step forward or backward from t 

f (t + At) = "f of t plus delta t" = the value off  at time t + At 
Af = "delta f" = the change f (t + At) -f (t) 

Af/At = "delta f over delta t" = the average velocity 
ff(t)="f prime of t" = the value of the derivative at time t 

df /dt = "d f d t" = the same as f '  (the instantaneous velocity) 
lim = "limit as delta t goes to zero" = the process that starts with 

At+O numbers Af /At and produces the number df /dt. 
From those last words you see what lies behind the notation dfldt. The symbol At 
indicates a nonzero (usually short) length of time. The symbol dt indicates an 
infinitesimal (even shorter) length of time. Some mathematicians work separately 
with df and dt, and df/dt is their ratio. For us dfldt is a single notation (don't 
cancel d and don't cancel A). The derivative dfldt is the limit of AflAt. When that 
notation dfldt is awkward, use f '  or v. 

Remark The notation hides one thing we should mention. The time step can be 
negative just as easily as positive. We can compute the average Af/At over a time 
interval before the time t, instead of after. This ratio also approaches dfldt. 

The notation also hides another thing: The derivative might not exist. The averages 
AflAt might not approach a limit (it has to be the same limit going forward and 
backward from time t). In that case ft(t) is not defined. At that instant there is no 
clear reading on the speedometer. This will happen in Example 2. 

EXAMPLE 1 (Constant velocity V = 2) The distance f is V times t. The distance at 
time t + At is V times t + At. The diference Af is V times At: 

Af - VAt df- V so the limit is -= V.At At dt 

The derivative of Vt is V. The derivative of 2t is 2. The averages AflAt are always 
V = 2, in this exceptional case of a constant velocity. 



2 Derivatives 

EXAMPLE 2 Constant velocity 2 up to time t = 3, then stop. 
For small times we still have f  ( t )  = 2t. But after the stopping time, the distance is 
fixed at f  ( t )  = 6 .  The graph is flat beyond time 3. Then f  ( t  + At) =f  ( t )  and Af = 0 
and the derivative of a constant function is zero: 

0 
t > 3: f  ' ( t )  = lim f ( t  + At) - f  (0= lim -= 0. 

A ~ + O  At a t - o  At 

In this example the derivative is not defined at the instant when t = 3. The velocity 
falls suddenly from 2 to zero. The ratio Af /A t  depends, at that special moment, on 
whether At is positive or negative. The average velocity after time t = 3 is zero. The 
average velocity before that time is 2. When the graph off  has a corner, the graph 
of v has a jump. It is a step function. 

One new part of that example is the notation (dfldt or f' instead of v). Please look 
also at the third figure. It shows how the function takes t (on the left) to f  ( t ) .  Especially 
it shows At and Af .  At the start, Af /A t  is 2. After the stop at t = 3, all t's go to the 
same f  ( t )  = 6.  So Af = 0 and df /dt  = 0. 

time distance 

u = d f / d t = f '  

slope undefined 
f'(3) not defined slope 2 

t 
3 3 

Fig. 2.1 The derivative is 2 then 0. It does not exist at t = 3. 

THE DERIVATIVE OF 111 

Here is a completely different slope, for the "demand function" f  ( t )  = lit.The demand 
is l / t  when the price is t .  A high price t means a low demand l l t .  Increasing the price 
reduces the demand. The calculus question is: How quickly does l / t  change when t 
changes? The "marginal demand" is the slope of the demand curve. 

The big thing is to find the derivative of l / t  once and for all. It is - l / t 2 .  

1 1 1 t - ( t  + At) - -At -EXAMPLE3 f ( t ) = - h a s A f = - - - . This equals 
t ( t  + At)t t + A t  t t(t + At) ' 

Af - - 1  df - - 1Divide by At and let At -,0: ---approaches ---
At t( t  + At) dt t 2  ' 

Line 1 is algebra, line 2 is calculus. The first step in line 1 subtracts f ( t )  from 
f ( t  + At). The difference is l / ( t+ At) minus l / t .  The common denominator is t times 
t + At-this makes the algebra possible. We can't set At = 0 in line 2, until we have 
divided by At. 

The average is Af /A t  = - l / t ( t+ At). Now set At = 0. The derivative is - l / t 2 .  
Section 2.4 will discuss the first of many cases when substituting At = 0 is not possible, 
and the idea of a limit has to be made clearer. 
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Fig. 2.2 Average slope is -&,true slope is -4. Increase in t produces decrease in f. 

Check the algebra at t = 2 and t + At = 3. The demand l l t  drops from 112 to 113. 
The difference is Af = - 116, which agrees with -1/(2)(3) in line 1. As the steps Af 
and At get smaller, their ratio approaches -1/(2)(2)= -114. 

This derivative is negative. The function llt is decreasing, and Af is below zero. The 
graph is going downward in Figure 2.2, and its slope is negative: 

An increasing f (t) has positive slope. A decreasing f (t) has negative slope. 
The slope - l/t2 is very negative for small t. A price increase severely cuts demand. 

The next figure makes a small but important point. There is nothing sacred about t. 
Other letters can be used-especially x. A quantity can depend on position instead 
of time. The height changes as we go west. The area of a square changes as the side 
changes. Those are not affected by the passage of time, and there is no reason to use 
t. You will often see y =f (x), with x across and y up-connected by a function f .  

Similarly, f is not the only possibility. Not every function is named f! That letter 
is useful because it stands for the word function-but we are perfectly entitled to 
write y(x) or y(t) instead off (x) or f (t). The distance up is a function of the distance 
across. This relationship "y of x" is all-important to mathematics. 

The slope is also a function. Calculus is about two functions, y(x) and dyldx. 
Question If we add 1 to y(x), what happens to the slope? Answer Nothing. 
Question If we add 1 to the slope, what happens to the height? Answer 

The symbols t and x represent independent variables-they take any value they 
want to (in the domain). Once they are set, f (t) and y(x) are determined. Thus f and 
y represent dependent variables-they depend on t and x. A change At produces a 

1 2 
Fig. 2.3 The derivative of l/t is -l/t2. The slope of l/x is -1/x2. 
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change Af.  A change Ax produces Ay. The independent variable goes inside the 
parentheses in f ( t )and y(x). It is not the letter that matters, it is the idea: 

independent variable t or x 

dependent variable f or g or y or z or u 

derivative dfldt or dfldx or dyldx or --• 

The derivative dyldx comes from [change in y] divided by [change in x] .  The time 
step becomes a space step, forward or backward. The slope is the rate at which y 
changes with x. The derivative of a function is its "rate of change." 

I mention that physics books use x(t) for distance. Darn it. 
To emphasize the definition of a derivative, here it is again with y and x:  

Ay - y(x + Ax)- y(x)- distance up d y  = lim -= yl(x).-- - - AY 
Ax Ax distance across dx AxA X + O  

The notation yl(x)pins down the point x where the slope is computed. In dyldx that 
extra precision is omitted. This book will try for a reasonable compromise between 
logical perfection and ordinary simplicity. The notation dy/dx(x)is not good; yl(x)is 
better; when x is understood it need not be written in parentheses. 

You are allowed to say that the function is y = x2 and the derivative is y' = 2x-
even if the strict notation requires y(x)= x2 and yl(x)= 2x. You can even say that 
the function is x2 and its derivative is 2x and its second derivative is 2-provided 
everybody knows what you mean. 

Here is an example. It is a little early and optional but terrific. You get excellent 
practice with letters and symbols, and out come new derivatives. 

EXAMPLE 4 If u(x)has slope duldx, what is the slope off ( x )= ( ~ ( x ) ) ~ ?  

From the derivative of x2 this will give the derivative of x4. In that case u = x2 and 
f = x4. First point: The derivative of u2 is not ( d ~ l d x ) ~ .We do not square the derivative 
2x. To find the "square rule" we start as we have to-with Af =f ( x  + Ax)-f (x): 

=Af = ( U ( X  + AX))^ - ( u ( x ) ) ~[u(x+ AX)+ u(x)][ U ( X  + AX)- ~ ( x ) ] .  

This algebra puts Af in a convenient form. We factored a' - b2 into [a + b] times 
[a - b].Notice that we don't have (AM)"We have Af ,  the change in u2.Now divide 
by Ax and take the limit: 

du --- [u(x+ Ax) + u(x)][ X + k~- U ( X )Iapproaches 2u(x)-.Af ( 5 )Ax dx 

This is the square rule: The derivative of (u(x))' is 2u(x) times duldx. From the 
derivatives of x2 and l / x  and sin x (all known) the examples give new derivatives. 

EXAMPLE 5 (u= x 2 )The derivative of x4 is 2u duldx = 2(x2)(2x)= 4x3. 

EXAMPLE 6 (u= l / x )The derivative of 1/x2is 2u duldx = (2/x)(- 1 /x2)  = -2/x3. 

EXAMPLE 7 (u= sin x, duldx = cos x)  The derivative of u2= sin2x is 2 sin x cos x. 

Mathematics is really about ideas. The notation is created to express those ideas. 
Newton and Leibniz invented calculus independently, and Newton's friends spent a 
lot of time proving that he was first. He was, but it was Leibniz who thought of 
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writing dyldx-which caught on. It is the perfect way to suggest the limit of AylAx. 
Newton was one of the great scientists of all time, and calculus was one of the great 
inventions of all time-but the notation must help. You now can write and speak 
about the derivative. What is needed is a longer list of functions and derivatives. 

Read-through questions 
The derivative is the a of Af /At as At approaches b . 
Here Af equals c . The step At can be positive or d . 
The derivative is written v or e or 1 . Iff (x) = 2x + 3 
and Ax=4  then Af= g . If Ax=-1  then Af= h . 
If Ax = 0 then Af= 1 . The slope is not 010 but 
dfldx = j . 

The derivative does not exist where f(t) has a k and 
v(t) has a I . For f (t) = l / t  the derivative is m . The 
slope of y = 4/x is dyldx = n . A decreasing function has 
a o derivative. The P variable is t or x and the 

q variable is f or y. The slope of y2 (is) (is not) ( d ~ / d x ) ~ .  
The slope of ( ~ ( x ) ) ~  r by the square rule. The slope of is 
(2x + 3)2 is s . 

1 Which of the following numbers (as is) gives df /dt at time 
t? If in doubt test on f (t) = t2. 

f (t + 2h) -f (t)(b) )m 
-+ 0 2 h 

(c) lim f (t -At) -f (t) (d) lim f (t + At) -f (t) 
at-o -At t-10 At 

2 Suppose f (x) = x2. Compute each ratio and set h = 0: 

3 For f (x) = 3x and g(x) = 1 + 3x, find f (4 + h) and g(4 + h) 
and f1(4) and g1(4). Sketch the graphs of f and g-why do 
they have the same slope? 

4 Find three functions with the same slope as f (x)= x2. 

5 For f (x) = l/x, sketch the graphs off (x) + 1 and f (x + 1). 
Which one has the derivative -1/x2? 

6 Choose c so that the line y = x is tangent to the parabola 
y = x2 + C. They have the same slope where they touch. 

7 Sketch the curve y(x) = 1 -x2 and compute its slope at 
x = 3 .  

8 Iff (t) = l/t, what is the average velocity between t = 3 and 
t = 2? What is the average between t = 3  and t = l? What 
is the average (to one decimal place) between t = 3 and 
t = 101/200? 

;. =and t 3 

9 Find Ay/Ax for y(x) = x + x2. Then find dyldx. 

10 Find Ay/Ax and dy/dx for y(x) = 1 + 2x + 3x2. 

11 When f (t) = 4/t, simplify the difference f (t + At) -f (t), 
divide by At, and set At = 0. The result is f '(t). 

12 Find the derivative of 1/t2 from A f (t) = l/(t + At)2- 1 /t2. 
Write Af as a fraction with the denominator t2(t + At)2. 
Divide the numerator by At to find Af/At. Set At = 0. 

13 Suppose f (t) = 7t to t = 1. Afterwards f (t) = 7 + 9(t - 1). 
(a) Find df /dt at t = 

(b) Why doesn't f (t) have a derivative at t = l? 

14 Find the derivative of the derivative (the second derivative) 
of y = 3x2. What is the third derivative? 

15 Find numbers A and B so that the straight line y = x fits 
smoothly with the curve Y = A + Bx + x2 at x = 1. Smoothly 
means that y = Y and dyldx = dY/dx at x = 1. 

16 Find numbers A and B so that the horizontal line y = 4 
fits smoothly with the curve y = A + Bx + x2 at the point 
x = 2. 

17 True (with reason) or false (with example): 
(a) If f(t) < 0 then df /dt < 0. 
(b) The derivative of (f (t))2 is 2 df /dt. 
(c) The derivative of 2f (t) is 2 df /dt. 
(d) The derivative is the limit of Af divided by the limit 
of At. 

18 For f (x) = l /x the centered diflerence f (x + h) -f (x -h) is 
l/(x + h) - l/(x -h). Subtract by using the common denomi- 
nator (x + h)(x - h). Then divide by 2h and set h = 0. Why 
divide by 2h to obtain the correct derivative? 

19 Suppose y = mx + b for negative x and y = Mx + B for 
x 3 0. The graphs meet if . The two slopes are 

. The slope at x = 0 is (what is possible?). 

20 The slope of y = l /x  at x = 114 is y' = -1/x2 = -16. At 
h = 1/12, which of these ratios is closest to -16? 

~ ( x + h ) - y ( x )  y(x)-y(x-h) y(x+h)-y(x-h) 
h h 2 h 

21 Find the average slope of y = x2 between x = x, and 
x = x2. What does this average approach as x2 approaches x,? 

22 Redraw Figure 2.1 when f(t) = 3 - 2t for t < 2 and 
f (t) = -1 for t > 2. Include df /dt. 
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23 Redraw Figure 2.3 for the function y(x)= 1 - ( l / x ) .  
Include dyldx. 

24 The limit of O/At as At -+ 0 is not 010. Explain. 

25 Guess the limits by an informal working rule. Set At = 0.1 
and -0.1 and imagine At becoming smaller: 

*26 Suppose f ( x ) / x  -+ 7 as x -+ 0. Deduce that f (0) = 0 and 
f '(0) = 7. Give an example other than f ( x )  = 7x. 

27 What is lim (3  + X ,  - f  ( 3 )  if it exists? What if x -+ l? 
x-0 

Problems 28-31 use the square rule: d(u2)/dx= 2 u (duldx). 

28 Take u = x and find the derivative of x2 (a new way). 

29 Take u = x 4  and find the derivative of x8 (using 
du/dx = 4x3). 

30 If u = 1 then u2= 1. Then d l /dx  is 2 times d lldx. How is 
this possible? 

31 Take u = &.The derivative of u2= x is 1 = 2u(du/dx).So 
what is duldx, the derivative of &? 

32 The left figure shows f ( t )  = t2.Indicate distances f ( t  + At) 
and At and Af. Draw lines that have slope Af /At and f '(t).  

33 The right figure shows f ( x )  and Ax. Find Af /Ax and f '(2). 

34 Draw f ( x )  and Ax so that Af /Ax = 0 but f ' ( x )  # 0. 

35 If f = u2 then df/dx = 2u duldx. If g =f then 
dg/dx = 2f df /dx. Together those give g = u4 and dgldx = 

36 True or false, assuming f (0) = 0: 
(a) If f ( x )  6 x for all x, then df /dx 6 1. 
(b) If df /dx 6 1 for all x, then f ( x )  6 x. 

37 The graphs show Af and Af /h for f ( x )  = x2.Why is 2x + h 
the equation for Aflh? If h is cut in half, draw in the new 
graphs. 

38 Draw the corresponding graphs for f ( x )  = jx. 

39 Draw l lx  and l / ( x+ h) and Aflh-either by hand with 
h = 5 or by computer to show h -+ 0. 

40 For y = ex, show on computer graphs that dyldx = y. 

41 Explain the derivative in your own words. 

2.2 Powers and Polynomials -
This section has two main goals. One is to find the derivatives of f (x)= x3 and x4 
and x5 (and more generally f (x)= xn). The power or exponent n is at first a positive 
integer. Later we allow x" and x2s2 and every xn. 

The other goal is different. While computing these derivatives, we look ahead to 
their applications. In using calculus, we meet equations with derivatives in them- 
"diflerential equations." It is too early to solve those equations. But it is not too early 
to see the purpose of what we are doing. Our examples come from economics and 
biology. 
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With n = 2, the derivative of x2 is 2x. With n = - 1, the slope of x- '  is - 1xp2. 
Those are two pieces in a beautiful pattern, which it will be a pleasure to discover. 
We begin with x3 and its derivative 3x2, before jumping to xn. 

EXAMPLE 1 If f (x) = x3 then Af = (x + h)3 - x3 = (x3 + 3x2 h + 3xh2 + h3) - x3. 
Step 1: Cancel x3. Step 2: Divide by h. Step 3: h goes to zero. 

Af df - = 3x2 + 3xh + h2 approaches - = 3x2. 
h dx 

That is straightforward, and you see the crucial step. The power (x + h)3 yields four 
separate terms x3 + 3x2h + 3xh2 + h3. (Notice 1, 3, 3, 1.) After x3 is subtracted, we 
can divide by h. At the limit (h = 0) we have 3x2. 

For f(x) = xn the plan is the same. A step of size h leads to f(x + h) = (x + h)". 
One reason for algebra is to calculate powers like (x + h)", and if you have forgotten 
the binomial formula we can recapture its main point. Start with n = 4: 

Multiplying the four x's gives x4. Multiplying the four h's gives h4. These are the easy 
terms, but not the crucial ones. The subtraction (x + h)4 - x4 will remove x4, and the 
limiting step h -, 0 will wipe out h4 (even after division by h). The products that matter 
are those with exactly one h. In Example 1 with (x + h)3, this key term was 3x2 h. 
Division by h left 3x2. 

With only one h, there are n places it can come from. Equation (1) has four h's in 
parentheses, and four ways to produce x3 h. Therefore the key term is 4x3 h. (Division 
by h leaves 4x3.) In general there are n parentheses and n ways to produce xn- ' h, so 
the binomial formula contains nxn - ' h: 

Subtract xn from (2). Divide by h. The key term is nxn-'. The rest disappears as h + 0: 

Af - (X + h)" - xn nxn-' h + ..- + hn -- - - df 
h h SO -=nxn- l .  Ax dx 

The terms replaced by the dots involve h2 and h3 and higher powers. After dividing 
by h, they still have at least one factor h. All those terms vanish as h approaches zero. 

EXAMPLE 2 (x + h)4 = x4 + 4x3 h + 6x2 h2 + 4xh3 + h4. This is n = 4 in detail. 

Subtract x4, divide by h, let h + 0. The derivative is 4x3. The coefficients 1,4, 6, 4, 1 
are in Pascal's triangle below. For (x + h)5 the next row is 1, 5, 10, 2. 

Remark The missing terms in the binomial formula (replaced by the dots) contain 
all the products xn-jhj. An x or an h comes from each parenthesis. The binomial 
coefficient "n choose j" is the number of ways to choose j h's out of n parentheses. It 
involves n factorial, which is n(n - 1) ... (1). Thus 5! = 5 4 3 2 1 = 120. 
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These are numbers that gamblers know and love: 

1 Pascal's 
n! 1 1 triangle 

bLn c/zoose j*' = (;) = - 
j!(n - j)! 1 2 1  

1 3  3 1 n = 3  
1 4 6 4 1  n = 4  

In the last row, the coefficient of x3h is 4 ! / 1 ! 3 ! = 4 * 3 * 2 * 1 / 1 * 3 * 2 - 1 = 4 .  For 
the x2 h2 term, with j = 2, there are 4 3 2 112 1 2 1 = 6 ways to choose two h's. 
Notice that 1 + 4 + 6 + 4 + 1 equals 16, which is z4. Each row of Pascal's triangle 
adds to a power of 2. 

Choosing 6 numbers out of 49 in a lottery, the odds are 49 48 47 46 45 44/6! 
to 1. That number is N = "49 choose 6" = 13,983,816. It is the coefficient of ~~~h~ 
in (x + h)49. If i times N tickets are bought, the expected number of winners is A. The 
chance of no winner is e-'. The chance of one winner is Ae-'. See Section 8.4. 

Florida's lottery in September 1990 (these rules) had six winners out of 109,163,978 
tickets. 

DERIVATIVES OF POLYNOMIALS 

Now we have an infinite list of functions and their derivatives: 
x x2 x3 x4 x5 . . -  1 2.x 3x2 4x3 5x4 ... 

The derivative of xn is n times the next lower power xn-l .  That rule extends beyond 
these integers 1, 2, 3, 4, 5 to all powers: 

f = 1 /x has f '  = - 1 /x2 : Example 3 of Section 2.1 (n = - 1) 

f = l /x2 has f '  = - 2/x3: Example 6 of Section 2.1 (n = - 2) 

f = & has f '  = + x L i 2 :  true but not yet checked (n = i) 
Remember that - Y - ~  means l /x2 and x-112 means l/&. Negative powers lead to 
decreasing functions, approaching zero as x gets large. Their slopes have minus signs. 

Question What are the derivatives of x10 and x ~ . ~  and .-Ii2? 
Answer lox9 and 2 . 2 ~ ' . ~  and - i xP3 l2 .  Maybe (x + h)2.2 is a little unusual. 
Pascal's triangle can't deal with this fractional power, but the formula stays firm: 
Afier .u2.2 comes 2 . 2 ~ ' . ~ h .  The complete binomial formula is in Section 10.5. 

That list is a good start, but plenty of functions are left. What comes next is really 
simple. A tremendous number of new functions are "linear combinations" like 

What are their derivatives? The answers are known for x3 and x2, and we want to 
multiply by 6 or divide by 2 or add or subtract. Do the same to the derivatices: 

2C The derivative of c times f (x) is c times f '(x). 

20 The derivative of f (x) + g(x) is f '(x) + gf(x). 

The number c can be any constant. We can add (or subtract) any functions. The rules 
allow any combination of f and g :  The derivative of 9f (x) - 7g(x) is 9f '(x) - 7g1(x). 
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The reasoning is direct. When f (x) is multiplied by c, so is f (x + h). The difference 
Af is also multiplied by c. All averages Af /h contain c, so their limit is cf '. The only 
incomplete step is the last one (the limit). We still have to say what "limit" means. 

Rule 2D is similar. Adding f + g means adding Af + Ag. Now divide by h. In the 
limit as h +0 we reach f '  + g'-because a limit of sums is a sum of limits. Any 
example is easy and so is the proof-it is the definition of limit that needs care 
(Section 2.6). 

You can now find the derivative of every polynomial. A "polynomial" is a combina- 
tion of 1, x, x2, . . . ,xn-for example 9 + 2x - x5. That particular polynomial has slope 
2 - 5x4. Note that the derivative of 9 is zero! A constant just raises or lowers the 
graph, without changing its slope. It alters the mileage before starting the car. 

The disappearance of constants is one of the nice things in differential calculus. 
The reappearance of those constants is one of the headaches in integral calculus. 
When you find v from f ,  the starting mileage doesn't matter. The constant in f has 
no effect on v.  (Af is measured by a trip meter; At comes from a stopwatch.) To find 
distance from velocity, you need to know the mileage at the start. 

A LOOK AT DIFFERENTIAL EQUATIONS (FIND y FROM dyldx) 

We know that y = x3 has the derivative dyldx = 3x2. Starting with the function, we 
found its slope. Now reverse that process. Start with the slope andfind the function. 
This is what science does all the time-and it seems only reasonable to say so. 

Begin with dyldx = 3x2. The slope is given, the function y is not given. 

Question Can you go backward to reach y = x3? 
Answer Almost but not quite. You are only entitled to say that y = x3 + C. The 
constant C is the starting value of y (when x = 0). Then the dzrerential equation 
dyldx = 3x2 is solved. 

Every time you find a derivative, you can go backward to solve a differential 
equation. The function y = x2 + x has the slope dyldx = 2x + 1. In reverse, the slope 
2x + 1 produces x2 + x-and all the other functions x2 + x + C, shifted up and down. 
After going from distance f to velocity v, we return to f + C. But there is a lot more 
to differential equations. Here are two crucial points: 

1. We reach dyldx by way of AylAx, but we have no system to go backward. With 
dyldx = (sin x)/x we are lost. What function has this derivative? 

2. Many equations have the same solution y = x3. Economics has dyldx = 3ylx. 
Geometry has dyldx = 3y213. These equations involve y as well as dyldx. Func- 
tion and slope are mixed together! This is typical of differential equations. 

To summarize: Chapters 2-4 compute and use derivatives. Chapter 5 goes in reverse. 
Integral calculus discovers the function from its slope. Given dyldx we find y(x). Then 
Chapter 6 solves the differential equation dyldt = y, function mixed with slope. 
Calculus moves from derivatives to integrals to diferential equations. 

This discussion of the purpose of calculus should mention a sp~cific example. 
Differential equations are applied to an epidemic (like AIDS). In most epi emics the 4: number of cases grows exponentially. The peak is quickly reached by e ,  and the 
epidemic dies down. Amazingly, exponential growth is not happening witb AIDS- 
the best fit to the data through 1988 is a cubic polynomial (Los Alamos Sciehce, 1989): 

The number of cases fits a cubic within 2%: y = 174.6(t - 1981.2)3+ 340. 
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This is dramatically different from other epidemics. Instead of dyldt =y we have 
dyldt = 3y/t. Before this book is printed, we may know what has been preventing d 
(fortunately). Eventually the curve will turn away from a cubic-I hope that 
mathematical models will lead to knowledge that saves lives. 

Added in proofi In 1989 the curve for the U.S. dropped from t to t '. 

MARGINAL COST AND ELASTICITY IN ECONOMICS 

First point about economics: The marginal cost and marginal income are crucially 
important. The average cost of making automobiles may be $10,000. But it is the 
$8000 cost of the next car that decides whether Ford makes it. "The average describes 
the past, the marginal predicts the future." For bank deposits or work hours or wheat, 
which come in smaller units, the amounts are continuous variables. Then the word 
"marginal" says one thing: Take the derivative.? 

The average pay over all the hours we ever worked may be low. We wouldn't work 
another hour for that! This average is rising, but the pay for each additional hour 
rises faster-possibly it jumps. When $10/hour increases to $15/hour after a 40-hour 
week, a 50-hour week pays $550. The average income is $ll/hour. The marginal 
income is $15/hour-the overtime rate. 

Concentrate next on cost. Let y(x) be the cost of producing x tons of steel. The 
cost of x + Ax tons is y(x + Ax). The extra cost is the difference Ay. Divide by Ax, 
the number of extra tons. The ratio Ay/Ax is the average cost per extra ton. When 
Ax is an ounce instead of a ton, we are near the marginal cost dyldx. 

Example: When the cost is x2, the average cost is x2/x = x. The marginal cost is 
2x. Figure 2.4 has increasing slope-an example of "diminishing returns to scale." 

I 
I 

fixed supply 
any price 

- - I E = O 
any supply E = . .fixed price I 

x quantity equilibrium price price 

Fig. 2.4 Marginal exceeds average. Constant elasticity E = +I. Perfectly elastic to perfectly 
inelastic (rcurve). 

This raises another point about economics. The units are arbitrary. In yen per 
kilogram the numbers look different. The way to correct for arbitrary units is to work 
with percentage change or relative change. An increase of Ax tons is a relative increase 
of Axlx. A cost increase Ay is a relative increase of Ayly. Those are dimensionless, the 
same in tons/tons or dollars/dollars or yen/yen. 

A third example is the demand y at price x. Now dyldx is negative. But again the 
units are arbitrary. The demand is in liters or gallons, the price is in dollars or pesos. 

?These paragraphs show how calculus applies to economics. You do not have to be an 
economist to understand them. Certainly the author is not, probably the instructor is not, 
possibly the student is not. We can all use dyldx. 
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Relative changes are better. When the price goes up by lo%, the demand may drop 
by 5%. If that ratio stays the same for small increases, the elasticity of demand is f. 

Actually this number should be -f.The price rose, the demand dropped. In our 
definition, the elasticity will be -4.In conversation between economists the minus 
sign is left out (I hope not forgotten). 
DEFINITION The elasticity of the demand function y(x) is 

AY/Y - dyldxE(x) = lim -- -. 
AX-o Axlx Y / X  

Elasticity is "marginal" divided by "average." E(x) is also relative change in y divided 
by relative change in x .  Sometimes E(x) is the same at all prices-this important case 
is discussed below. 

EXAMPLE 1 Suppose the demand is y = c / x  when the price is x.  The derivative 
dy/dx = -c/x2comes from calculus. The division y/x  = c /x2is only algebra. The ratio 
is E =  - 1 :  

For the demand y = c /x ,  the elasticity is (- c / x 2 ) / ( c / x 2 )= -1 .  
All demand curves are compared with this one. The demand is inelastic when 1 El < 1 .  
It is elastic when IEl > 1. The demand 20/& is inelastic (E  = - f), while x - ~is 
elastic (E = -3). The power y = cxn, whose derivative we know, is the function with 
constant elasticity n: 

if y = cxn then dyldx = cnxn-' and E = cnxn- l / (cxn/x)  = n. 
It is because y = cxnsets the standard that we could come so early to economics. 

In the special case when y = clx, consumers spend the same at all prices. Price x 
times quantity y remains constant at xy = c .  

EXAMPLE 2 The supply curve has E > 0-supply increases with price. Now the 
baseline case is y = cx.  The slope is c and the average is y /x  = c.  The elasticity is 
E = c / c =  1 .  

Compare E = 1 with E = 0 and E = CQ. A constant supply is "perfectly inelastic." 
The power n is zero and the slope is zero: y = c .  No more is available when the 
harvest is over. Whatever the price, the farmer cannot suddenly grow more wheat. 
Lack of elasticity makes farm economics difficult. 

The other extreme E = a~is "perfectly elastic." The supply is unlimited at a fixed 
price x.  Once this seemed true of water and timber. In reality the steep curve 
x = constant is leveling off to a flat curve y = constant. Fixed price is changing to 
fixed supply, E = CQ is becoming E = 0, and the supply of water follows a "gamma 
curve" shaped like T. 

EXAMPLE 3 Demand is an increasing function of income-more income, more 
demand. The income elasticity is E(I)= (dy /dI ) / ( y / I ) .A luxury has E > 1 (elastic). 
Doubling your income more than doubles the demand for caviar. A necessity has 
E < 1 (inelastic). The demand for bread does not double. Please recognize how the 
central ideas of calculus provide a language for the central ideas of economics. 
Important note on supply = demand This is the basic equation of microeconomics. 
Where the supply curve meets the demand curve, the economy finds the equilibrium 
price. Supply = demand assumes perfect competition. With many suppliers, no one can 
raise the price. If someone tries, the customers go elsewhere. 
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The opposite case is a monopoly-no competition. Instead of many small producers 
of wheat, there is one producer of electricity. An airport is a monopolist (and maybe 
the National Football League). If the price is raised, some demand remains. 

Price fixing occurs when several producers act like a monopoly-which antitrust 
laws try to prevent. The price is not set by supply = demand. The calculus problem 
is different-to maximize profit. Section 3.2 locates the maximum where the marginal 
profit (the slope!) is zero. 

Question on income elasticity From an income of $10,000 you save $500. The 
income elasticity of savings is E = 2. Out of the next dollar what fraction do you 
save? 
Answer The savings is y = cx2 because E = 2. The number c must give 500 = 
~(10,000)~,  so c is 5 Then the slope dyldx is 2cx = 10 lo4 = &. This is 
the marginal savings, ten cents on the dollar. Average savings is 5%, marginal savings 
is lo%, and E = 2. 

2.2 EXERCISES 
Read-through questions 

The derivative of f = x4 is f '  = a . That comes from 
expanding (x + h)4 into the five terms b . Subtracting x4 
and dividing by h leaves the four terms c . This is Af /h, 
and its limit is d . 

The derivative of f  = xn is f '  = e . Now (x + h)" comes 
from the f theorem. The terms to look for are xn- '  h, 
containing only one g . There are h of those terms, 
so (x + h)" = .un + i + . After subtracting i and 
dividing by h, the limit of Aflh is k . The coefficient of 
.un-JhJ, not needed here, is " n  choose j" = I , where n! 
means m . 

The derivative of x - ~  is n . The derivative of x1I2 is 
o . The derivative of 3.u + (llx) is P , which uses the 

following rules: The derivative of 3f (.u) is CI and the deriv- 
ative off (.u) + g(x) is r . Integral calculus recovers s 
from dy/d.u. If dy1d.u = .u4 then y(.u) = t . 

1 Starting with f = .u6, write down f '  and then f ". (This is 
"f double prime," the derivative off '.) After deriva- 
tives of x6 you reach a constant. What constant? 

2 Find a function that has .u6 as its derivative. 

Find the derivatives of the functions in 3-10. Even if n is nega- 
tive or a fraction, the derivative of xn is nxn- '. 

11 Name two functions with df/dx = 1/x2. 

12 Find the mistake: x2 is x + x + 0 . .  + x (with x terms). Its 
derivative is 1 + 1 + .-. + 1 (also x terms). So the derivative 
of x2 seems to be x. 

13 What are the derivatives of 3x'I3 and -3x-'I3 and 
(3x'I3)- ' ?  

14 The slope of .u + (11~)  is zero when x = . What 
does the graph do at that point? 

15 Draw a graph of y = x3 - x. Where is the slope zero? 

16 If df /dx is negative, is f (x) always negative? Is f (x) nega- 
tive for large x? If you think otherwise, give examples. 

17 A rock thrown upward with velocity 16ft/sec reaches 
height f = 16t - 16t2 at time t. 

(a) Find its average speed Af /At from t = 0 to t = $. 
(b) Find its average speed Af /At from t = 4 to t = 1. 
(c) What is df /dt at t = i? 

18 When f is in feet and t is in seconds, what are the units 
of f '  and its derivative f "? In f = 16t - 16t2, the first 16 is 
ft/sec but the second 16 is . 
19 Graph y = x3 + x2 - x from x = - 2 to x = 2 and estimate 
where it is decreasing. Check the transition points by solving 
dyldx = 0. 

20 At a point where dyldx = 0, what is special about the 
graph of y(x)? Test case: y = x2. 

21 Find the slope of y = & by algebra (then h - 0): 

A JFG-J; J T h - J ;  J z i + J ;  - - - - - 
h h h Jzi+J;. 

22 Imitate Problem 21 to find the slope of y = I/&. 
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23 Complete Pascal's triangle for n = 5 and n = 6. Why do spent on the car? Compare dy/dx (marginal) with y/x 
the numbers across each row add to 2"? (average). 

24 Complete (x + h)5 = x5 + . What are the bino- 

mial coefficients (:) and (:) and (i)? 
25 Compute (x + h)3-(x -h)3, divide by 2h, and set h = 0. 
Why divide by 2h to Jind this slope? 

26 Solve the differential equation y" = x to find y(x). 

27 For f (x)= x2 + x3, write out f (x + Ax) and Af /Ax. What 
is the limit at Ax = 0 and what rule about sums is confirmed? 

28 The derivative of ( ~ ( x ) ) ~  from Section 2.1. Test is 
this rule on u = xn. 

29 What are the derivatives of x7 + 1 and (x + Shift the 
graph of x7. 

30 If df /dx is v(x), what functions have these derivatives? 
(a) 4+) (b) + 1 
(c) v(x + 1) (d) v(x) + v'(x). 

31 What function f(x) has fourth derivative equal to l? 

32 What function f (x) has nth derivative equal to l? 

33 Suppose df /dx = 1 + x + x2 + x3. Find f (x). 

34 Suppose df /dx = x- -x- 3. Find f (x). 

35 f (x) can be its own derivative. In the infinite polynomial 
f = 1 + x + 5x2 + &x3+ , what numbers multiply x4 
and x5 if df /dx equals f ?  

36 Write down a differential equation dy/dx = that 
is solved by y = x2. Make the right side involve y (not just 2x). 

37 True or false: (a) The derivative of x" is nx". 
(b) The derivative of axn/bxn is a/b. 
(c) If df /dx = x4 and dgldx = x4 then f (x)= g(x). 
(d) (f (x) -f (a))/(x-a) approaches f '(a) as x -+ a. 
(e) The slope of y = (x - is y' = 3(x -

Problems 38-44 are about calculus in economics. 
38 When the cost is y = yo + cx, find E(x) = (dy/dx)/(y/x). It 
approaches for large x. 

39 From an income of x = $10,000 you spend y = $1200 on 
your car. If E = 3,what fraction of your next dollar will be 

40 Name a product whose price elasticity is 
(a) high (b) low (c) negative (?) 

41 The demand y = c/x has dyldx = -y/x. Show that Ay/Ax 
is not -y/x. (Use numbers or algebra.) Finite steps miss the 
special feature of infinitesimal steps. 

42 The demand y = xn has E = . The revenue xy 
(price times demand) has elasticity E = . 
43 y = 2x + 3 grows with marginal cost 2 from the fixed cost 
3. Draw the graph of E(x). 

44 From an income I we save S(I). The marginal propensity 
to save is . Elasticity is not needed because S and I 
have the same . Applied to the whole economy this 
is (microeconomics) (macroeconomics). 

45 2' is doubled when t increases by . t3 is doubled 
when t increases to t. The doubling time for AIDS 
is proportional to t. 

46 Biology also leads to dyly = n dxlx, for the relative growth 
of the head (dyly) and the body (dxlx). Is n > 1 or n < 1 for a 
child? 

47 What functions have df/dx = x9 and df/dx = xn? Why 
does n = -1 give trouble? 

48 The slope of y = x3 comes from this identity: 

(x + h)3-x3 
=(x  + h)2 +(x  + h)x +x2.  h 

(a) Check the algebra. Find dyldx as h -+ 0. 
(b) Write a similar identity for y = x4. 

49 (Computer graphing) Find all the points where y = 
x4 + 2x3 -7x2 + 3 = 0 and where dy/dx = 0. 

50 The graphs of y,(x) = x4 + x3 and y,(x) = 7x - 5 touch at 
the point where y3(x) = = 0. Plot y3(x) to see what is 
special. What does the graph of y(x) do at a point where 
y = y' = O? 

51 In the Massachusetts lottery you choose 6 numbers out 
of 36. What is your chance to win? 

52 In what circumstances would it pay to buy a lottery ticket 
for every possible combination, so one of the tickets would 
win? 
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Chapter 1 started with straight line graphs. The velocity was constant (at least piece- 
wise). The distance function was linear. Now we are facing polynomials like x3 - 2 
or x4 - x2 + 3, with other functions to come soon. Their graphs are definitely curved. 
Most functions are not close to linear-except if you focus all your attention near a 
single point. That is what we will do. 

Over a very short range a curve looks straight. Look through a microscope, or zoom 
in with a computer, and there is no doubt. The graph of distance versus time becomes 
nearly linear. Its slope is the velocity at that moment. We want to find the line that 
the graph stays closest to-the "tangent linew-before it curves away. 

The tangent line is easy to describe. We are at a particular point on the graph of 
y =f (x). At that point x equals a and y equals f (a) and the slope equals f '(a). 
The tangent line goes through that point x = a, y =f (a) with that slope m = fl(a). 
Figure 2.5 shows the line more clearly than any equation, but we have to turn the 
geometry into algebra. We need the equation of the line. 

EXAMPLE 1 Suppose y = x4 -x2+ 3. At the point x = a = 1, the height is y =f(a)= 3. 
The slope is dyldx = 4x3 - 2x. At x = 1 the slope is 4 - 2 = 2. That is fl(a): 

The numbers x = 1, y = 3, dyldx = 2 determine the tangent line. 
The equation of the tangent line is y - 3 = 2(x - l), and this section explains why. 

Fig. 2.5 The tangent line has the same slope 2 as the curve (especially after zoom). 

THE EQUATION OF A LINE 

A straight line is determined by two conditions. We know the line if we know two 
of its points. (We still have to write down the equation.) Also, if we know one point 
and the slope, the line is set. That is the situation for the tangent line, which has a 
known slope at a known point: 

1. The equation of a line has the form y = mx + b 
2. The number m is the slope of the line, because dyldx = m 
3. The number b adjusts the line to go through the required point. 

I will take those one at a time-first y = mx + b, then m, then b. 
1. The graph of y = mx + b is not curved. How do we know? For the specific example 
y = 2x + 1, take two points whose coordinates x, y satisfy the equation: 

x=O, y =  1 and x = 4 ,  y = 9  both satisfy y =  2x+ 1. 
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Those points (0, 1) and (4,9) lie on the graph. The point halfway between has x = 2 
and y = 5. That point also satisfies y = 2x + 1. The halfway point is on the graph. If 
we subdivide again, the midpoint between (0, 1) and (2, 5) is (1, 3). This also has 
y = 2x + 1. The graph contains all halfway points and must be straight. 
2. What is the correct slope m for the tangent line? In our example it is m =f '(a) = 2. 
The curve and its tangent line have the same slope at the crucial point: dyldx = 2. 

Allow me to say in another way why the line y = mx + b has slope m. At x = 0 its 
height is y = b. At x = 1 its height is y = m + b. The graph has gone one unit across 
(0 to 1)  and m units up (b to m + b). The whole idea is 

distance up m -slope = distance across 1 ' 

Each unit across means m units up, to 2m + b or 3m + b. A straight line keeps a 
constant slope, whereas the slope of y = x4 - x2 + 3 equals 2 only at x = 1. 

3. Finally we decide on b. The tangent line y = 2x + b must go through x = 1 ,  y = 3. 
Therefore b = 1. With letters instead of numbers, y = mx + b leads to f (a) = ma + b. 
So we know b: 

2E The equation of the tangent line has b =f (a)-ma: 

y = m x + f ( a ) - m a  or y - f ( a ) = m ( x - a ) .  (2)I 
That last form is the best. You see immediately what happens at x = a. The factor 
x - a is zero. Therefore y =f (a) as required. This is the point-slope form of the equa- 
tion, and we use it constantly: 

y - 3 - distance up y - 3 = 2 ( x - 1 )  or -- = sbpe 2. 
x - 1 distance across 

EXAMPLE 2 The curve y = x3 - 2 goes through y = 6 when x = 2. At that point 
dyldx = 3x2= 12. The point-slope equation of the tangent line uses 2 and 6 and 12: 

y - 6 =  12(x-2) ,  which is also y= 12x- 18. 

There is another important line. It is perpendicular to the tangent line and perpen-
dicular to the curve. This is the normal line in Figure 2.6. Its new feature is its slope. 
When the tangent line has slope m, the normal line has slope - llm. (Rule: Slopes of 

tangent line: 
distance 

Atrack 

:a' + 4 
.*' your speed is V 

/ 
4 T 

1Fig. 2.6 Tangent line y -yo = m(x -x,). Normal line y -yo = -- (x -x,). Leaving a roller- 
coaster and catching up to a car. m 
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perpendicular lines multiply to give -1.) Example 2 has m = 12, so the normal line 
has slope - 1/ 12: 

tangent line: y - 6 = 12(x- 2) normal line: y - 6 = -&(x  - 2). 

Light rays travel in the normal direction. So do brush fires-they move perpendicular 
to the fire line. Use the point-slope form! The tangent is y = 12x - 18, the normal is 
not y = -&x - 18. 

EXAMPLE 3 You are on a roller-coaster whose track follows y = x2  + 4. You see a 
friend at (0,O)and want to get there quickly. Where do you step off? 

Solution Your path will be the tangent line (at high speed). The problem is to choose 
x = a so the tangent line passes through x = 0,  y = 0. When you step off at x = a, 

the height is y = a2+ 4 and the slope is 2a 

the equation of the tangent line is y - (a2+ 4)= 2a(x - a) 

this line goes through (0,O)if - (a2+ 4)= - 2a2 or a = + 2. 

The same problem is solved by spacecraft controllers and baseball pitchers. Releasing 
a ball at the right time to hit a target 60 feet away is an amazing display of calculus. 
Quarterbacks with a moving target should read Chapter 4 on related rates. 

Here is a better example than a roller-coaster. Stopping at a red light wastes gas. 
It is smarter to slow down early, and then accelerate. When a car is waiting in front 
of you, the timing needs calculus: 

EXAMPLE 4 How much must you slow down when a red light is 72 meters away? 
In 4 seconds it will be green. The waiting car will accelerate at 3 meters/sec2. You 
cannot pass the car. 

Strategy Slow down immediately to the speed V at which you will just catch that 
car. (If you wait and brake later, your speed will have to go below V.)At the catch- 
up time T ,  the cars have the same speed and same distance. Two conditions, so the 
distance functions in Figure 2.6d are tangent. 

Solution At time T, the other car's speed is 3 ( T -  4). That shows the delay of 4 
seconds. Speeds are equal when 3(T- 4)= V or T = V + 4. Now require equal dis- 
tances. Your distance is V times T.  The other car's distance is 72 + $at2: 

7 2 + 5 3 ( ~ - 4 ) ~ = V Tbecomes 7 2 + f - f - v 2 = V ( 3 V + 4 ) .  

The solution is V = 12 meters/second. This is 43 km/hr or 27 miles per hour. 
Without the other car, you only slow down to V =  7214 = 18 meters/second. As 

the light turns green, you go through at 65 km/hr or 40 miles per hour. Try it. 

THE SECANT LINE CONNECTING TWO POINTS ON A CURVE 

Instead of the tangent line through one point, consider the secant line through two 
points. For the tangent line the points came together. Now spread them apart. The 
point-slope form of a linear equation is replaced by the two-point form. 

The equation of the curve is still y =f (x). The first point remains at x = a, y =f (a) .  
The other point is at x = c, y =f (c). The secant line goes between them. and we want 
its equation. This time we don't start with the slope-but rn is easy to find. 
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EXAMPLE 5 The curve y = x3 - 2 goes through x = 2, y = 6. It also goes through 
x = 3, y = 25. The slope between those points is 

change in y - 25 - 6 
m =  --- - 19.change in x 3 - 2 

The point-slope form (at the first point) is y - 6 = 19(x- 2). This line automatically 
goes through the second point (3,25). Check: 25 - 6 equals 19(3-2). The secant 
has the right slope 19 to reach the second point. It is the average slope AylAx. 

A look ahead The second point is going to approach the first point. The secant 
slope AylAx will approach the tangent slope dyldx. We discover the derivative (in 
the limit). That is the main point now-but not forever. 

Soon you will be fast at derivatives. The exact dyldx will be much easier than 
AylAx. The situation is turned around as soon as you know that x9 has slope 
9x8. Near x = 1, the distance up is about 9 times the distance across. To find 
Ay = l.0019- 19,just multiply Ax = .001 by 9. The quick approximation is .009, the 
calculator gives Ay = .009036. It is easier to follow the tangent line than the curve. 

Come back to the secant line, and change numbers to letters. What line connects 
x = a, y =f (a) to x = c, y =f (c)? A mathematician puts formulas ahead of numbers, 
and reasoning ahead of formulas, and ideas ahead of reasoning: 

(1) The slope is m = 
distance up -- f (c)-f (a) 

distance across c - a 
(2) The height is y =f (a) at x = a 
(3) The height is y =f (c) at x = c (automatic with correct slope). 

The t f ~ v a ruses the slope between the 

f4d -f@ (3)c - a  

At x = a the right side is zero. So y =f (a) on the left side. At x = c the right side has 
two factors c - a. They cancel to leave y =f (c). With equation (2) for the tangent line 
and equation (3) for the secant line, we are ready for the moment of truth. 

THE SECANT LlNE APPROACHES THE TANGENT LlNE 

What comes now is pretty basic. It matches what we did with velocities: 

A distance -- f (t + At) -f (t)average velocity = A time At 

The limit is df /dt. We now do exactly the same thing with slopes. The secant tine 
turns into the tangent line as c approaches a: 

slope of secant line: A f  - f ( 4  -f@) 
Ax c - a  

df A fslope of tangent line: -= limit of -.dx Ax 



There stands the fundamental idea of differential calculus! You have to imagine more 
secant lines than I can draw in Figure 2.7, as c comes close to a. Everybody recognizes 
c - a as Ax. Do you recognize f (c) -f (a) as f (x + Ax) -f (x)? It is Af, the change 
in height. All lines go through x = a, y =f (a). Their limit is the tangent line. 

secant secant y -f (a) = c - asecant 

tangent tangent y -  f(a)= f'(a)(x- a) 

a c c c  
Fig. 2.7 Secants approach tangent as their 

slopes Af /Ax approach df /dx. 

Intuitively, the limit is pretty clear. The two points come together, and the tangent 
line touches the curve at one point. (It could touch again at faraway points.) Mathe- 
matically this limit can be tricky-it takes us from algebra to calculus. Algebra stays 
away from 010, but calculus gets as close as it can. 

The new limit for df /dx looks different, but it is the same as before: 

f '(a) = lim f ( 4  -f (a) 
c+a C - 9 

EXAMPLE 6 Find the secant lines and tangent line for y =f (x) = sin x at x = 0. 
The starting point is x = 0, y = sin 0. This is the origin (0,O). The ratio of distance up 
to distance across is (sin c)/c: 

sin csecant equation y = -x tangent equation y = lx. 
C 

As c approaches zero, the secant line becomes the tangent line. The limit of (sin c)/c 
is not 010, which is meaningless, but 1, which is dyldx. 

EXAMPLE 7 The gold you own will be worth & million dollars in t years. When 
does the rate of increase drop to 10% of the current value, so you should sell the 
gold and buy a bond? At t = 25, how far does that put you ahead of &= 5? 
Solution The rate of increase is the derivative of &,which is 1/2&. That is 10% 
of the current value &when 1/2& = &/lo. Therefore 2t = 10 or t = 5. At that time 
you sell the gold, leave the curve, and go onto the tangent line: 

y - f i = $ ( t - 5 )  becomes y - f i = 2 f i  at t=25.  

With straight interest on the bond, not compounded, you have reached 
y = 3 f i  = 6.7 million dollars. The gold is worth a measly five million. 

2.3 EXERCISES 
Read-through questions of the c . The point-slope form of the tangent equation 
A straight line is determined by a points, or one point isy-f(a)= d . 
and the b .The slope of the tangent line equals the slope The tangent line to y =x3 + x at x = 1 has slope . Its 
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2.3 The Slope and the Tangent Line 

fequation is . It crosses the y axis at g and the 
x axis at h . The normal line at this point (1, 2) has 
slope i . Its equation is y -2 = j . The secant line 
from (1, 2) to (2, k ) has slope I . Its equation is 
y - 2 =  m . 

The point (c, f (c)) is on the line y -f (a) =m(x -a) pro- 
vided m = n . As c approaches a, the slope m approaches 

. The secant line approaches the p line. 

1 (a) Find the slope of y = 12/x. 
(b) Find the equation of the tangent line at  (2, 6). 
(c) Find the equation of the normal line at (2, 6). 
(d) Find the equation of the secant line to (4, 3). 

2 For y =x2 +x find equations for 
(a) the tangent line and normal line at (1, 2); 
(b) the secant line to x = 1 + h, y = (1 + h)2+ (1 + h). 

3 A line goes through (1, -1) and (4, 8). Write its equation 
in point-slope form. Then write it as y = mx + b. 

4 The tangent line to y = x3 + 6x at the origin is 
Y=- . Does it cross the curve again? 
5 The tangent line to y =x3 -3x2 + x at the origin is 

Y=- . It is also the secant line to the point . 
6 Find the tangent line to x =y2 at x =4, y =2. 

7 For y =x2 the secant line from (a, a2)  to (c, c2) has the 
equation . Do the division by c -a to find the tan- 
gent line as c approaches a. 

8 Construct a function that has the same slope at x = 1 and 
x = 2. Then find two points where y =x4 -2x2 has the same 
tangent line (draw the graph). 

9 Find a curve that is tangent to y = 2x -3 at x = 5. Find 
the normal line to that curve at (5, 7). 

10 For y = llx the secant line from (a, lla) to (c, llc) has the 
equation . Simplify its slope and find the limit as c 
approaches a. 

11 What are the equations of the tangent line and normal 
line to y = sin x at x = n/2? 

12 If c and a both approach an in-between value x = b, then 
the secant slope (f(c)-f (a))/(c- a) approaches . 
13 At x = a on the graph of y = l/x, compute 

(a) the equation of the tangent line 
(b) the points where that line crosses the axes. 

The triangle between the tangent line and the axes always has 
area . 
14 Suppose g(x) =f (x)+ 7. The tangent lines to f and g at 
x =4 are . True orfalse: The distance between those 
lines is 7. 

15 Choose c so that y =4x is tangent to y =x2 + c. Match 
heights as well as slopes. 

16 Choose c so that y = 5x -7 is tangent to y =x2 + cx. 

17 For y =x3 + 4x2-3x + 1, find all points where the tan- 
gent is horizontal. 

18 y =4x can't be tangent to y =cx2. Try to match heights 
and slopes, or draw the curves. 

19 Determine c so that the straight line joining (0, 3) and 
(5, -2) is tangent to the curve y = c/(x + 1). 

20 Choose b, c, d so that the two parabolas y = x2+ bx + c 
and y =dx -x2 are tangent to each other at x = 1, y =0. 

21 The graph of f  (x) =x3 goes through (1, 1). 
(a) Another point is x =c = 1 + h, y =f (c)= . 
(b) The change in f is Af = . 
(c) The slope of the secant is m = 
(d) As h goes to zero, m approaches 

22 Construct a function y =f (x) whose tangent line at x = 1 
is the same as the secant that meets the curve again at x = 3. 

23 Draw two curves bending away from each other. Mark 
the points P and Q where the curves are closest. At those 
points, the tangent lines are and the normal lines 
are . 

'24 If the parabolas y =x2 + 1 and y = x -x2 come closest at 
(a, a2  + 1) and (c, c -c2), set up two equations for a and c. 

25 A light ray comes down the line x = a. It hits the parabolic 
reflector y = x2 at P = (a, a2). 

(a) Find the tangent line at P. Locate the point Q where 
that line crosses the y axis. 
(b) Check that P and Q are the same distance from the 
focus at F = (0, $). 
(c) Show from (b) that the figure has equal angles. 
(d) What law of physics makes every ray reflect off the 
parabola to the focus at F? 

vertical ray 

26 In a bad reflector y = 2/x, a ray down one special line 
x =a is reflected horizontally. What is a? 
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27 For the parabola 4py =x2, where is the slope equal to l? 
At that point a vertical ray will reflect horizontally. So the 
focus is at (0, 1. 
28 Why are these statements wrong? Make them right. 

(a) If y =2x is the tangent line at (1, 2) then y = - i x  is 
the normal line. 
(b) As c approaches a, the secant slope (f (c) -f (a))& -a) 
approaches (f (a) -f (a))/(a-a). 
(c) The line through (2, 3) with slope 4 is y -2 =4(x -3). 

29 A ball goes around a circle: x =cos t, y =sin t. At t = 3 4 4  
the ball flies off on the tangent line. Find the equation of that 
line and the point where the ball hits the ground (y =0). 

30 If the tangent line to y =f(x) at x =a is the same as the 
tangent line to y =g(x) at x = b, find two equations that must 
be satisfied by a and b. 

31 Draw a circle of radius 1 resting in the parabola y =x2. 
At the touching point (a, a2), the equation of the normal line 
is . That line has x = 0 when y = . The dis- 
tance to (a, a2) equals the radius 1 when a = . This 
locates the touching point. 

32 Follow Problem 31 for the flatter parabola y =3x2 and 
explain where the circle rests. 

33 You are applying for a $1000 scholarship and your time 
is worth $10 a hour. If the chance of success is 1 -(l/x) from 
x hours of writing, when should you stop? 

34 Suppose If (c)-f (a)l< Ic -a1 for every pair of points a 
and c. Prove that Idf /dxl< 1. 

35 From which point x =a does the tangent line to y = 1/x2 
hit the x axis at x = 3? 

36 If u(x)/v(x) = 7 find u'(x)/v'(x). Also find (u(x)/v(x))'. 
37 Find f(c) = l.OO110 in two ways-by calculator and by 
.f(c)-f(a) xf'(a)(c -a). Choose a = 1 and f(x) =xlO.- . . - . . - . . . - . ,  
38 At a distance Ax from x = 1, how far is the curve y = l /x 
above its tangent line? 

39 At a distance Ax from x = 2, how far is the curve y =x3 
above its tangent line? 

40 Based on Problem 38 or 39, the distance between curve 
and tangent line grows like what power (Ax)P? 

41 The tangent line to f (x) =x2 - 1 at x, =2 crosses the 
x axis at xl = . The tangent line at x, crosses the 
x axis at x2 = . Draw the curve and the two 
lines, which are the beginning of Newton's method to solve 
f(x) = 0. 

42 (Puzzle) The equation y =mx + b requires two numbers, 
the point-slope form y -f (a)=f '(a)(x -a) requires three, and 
the two-point form requires four: a, f (a), c, f (c). How can 
this be? 

43 Find the time T at the tangent point in Example 4, when 
you catch the car in front. 

44 If the waiting car only accelerates at 2 meters/sec2, what 
speed V must you slow down to? 

45 A thief 40 meters away runs toward you at 8 meters 
per second. What is the smallest acceleration so that v = at 
keeps you in front? 

46 With 8 meters to go in a relay race, you slow down badly 
(f= -8 + 6t -$t2). How fast should the next runner start 
(choose u in f = vt) so you can just pass the baton? 

This section does two things. One is to compute the derivatives of sin x and cos x. 
The other is to explain why these functions are so important. They describe oscillation, 
which will be expressed in words and equations. You will see a "di~erential equation." 
It involves the derivative of an unknown function y(x). 

The differential equation will say that the second derivative-the derivative of the 
derivative-is equal and opposite to y. In symbols this is y" = - y. Distance in one 
direction leads to acceleration in the other direction. That makes y and y' and y" all 
oscillate. The solutions to y" = - y are sin x and cos x and all their combinations. 

We begin with the slope. The derivative of y = sin x is y' = cos x. There is no reason 
for that to be a mystery, but I still find it beautiful. Chapter 1 followed a ball around 
a circle; the shadow went up and down. Its height was sin t and its velocity was cos t .  
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We now find that derivative by the standard method of limits, when y(x) = sin x: 

dy AY sin (x + h) - sin x -= limit of -= lim
dx Ax h + o  h 

The sine is harder to work with than x2 or x3. Where we had (x + h)2 or (x + h)3, we 
now have sin(x + h). This calls for one of the basic "addition formulas" from trigo- 
nometry, reviewed in Section 1.5: 

sin (x + h) = sin x cos h + cos x sin h (2) 
cos(x + h) = cos x cos h - sin x sin h. (3) 

Equation (2) puts Ay = sin (x + h) - sin x in a new form: 

Ay sin x cos h + cos x sin h - sin x sin h --- = sin x (cos h - 1)+ cos x (T).  (41Ax h 

The ratio splits into two simpler pieces on the right. Algebra and trigonometry got 
us this far, and now comes the calculus problem. What happens as h +O? It is no 
longer easy to divide by h. (I will not even mention the unspeakable crime of writing 
(sin h)/h = sin.) There are two critically important limits-the first is zero and the 
second is one: 

cos h - 1 sin h 
lim =0 and lim --- 1. 
h - 0  h h - 0  h 

The careful reader will object that limits have not been defined! You may further 
object to computing these limits separately, before combining them into equation (4). 
Nevertheless-following the principle of ideas now, rigor later-I would like to pro- 
ceed. It is entirely true that the limit of (4) comes from the two limits in (5): 

dy--- (sin x)(first limit) + (cos x)(second limit) =0 + cos x. (6)dx 

The secant slope Ay/Ax has approached the tangent slope dyldx. 

We cannot pass over the crucial step-the two limits in (5). They contain the real 
ideas. Both ratios become 010 i f  we just substitute h =0. Remember that the cosine of 
a zero angle is 1, and the sine of a zero angle is 0. Figure 2.8a shows a small angle h 
(as near to zero as we could reasonably draw). The edge of length sin h is close to 

.995 zero, and the edge of length cos h is near 1. Figure 2.8b shows how the ratio of sin h 
to h (both headed for zero) gives the slope of the sine curve at the start. 

When two functions approach zero, their ratio might do anything. We might have 
-995 r cOs 

LhNo clue comes from 010. What matters is whether the top or bottom goes to zero 
.1 sin h more quickly. Roughly speaking, we want to show that (cos h - l)/h is like h2/h and 

(sin h)/h is like hlh. 
.loo.. . Time out The graph of sin x is in Figure 2.9 (in black). The graph of sin(x +Ax) 

Fig. 2.8 sits just beside it (in red). The height difference is Af when the shift distance is Ax. 



sin h 

sin (x + h) 

Fig. 2.9 sin (x+ h) with h = 10" = 11/18 radians. Af/Ax is close to cos x. 

Now divide by that small number Ax (or h). The second figure shows Af /Ax. It is 
close to cos x. (Look how it starts-it is not quite cos x.) Mathematics will prove 
that the limit is cos x exactly, when Ax -, 0. Curiously, the reasoning concentrates 
on only one point (x = 0). The slope at that point is cos 0= 1. 

We now prove this: sin Ax divided by Ax goes to 1. The sine curve starts with 
slope 1. By the addition formula for sin (x + h), this answer at one point will lead to 
the slope cos x at all points. 
Question Why does the graph of f (x + Ax) shift left from f (x) when Ax > O? 
Answer When x = 0, the shifted graph is already showing f (Ax). In Figure 2.9a, the 
red graph is shifted left from the black graph. The red graph shows sin h when the 
black graph shows sin 0. 

THE LIMIT OF (sin h) /h  IS 4 

There are several ways to find this limit. The direct approach is to let a computer 
draw a graph. Figure 2.10a is very convincing. The function (sin h)/h approaches 1at 
the key point h = 0. So does (tan h)/h. In practice, the only danger is that you might 
get a message like "undefined function" and no graph. (The machine may refuse to 
divide by zero at h = 0. Probably you can get around that.) Because of the importance 
of this limit, I want to give a mathematical proof that it equals 1. 

sin h 

-n/2 h = O  n/2  

Fig. 2.40 (sin h)/hsqueezed between cos x and 1; (tan h)/h decreases to 1. 

Figure 2.10b indicates, but still only graphically, that sin h stays below h. (The first 
graph shows that too; (sin h)/h is below 1.) We also see that tan h stays above h. 
Remember that the tangent is the ratio of sine to cosine. Dividing by the cosine is 
enough to push the tangent above h. The crucial inequalities (to be proved when h 
is small and positive) are 

s i n h < h  and t a n h > h .  (7) 



2.4 The Derlvcrthre of the Sine and Cosine 

Since tan h = (sin h)/(cos h), those are the same as 
sin h sin h < 1 and -> cos h.h h 

What happens as h goes to zero? The ratio (sin h)/h is squeezed between cos h and 1. 
But cos h is approaching I! The squeeze as h + 0 leaves only one possibility for 
(sin h)/h, which is caught in between: The ratio (sin h)/h approaches 1. 

Figure 2.10 shows that "squeeze play." lf two functions approach the same limit, so 
does any function caught in between. This is proved at the end of Section 2.6. 

For negative values of h, which are absolutely allowed, the result is the same. To 
the left of zero, h reverses sign and sin h reverses sign. The ratio (sin h)/h is unchanged. 
(The sine is an odd function: sin (- h) = - sin h.) The ratio is an even function, sym- 
metric around zero and approaching 1 from both sides. 

The proof depends on sin h < h < tan h, which is displayed by the graph but not 
explained. We go back to right triangles. 

Fig. 2.11 Line shorter than arc: 2 sin h < 2h. Areas give h < tan h. 

Figure 2.11a shows why sin h < h. The straight line PQ has length 2 sin h. The 
circular arc must be longer, because the shortest distance between two points is a 
straight line.? The arc PQ has length 2h. (Important: When the radius is 1, the arc 
length equals the angle. The full circumference is 2n and the full angle is also 2n.) 
The straight distance 2 sin h is less than the circular distance 2h, so sin h < h. 

Figure 2.1 1b shows why h < tan h. This time we look at areas. The triangular area 
is f(base)(height)= i(l)(tan h). Inside that triangle is the shaded sector of the circle. 
Its area is h/2n times the area of the whole circle (because the angle is that fraction 
of the whole angle). The circle has area nr2 = n, so multiplication by h/2n gives fh 
for the area of the sector. Comparing with the triangle around it, f tan h > fh. 

The inequalities sin h < h < tan h are now proved. The squeeze in equation (8) 
produces (sin h)/h -, 1. Q.E.D. Problem 13 shows how to prove sin h < h from areas. 
Note All angles x and h are being measured in radians. In degrees, cos x is not the 
derivative of sin x. A degree is much less than a radian, and dyldx is reduced by the 
factor 2~1360. 

THE LIMIT OF (COS h - 1) /h IS 0 

This second limit is different. We will show that 1 - cos h shrinks to zero more quickly 
than h. Cosines are connected to sines by (sin h)2 + (cos h)2 = 1. We start from the 

+If we try to prove that, we will be here all night. Accept it as true. 
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known fact sin h < h and work it into a form involving cosines: 
(1 - cos h)(l + cos h) = 1 - (cos h)2 = (sin h)2 < h2. (9) 

Note that everything is positive. Divide through by h and also by 1 + cos h: 
1 - cos h h o <  < 

h 1 + cos h ' 
Our ratio is caught in the middle. The right side goes to zero because h +0. This is 
another "squeezew-there is no escape. Our ratio goes to zero. 

For cos h - 1 or for negative h, the signs change but minus zero is still zero. This 
confirms equation (6). The slope of sin x is cos x. 

Remark Equation (10) also shows that 1 - cos h is approximately ih2 .  The 2 comes 
from 1 + cos h. This is a basic purpose of calculus-to find simple approximations 
like $h2. A "tangent parabola" 1 - $h2 is close to the top of the cosine curve. 

THE DERIVATIVE OF THE COSINE 

This will be easy. The quick way to differentiate cos x is to shift the sine curve by 
xl2.That yields the cosine curve (solid line in Figure 2.12b).The derivative also shifts 
by 4 2  (dotted line). The derivative of cos x is - sin x. 

Notice how the dotted line (the slope) goes below zero when the solid line turns 
downward. The slope equals zero when the solid line is level. Increasing functions 
have positive slopes. Decreasing functions have negative slopes. That is important, and 
we return to it. 

There is more information in dyldx than "function rising" or "function falling." 
The slope tells how quickly the function goes up or down. It gives the rate of change. 
The slope of y = cos x can be computed in the normal way, as the limit of AylAx: 

Ay - cos(x + h)- cos x 
=cos .(cos h - 1 

Ax h ) - s i n x ( y )  

dy --- (COS x)(O)- (sin \-)(I) = - sin u. (11)d.u 

The first line came from formula (3) for cos(x + h). The second line took limits, 
reaching 0 and 1 as before. This confirms the graphical proof that the slope of cos x 
is - sin x. 

--.. / p>Y = sin .\- is increasing 
v =,sin r bends down 

v' = - sin .\- is negative 1 ' = cos t decrease; 

y" = - sin t is negative 

Fig. 2.12 y(s) increases where y' is positive. y(s) bends up where jl"is positive. 

THE SECOND DERIVATIVES OF THE SINE AND COSINE 

We now introduce the derivative of the derivative. That is the second derivative of the 
original function. It tells how fast the slope is changing, not how fast y itself is 
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changing. The second derivative is the "rate of change of the velocity." A straight line 
has constant slope (constant velocity), so its second derivative is zero: 

f (t) = 5t has df /dt = 5 and d2f /dt2 = 0. 

The parabola y = x2 has slope 2x (linear) which has slope 2 (constant). Similarly 

f ( t )=ra t2  has df/dt=at and d2f/dt2=a. 

There stands the notation d2f/dt2 (or d2y/dx2) for the second derivative. A short 
form is f "  or y". (This is pronounced f double prime or y double prime). Example: 
The second derivative of y = x3 is y" = 6x. 

In the distance-velocity problem, f "  is acceleration. It tells how fast v is changing, 
while v tells how fast f is changing. Where df/dt was distanceltime, the second 
derivative is di~tance/(time)~. The acceleration due to gravity is about 32 ft/sec2 or 
9.8 m/sec2, which means that v increases by 32 ftlsec in one second. It does not mean 
that the distance increases by 32 feet! 

The graph of y = sin t increases at the start. Its derivative cos t is positive. However 
the second derivative is -sin t. The curve is bending down while going up. The arch 
is "concave down" because y" = - sin t is negative. 

At t = n the curve reaches zero and goes negative. The second derivative becomes 
positive. Now the curve bends upward. The lower arch is "concave up." 

y" > 0 means that y' increases so y bends upward (concave up) 
y" < 0 means that y' decreases so y bends down (concave down). 

Chapter 3 studies these things properly-here we get an advance look for sin t. 
The remarkable fact about the sine and cosine is that y" = -y. That is unusual 

and special: acceleration = -distance. The greater the distance, the greater the force 
pulling back: 

y = sin t has dy/dt = + cos t and d2y/dt2= - sin t = - y. 
y = cos t has dy/dt = - sin t and d y/dt2 = - cos t = - y. 

Question Does d2y/dt2 < 0 mean that the distance y(t) is decreasing? 
Answer No. Absolutely not! It means that dy/dt is decreasing, not necessarily y. 
At the start of the sine curve, y is still increasing but y" < 0. 

Sines and cosines give simple harmonic motion-up and down, forward and back, 
out and in, tension and compression. Stretch a spring, and the restoring force pulls 
it back. Push a swing up, and gravity brings it down. These motions are controlled 
by a diyerential equation: 

All solutions are combinations of the sine and cosine: y = A sin t + B cos t. 
This is not a course on differential equations. But you have to see the purpose of 

calculus. It models events by equations. It models oscillation by equation (12). Your 
heart fills and empties. Balls bounce. Current alternates. The economy goes up and 
down: 

high prices -+ high production -,low prices -, -.. 
We can't live without oscillations (or differential equations). 
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2.4 EXERCISES 
Read-through questions 
The derivative of y = sin x is y' = a . The second deriva- 
tive (the b of the derivative) is y" = c . The fourth 
derivative is y"" = d . Thus y = sin x satisfies the 
differential equations y" = e and y"" = f . So does 
y = cos x, whose second derivative is g . 

All these derivatives come from one basic limit: (sin h)/h 
approaches h . The sine of .O1 radians is very close 
to i . So is the i of .01. The cosine of .O1 is 
not .99, because 1 -cos h is much k than h. The ratio 
(1 -cos h)/h2 approaches I . Therefore cos h is close to 
1- ih2 and cos .Ol x m . We can replace h by x. 

The differential equation y" = -y leads to n . When y 
is positive, y" is o . Therefore y' is P . Eventually y 
goes below zero and y" becomes q . Then y' is r . 
Examples of oscillation in real life are s and t . 

1 Which of these ratios approach 1 as h -,O? 

h sin2 h sin h sin (- h) 
(a) zi (b) zzi ( a  7 

2 (Calculator) Find (sin h)/h at h = 0.5 and 0.1 and .01. 
Where does (sin h)/h go above .99? 
3 Find the limits as h -,0 of 

sin2 h sin 5h sin 5h sin h 
(a) (b) (c) (dl 

4 Where does tan h = 1.01h? Where does tan h = h? 

5 y = sin x has period 211, which means that sin x = 
. The limit of (sin (211 + h) -sin 2z)lh is 1 because 
. This gives dyldx at x = 

6 Draw cos (x + Ax) next to cos x. Mark the height differ- 
ence Ay. Then draw AylAx as in Figure 2.9. 
7 The key to trigonometry is cos2 0 = 1-sin2 0. Set 

sin 0 x 0 to find cos20x 1-02. The square root is 
cos 0 x 1-30'. Reason: Squaring gives cos2 0 x 
and the correction term is very small near 0 = 0. 

8 (Calculator) Compare cos 0 with 1 -302 for 
(a) 0 = 0.1 (b) 0 = 0.5 (c) 0 = 30" (d) 0 = 3". 

9 Trigonometry gives cos 0 = 1-2 sin2 $0. The approxima- 
tion sin 30 x leads directly to cos 0 x 1-)02. 
10 Find the limits as h -,0: 

11 Find by calculator or calculus: 
sin 3h 1 -cos 2h 

lim2 a (b) r-+o 1-cos h ' 

12 Compute the slope at x = 0 directly from limits: 
(a) y =  tan x (b) y = sin (- x) 

13 The unmarked points in Figure 2.11 are P and S. Find the 
height PS and the area of triangle OPR. Prove by areas that 
sin h < h. 

14 The slopes of cos x and 1 -i x2  are -sin x and . 
The slopes of sin x and are cos x and 1-3x2. 
15 Chapter 10 gives an infinite series for sin x: 

From the derivative find the series for cos x. Then take its 
derivative to get back to -sin x. 
16 A centered diference for f (x)= sin x is 

f (x + h) -f (x -h) - sin (x + h) -sin (x -h)- = ?  
2 h 2 h 

Use the addition formula (2). Then let h -* 0. 
Repeat Problem 16 to find the slope of cos x. Use formula 
to simplify cos (x + h) -cos (x -h). 
Find the tangent line to y = sin x at 
(a) x = 0 (b) x = 11 (c) x = 1114 
Where does y = sin x + cos x have zero slope? 

Find the derivative of sin (x + 1) in two ways: 
(a) Expand to sin x cos 1 + cos x sin 1. Compute dyldx. 
(b) Divide Ay = sin (x + 1 + Ax) -sin (x + 1) by Ax. Write 
X instead of x + 1. Let Ax go to zero. 

Show that (tan h)/h is squeezed between 1 and l/cos h. As 
h -,0 the limit is . 
22 For y = sin 2x, the ratio Aylh is 

sin 2(x + h) -sin 2x sin 2x(cos 2h - 1)+ cos 2x sin 2h 

Explain why the limit dyldx is 2 cos 2x. 
23 Draw the graph of y = sin ix.  State its slope at x = 0, 1112, 
11, and 211. Does 3 sin x have the same slopes? 
24 Draw the graph of y = sin x + f i  cos x. Its maximum 
value is y = at x = . The slope at that point 
is . 
25 By combining sin x and cos x, find a combination that 
starts at x = 0 from y = 2 with slope 1. This combination also 
solves y" = . 
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26 True or false, with reason: 

(a) The derivative of sin2 x is cos2 x 
(b) The derivative of cos (- x) is sin x 
(c) A positive function has a negative second derivative. 
(d) If y' is increasing then y" is positive. 

27 Find solutions to dyldx = sin 3x and dyldx = cos 3x. 

28 If y = sin 5x then y' = 5 cos 5x and y" = -25 sin 5x. So 
this function satisfies the differential equation y" = 

29 If h is measured in degrees, find lim,,, (sin h)/h. You could 
set your calculator in degree mode. 

30 Write down a ratio that approaches dyldx at x = z. For 
y = sin x and Ax = .O1 compute that ratio. 
31 By the square rule, the derivative of ( ~ ( x ) ) ~  is 2u duldx. 
Take the derivative of each term in sin2 x + cos2x = 1. 
32 Give an example of oscillation that does not come from 
physics. Is it simple harmonic motion (one frequency only)? 
33 Explain the second derivative in your own words. 

What are the derivatives of x + sin x and x sin x and l/sin x and xlsin x and sinnx? 
Those are made up from the familiar pieces x and sin x, but we need new rules. 
Fortunately they are rules that apply to every function, so they can be established 
once and for all. If we know the separate derivatives of two functions u and v, then 
the derivatives of u + v and uu and llv and u/u and un are immediately available. 

This is a straightforward section, with those five rules to learn. It is also an impor- 
tant section, containing most of the working tools of differential calculus. But I am 
afraid that five rules and thirteen examples (which we need-the eyes glaze over with 
formulas alone) make a long list. At least the easiest rule comes first. When we add 
functions, we add their derivatives. 

Sum Rule 
du dvThe derivative of the sum u(x) + v(x) is -d (u + v) = -+ -.dx dx dx 

EXAMPLE 1 The derivative of x + sin x is 1 + cos x. That is tremendously simple, 
but it is fundamental. The interpretation for distances may be more confusing (and 
more interesting) than the rule itself: 

Suppose a train moves with velocity 1. The distance at time t is t. On the train 
a professor paces back and forth (in simple harmonic motion). His distance from 
his seat is sin t. Then the total distance from his starting point is t + sin t, and 
his velocity (train speed plus walking speed) is 1 + cos t. 

If you add distances, you add velocities. Actually that example is ridiculous, because 
the professor's maximum speed equals the train speed (= 1). He is running like mad, 
not pacing. Occasionally he is standing still with respect to the ground. 

The sum rule is a special case of a bigger rule called "linearity." It applies when 
we add or subtract functions and multiply them by constants-as in 3x -4 sin x. By 
linearity the derivative is 3 - 4 cos x. The rule works for all functions u(x) and v(x). 
A linear combination is y(x) = au(x) + bv(x), where a and b are any real numbers. 
Then AylAx is 



2 Derivatives 

The limit on the left is dyldx. The limit on the right is a duJdx + b dvldx. We are 
allowed to take limits separately and add. The result is what we hope for: 

Rule of Linearity 
du dvThe derivative of au(x) + bv(x) is -d (au + bu) = a -+ b -.dx dx dx 

The prorluct rule comes next. It can't be so simple-products are not linear. The 
sum rule is what you would have done anyway, but products give something new. 
The krivative of u times v is not duldx times dvldx. Example: The derivative of x5 
is 5x4. Don't multiply the derivatives of x3 and x2. (3x2 times 2x is not 5x4.) 
For a product of two functions, the derivative has two terms. 

Product Rule (the key to this section) 
d dv duThe derivative of u(x)v(x) is -(uu) = u -+ v -.dx dx dx 

EXAMPLE 2 u = x3 times v = x2 is uv = x5. The product rule leads to 5x4: 

EXAMPLE 3 In the slope of x sin x, I don't write dxldx = 1 but it's there: 

d 
-(x sin x) = x cos x + sin x. dx 

EXAMPLE 4 If u = sin x and v = sin x then uv = sin2 x. We get two equal terms: 

dsin x -(sin x) + sin x -d (sin x) = 2 sin x cos x. dx dx 

This confirms the "square rule" 2u duldx, when u is the same as v. Similarly the slope 
of cos2 x is -2 cos x sin x (minus sign from the slope of the cosine). 

Question Those answers for sin2 x and cos2 x have opposite signs, so the derivative 
of sin2 x + cos2 x is zero (sum rule). How do you see that more quickly? 

EXAMPLE 5 The derivative of uvw is uvw' + uv'w + u'vw-one derivative at a time. 
The derivative of xxx is xx + xx + xx. 

Fig. 2.13 Change in length =Au +Av. Change in area =u Av + v Au +Au Av. 
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After those examples we prove the product rule. Figure 2.13 explains it best. The 
area of the big rectangle is uv. The important changes in area are the two strips u Av 
and v Au. The corner area Au Av is much smaller. When we divide by Ax, the strips 
give u Av/Ax and v AulAx. The corner gives Au AvlAx, which approaches zero. 

Notice how the sum rule is in one dimension and the product rule is in two 
dimensions. The rule for uvw would be in three dimensions. 

The extra area comes from the whole top strip plus the side strip. By algebra, 

This increase is u(x + h)Av + v(x)Au-top plus side. Now divide by h (or Ax) and let 
h + 0. The left side of equation (4) becomes the derivative of u(x)v(x). The right side 
becomes u(x) times dvldx-we can multiply the two limits-plus v(x) times duldx. 
That proves the product rule-definitely useful. 

We could go immediately to the quotient rule for u(x)/v(x). But start with u = 1. 
The derivative of l /x is - 1/x2 (known). What is the derivative of l/v(x)? 

Reciprocal Rule 

1 - dvldx The derivative of ---- is --- 
44 u2 - 

The proof starts with (v)(l/v) = 1. The derivative of 1 is 0. Apply the product rule: 

d 1 1dv - dvldx ( - ) + = O dx v v dx sothat "(A)=- dx v v2 ' 

It is worth checking the units-in the reciprocal rule and others. A test of dimen- 
sions is automatic in science and engineering, and a good idea in mathematics. The 
test ignores constants and plus or minus signs, but it prevents bad errors. If v is in 
dollars and x is in hours, dv/dx is in dollars per hour. Then dimensions agree: 

- dvldx dollars/hour and also - w hour v  dollar^)^ 

From this test, the derivative of l/v cannot be l/(dv/dx). A similar test shows that 
Einstein's formula e = mc2 is dimensionally possible. The theory of relativity might 
be correct! Both sides have the dimension of (mas~)(distance)~/(time)~, when mass 
is converted to energy.? 

EXAMPLE6 The derivatives ofx-' ,  x - ~ ,  x-" are -1xP2, - Z X - ~ ,  -nx-"-I. 

Those come from the reciprocal rule with v = x and x2 and any xn: 

The beautiful thing is that this answer -nx-"-' fits into the same pattern as xn. 
Multiply by the exponent and reduce it by one. 

For negative and positive exponents the derivative of xn is nxn- l. (7) 

+But only Einstein knew that the constant is 1. 



- - -  

1 1 -Av 

A1Reciprocal ---= v(v + Av)v + Au v 
u+Au -u - vAu-uAv 

Quotient -- -
Av v + A v  v v(v+ Av) AD v 

Fig. 2.14 Reciprocal rule from (- Av)/v2.Quotient rule from (v Au -u Av)/v2. 

1 1 +sinx -cosxEXAMPLE 7 The derivatives of -and -are -and -. cos x sin x cos2x sin2 x 
Those come directly from the reciprocal rule. In trigonometry, l/cos x is the secant 
of the angle x, and l/sin x is the cosecant of x. Now we have their derivatives: 

d sin x - 1 sin x -(set x)= ------ sec x tan x.dx cos2x cos x cos x 
d cos x-(CSCX)=--=---=- 1 cos x csc x cot x. 
dx sin2 x sin x sin x 

Those formulas are often seen in calculus. If you have a good memory they are worth 
storing. Like most mathematicians, I have to check them every time before using 
them (maybe once a year). It is really the rules that are basic, not the formulas. 

The next rule applies to the quotient u(x)/v(x). That is u times llv. Combining the 
product rule and reciprocal rule gives something new and important: 

Quotient Rule 
u(x) 1 du dvldx - v duldx - u dvldxThe derivative of - is --- u --u(x) vdx v2 v2 

You must memorize that last formula. The v2 is familiar. The rest is new, but not very 
new. If v = 1 the result is duldx (of course). For u = 1 we have the reciprocal 
rule. Figure 2.14b shows the difference (u + Au)/(v + Av) - (ulv). The denominator 
V(V+ Av) is responsible for v2. 

EXAMPLE 8 (only practice) If u/v = x5/x3 (which is x2) the quotient rule gives 2x: 

EXAMPLE 9 (important) For u = sin x and v = cos x, the quotient is sin xlcos x = 
tan x. The derivative of tan x is sec2 x. Use the quotient rule and cos2 x + sin2 x = 1: 

cos x(cos x) - sin x(- sin x) - 1--- - sec2 x. (11)c0s2X c0s2X 

Again to memorize: (tan x)' = sec2 x. At x =0, this slope is 1. The graphs of sin x 
and x and tan x all start with this slope (then they separate). At x = n/2 the sine 
curve is flat (cos x = 0) and the tangent curve is vertical (sec2 x = co). 

The slope generally blows up faster than the function. We divide by cos x, once 
for the tangent and twice for its slope. The slope of l/x is - l/x2. The slope is more 
sensitive than the function, because of the square in the denominator. 

d sin x x cos x - sin x EXAMPLE 10 d x ( x ) - x2 
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That one I hesitate to touch at x = 0. Formally it becomes 010. In reality it is more 
like 03/02, and the true derivative is zero. Figure 2.10 showed graphically that (sin x)/x 
is flat at the center point. The function is even (symmetric across the y axis) so its 
derivative can only be zero. 

This section is full of rules, and I hope you will allow one more. It goes beyond xn 
to (u(x)r. A power of x changes to a power of u(x)-as in (sin x ) ~  or (tan x)' or 
(x2+ I)*. The derivative contains nun-' (copying nxn- '), but there is an extra factor 
duldx. Watch that factor in 6(sin x)' cos x and 7(tan x ) ~sec2 x and 8(x2 + l)'(2x): 

Power Rule 
duThe derivative of [u(x)In is n[~(x)]~-'  ;i; 

For n = 1 this reduces to du/dx = duldx. For n = 2 we get the square rule 2u duldx. 
Next comes u3. The best approach is to use mathematical induction, which goes from 
each n to the next power n + 1 by the product rule: 

That is exactly equation (12) for the power n + 1. We get all positive powers this way, 
going up from n = 1-then the negative powers come from the reciprocal rule. 

Figure 2.15 shows the power rule for n = 1,2,3. The cube makes the point 
best. The three thin slabs are u by u by Au. The change in volume is essentially 
3u2Au. From multiplying out ( ~ + A u ) ~ ,the exact change in volume is 
3u2 Au + ~ u ( A u ) ~+ (A~)~-which also accounts for three narrow boxes and a midget 
cube in the corner. This is the binomial formula in a picture. 

U(AU)* 
3 bricks 

u2 AU 
3 slabs 

u Au u Au u Au 
Fig. 2.15 Length change =Au; area change x 21.4Au; volume change x 3u2 Au. 

dEXAMPLE 11 -(sin x)" = n(sin x)"- ' cos x. The extra factor cos x is duldx. dx 

Our last step finally escapes from a very undesirable restriction-that n must be 
a whole number. We want to allow fractional powers n = p/q, and keep the same 
formula. The derivative of xn is still nxn- ' 

To deal with square roots I can write (&)' = x. Its derivative is 2&(&)' = 1. 
Therefore (&)' is 1/2& which fits the formula when n = f.Now try n = p/q: 



--- 

2 Derivatives 

Fractional powers Write u =xPIq as uq =xP. Take derivatives, assuming they exist: 

duqU4-1 -=pxp- ' (power rule on both sides) 
dx 

du - px-' (cancel xP with uq) 
dx qu-' 
du -= n x n - 1 (replace plq by n and u by xn) 
dx  

EXAMPLE 12 The slope of x'I3 is ~ x - ~ I ~ .The slope is infinite at x =0 and zero at 
x = a.But the curve in Figure 2.16 keeps climbing. It doesn't stay below an 
"asymptote." 

1;s 1 118 I 
Fig. 2.16 Infinite slope of xn versus zero slope: the difference between 0 < n < 1 and n > 1. 

EXAMPLE 13 The slope of x4I3 is 4x'I3. The slope is zero at x =0 and infinite at 
x = co.The graph climbs faster than a line and slower than a parabola (4 is between 
1 and 2). Its slope follows the cube root curve (times j ) .  

WE STOP NOW! I am sorry there were so many rules. A computer can memorize 
them all, but it doesn't know what they mean and you do. Together with the chain 
rule that dominates Chapter 4, they achieve virtually all the derivatives ever computed 
by mankind. We list them in one place for convenience. 

Rule of Linearity (au + bv)' =au' + bv' 
Product Rule (uv)' =ud + VU' 

Reciprocal Rule (Ilv)' = - v'/v2 
Quotient Rule (ulv)' = (vu' -uv')/v2 
Power Rule (un)'=nu''-'u' 

The power rule applies when n is negative, or a fraction, or any real number. The 
derivative of x" is zx"- ',according to Chapter 6. The derivative of (sin x)" is . 
And the derivatives of all six trigonometric functions are now established: 

(sin x)' = cos x (tan x)' = sec2x (sec x)' = sec x tan x 

(COSx)' = - sin x (cot x)' = - csc2x (csc x)' = - csc x cot x .  
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2.5 EXERCISES 
Read-through questions 
The derivatives of sin x cos x and l/cos x and sin x/cos x 
and tan3x come from the a rule, b rule, c rule, 
and d rule. The product of sin x times cos x has 
(uv)' =uv' + e = 1 . The derivative of l / v  is g , 
so the slope of sec x is h . The derivative of u/v is 1 , 
so the slope of tan x is I . The derivative of tan3 x is 

k . The slope of xn is I and the slope of (~(x))" is 
m . With n = -1 the derivative of (cos x)-' is n , 

which agrees with the rule for sec x. 
Even simpler is the rule of 0 , which applies to 

au(x) + bv(x). The derivative is P . The slope of 3 sin x + 
4 cos x is q . The derivative of (3 sin x +4 cos x ) ~  is 

r . The derivative of s is 4 sin3 x cos x. 

Find the derivatives of the functions in 1-26. 

(X- 1)(x-2)(x -3) 6 (X- 1 ) 2 ( ~-2)2 
x2 cos x + 2x sin x 8 x'I2(x +sin x) 
x3 + 1 
x + 1 + cos x sin x 

x 2 + 1
lo-+-x2- 1 

sinx 
COS X 

x1I2 sin2 x + (sin x)'I2 12 x3I2 sin3 x + (sin x ) ~ / ~  

x4cos x +x C O S ~x 14 &(&+ l)(& + 2) 
3 x 2 s i n x - x c o s x + s i n x  16 ( ~ - 6 ) ' ~ + s i n ' ~ x  
sec2 x - tan2 x 18 csc2x -cot2 x 

sin x -cos x 
20  sin x + cos x 

1 1--- 26 x sin x +cos x tan x cot x 
A growing box has length t, width 1/(1 + t), and height 

COS t. 
(a) What is the rate of change of the volume? 
(b) What is the rate of change of the surface area? 

28 With two applications of the product rule show that the 
derivative of uvw is uvw' + uv'w + u'uw. When a box with sides 
u, v, w grows by Au, Av, Aw, three slabs are added with volume 
uu Aw and and . 
29 Find the velocity if the distance is f (t)= 

5t2 for t < 10, 500 + loo,/= for t 2 10. 

312 t 
30 A cylinder has radius r = -1 +t3I2 and height h = -

1 + t '  
(a) What is the rate of change of its volume? 
(b) What is the rate of change of its surface area (including 
top and base)? 

31 The height of a model rocket is f (t) = t3/(l + t). 
(a) What is the velocity v(t)? 
(b) What is the acceleration duldt? 

32 Apply the product rule to u(x)u2(x) to find the power rule 
for u3(x). 
33 Find the second derivative of the product u(x)v(x). Find 
the third derivative. Test your formulas on u = u =x. 
34 Find functions y(x) whose derivatives are 

(a) x3 (b) l/x3 (c) (1 -x ) ~ ~ ~(d) cos2x sin x. 
35 Find the distances f (t), starting from f (0)=0, to match 
these velocities: 

(a) v(t) =cos t sin t (b) v(t) = tan t sec2 t 
(c) v(t)=Jl+t 

36 Apply the quotient rule to (~ (x ) )~ / (u (x ) )~  -u'/v2.and 
The latter gives the second derivative of - .  
37 Draw a figure like 2.13 to explain the square rule. 
38 Give an example where u(x)/u(x) is increasing but du/dx = 
dvldx = 1. 
39 True orfalse, with a good reason: 

(a) The derivative of x2" is 2nx2"-'. 
(b) By linearity the derivative of a(x)u(x) + b(x)u(x) is 
a(x) du/dx.+ b(x) dvldx. 
(c) The derivative of 1xI3 is 31xI2. 
(d) tan2 x and sec2 x have the same derivative. 
(e) (uv)' =u'u' is true when u(x) = 1. 

40 The cost of u shares of stock at v dollars per share is uv 
dollars. Check dimensions of d(uv)/dt and u dv/dt and v duldt. 
41 If u(x)/v(x) is a ratio of polynomials of degree n, what are 
the degrees for its derivative? 
42 For y = 5x + 3, is ( d y / d ~ ) ~  the same as d 2 y / d ~ 2 ?  
43 If you change from f (t) = t cos t to its tangent line at 
t =7112, find the two-part function df /dt. 
44 Explain in your own words why the derivative of u(x)v(x) 
has two terms. 
45 A plane starts its descent from height y =h at x = -L 
to land at (0,O). Choose a, b, c, d so its landing path 
y =ax3 + bx2 + cx + d is smooth. With dx/dt = V =constant, 
find dyldt and d2y/dt2 at x =0 and x = -L. (To keep 
d2y/dt2 small, a coast-to-coast plane starts down L > 100 
miles from the airport.) 



You have seen enough limits to be ready for a definition. It is true that we have 
survived this far without one, and we could continue. But this seems a reasonable 
time to define limits more carefully. The goal is to achieve rigor without rigor mortis. 

First you should know that limits of Ay/Ax are by no means the only limits in 
mathematics. Here are five completely different examples. They involve n + a,not 
Ax +0: 

1. a, = (n - 3)/(n + 3) (for large n, ignore the 3's and find a, + 1) 
2. a, = )a,-, + 4 (start with any a, and always a, +8) 
3. an=probability of living to year n (unfortunately an +0) 
4. a, = fraction of zeros among the first n digits of n (an+h?) 
5. a, = .4, a2 = .49, a, = .493, .... No matter what the remaining decimals are, the 

a's converge to a limit. Possibly a, + .493000 . . .,but not likely. 
The problem is to say what the limit symbol + really means. 

A good starting point is to ask about convergence to zero. When does a sequence 
of positive numbers approach zero? What does it mean to write an +O? The numbers 
a,, a,, a,, ..., must become "small," but that is too vague. We will propose four 
definitions of convergence to zero, and I hope the right one will be clear. 

1. All the numbers a, are below 10- lo. That may be enough for practical purposes, 
but it certainly doesn't make the a, approach zero. 

2. The sequence is getting closer to zero-each a,, is smaller than the preceding 
a,. This test is met by 1.1, 1.01, 1.001, ... which converges to 1 instead of 0. 

3. For any small number you think of, at least one of the an's is smaller. That pushes 
something toward zero, but not necessarily the whole sequence. The condition would 
be satisfied by 1, ),1, f, 1, i,. . . ,which does not approach zero. 

4. For any small number you think of, the an's eventually go below that number and 
stay below. This is the correct definition. 

I want to repeat that. To test for convergence to zero, start with a small number- 
say 10-lo. The an's must go below that number. They may come back up and go 
below again-the first million terms make absolutely no difference. Neither do the 
next billion, but eventually all terms must go below lo-''. After waiting longer 
(possibly a lot longer), all terms drop below The tail end of the sequence 
decides everything. 
Question 1 Doesthesequence lo-,, 1 0 - ~ , 1 0 - ~ ,  ...approacho? 
Answer Yes. These up and down numbers eventually stay below any E .  

a , < ~ i f n > 3  a,,< E if n > 6 non-convergence 

Fig. 2.17 Convergence means: Only a finite number of a's are outside any strip around L. 



2.6 Limits 

Question 2 Does lo-', lo-*, lo-',, 10-lo, ... approach zero? 
Answer No. This sequence goes below but does not stay below. 

There is a recognized symbol for "an arbitrarily small positive number." By 
worldwide agreement, it is the Greek letter E (epsilon). Convergence to zero means 
that the sequence eventually goes below E and stays there. The smaller the E, the tougher 
the test and the longer we wait. Think of E as the tolerance, and keep reducing it. 

To emphasize that E comes from outside, Socrates can choose it. Whatever E he 
proposes, the a's must eventually be smaller. After some a,, all the a's are below the 
tolerance E. Here is the exact statement: 

for any E there is an N such that a, < E if n > N. 

Once you see that idea, the rest is easy. Figure 2.17 has N = 3 and then N = 6. 

EXAMPLE I The sequence f, $, 8, . . . starts upward but goes to zero. Notice that 
1,4,9, . . . , 100, . . . are squares, and 2,4, 8, . . . , 1024, . . . are powers of 2. Eventually 2" 
grows faster than n2, as in alo = 100/1024. The ratio goes below any E. 

EXAMPLE 2 1, 0, f, 0, f, 0, . . . approaches zero. These a's do not decrease steadily 
(the mathematical word for steadily is monotonica ally") but still their limit is zero. 
The choice E = 1 / 1 0  produces the right response: Beyond azool all terms are below 
1/1000. So N = 2001 for that E. 

The sequence 1, f, f, 4,f, f, . . . is much slower-but it also converges to zero. 
Next we allow the numbers a, to be negative as well as positive. They can converge 

upward toward zero, or they can come in from both sides. The test still requires the 
a, to go inside any strip near zero (and stay there). But now the strip starts at -E. 

The distance from zero is the absolute value la,l. Therefore a, -,0 means lanl + 0. 
The previous test can be applied to lanl: 

for any E there is an N such that la,l < E if n > N. 

EXAMPLE 3 1, -f, f , -4,. . . converges to zero because 1, f,f,$, . . . converges to zero. 
It is a short step to limits other than zero. The limit is L if the numbers a, -L 

converge to Zero. Our final test applies to the absolute value la, -LI: 

for any E there is an N such that (a, -L(< E if n > N. 
This is the definition of convergence! Only a finite number of a's are outside any strip 
around L (Figure 2.18). We write a, -,L or lim -a,= L or limn,, a, = L. 

Fig. 2.18 a, -,0in Example 3;a, -* 1 in Example 4;a, -, rn in Example 5(buta,,, -a, -,0). 



EXAMPLE 4 The numbers 3, 2 ,  g, . . . converge to L = 1. After subtracting 1 the 
differences 3, f ,  k, . . . converge to zero. Those difference are la, - LI. 

The distance between terms is getting smaller. But those numbers a,, a,, a3, a,, . . . go 
past any proposed limit L. The second term is 15. The fourth term adds on 3 + 4, 
so a, goes past 2. The eighth term has four new fractions 4 + &+ f + $, totaling 
more than $ + $ + $ + & = 3. Therefore a, exceeds 23. Eight more terms will add more 
than 8 times &, so a,, is beyond 3. The lines in Figure 2 .18~ are infinitely long, not 
stopping at any L. 

In the language of Chapter 10, the harmonic series 1 + 3 + 3 + does not converge. 
The sum is infinite, because the "partial sums" a, go beyond every limit L (a,,,, is 
past L = 9). We will come back to infinite series, but this example makes a subtle 
point: The steps between the a, can go to zero while still a, -, a. 

Thus the condition a,+, - a, -, 0 is not suficient for convergence. However this 
condition is necessary. If we do have convergence, then a,,, - a, -, 0. That is a good 
exercise in the logic of convergence, emphasizing the difference between "sufficient" 
and "necessary." We discuss this logic below, after proving that [statement A] implies 
[statement B]: 

If [a, converges to L] then [a,+ , - a, converges to zero]. (1) 
Proof Because the a, converge, there is a number N beyond which (a, - L( < s and 
also la, + , - LI < E. Since a, +, - a, is the sum of a, +, - L and L - a,, its absolute 
value cannot exceed E + E = 2s. Therefore a,+ , - a, approaches zero. 

Objection by Socrates: We only got below 2s and he asked for s. Our reply: If he 
particularly wants la, + , - a, 1 < 1/ 10, we start with s = 1/20. Then 2s = 1/10. But this 
juggling is not necessary. To stay below 2s is just as convincing as to stay below s. 

THE LOGIC OF "IF" AND "ONLY IF" 

The following page is inserted to help with the language of mathematics. In ordinary 
language we might say "I will come if you call." Or we might say "I will come only 
if you call." That is different! A mathematician might even say "I will come if and 
only if you call." Our goal is to think through the logic, because it is important and 
not so fami1iar.t 

Statement A above implies statement B. Statement A is a, -, L; statement B is 
a,+, - a, -, 0. Mathematics has at least five ways of writing down A => B, and I 
though you might like to see them together. It seems excessive to have so many 
expressions for the same idea, but authors get desperate for a little variety. Here are 
the five ways that come to mind: 

A implies B 

if A then B 

A is a suflcient condition for B 
B is true if A is true 

?Logical thinking is much more important than E and 6. 



EXAMPLES If [positive numbers are decreasing] then [they converge to a limit]. 
If [sequences a, and b, converge] then [the sequence a, + b, converges]. 
If [ f (x) is the integral of v(x)] then [v(x) is the derivative of f (x)]. 

Those are all true, but not proved. A is the hypothesis, B is the conclusion. 
Now we go in the other direction. (It is called the "converse," not the inverse.) We 

exchange A and B. Of course stating the converse does not make it true! B might 
imply A, or it might not. In the first two examples the converse was false-the a, 
can converge without decreasing, and a, + b, can converge when the separate 
sequences do not. The converse of the third statement is true-and there are five 
more ways to state it: 

A* B 
A is implied by B 

i f  B then A 
A is a necessary condition for B 

B is true only i f  A is true 

Those words "necessary" and "sufficient" are not always easy to master. The same 
is true of the deceptively short phrase "if and only if." The two statements A* B and 
A e B are completely different and they both require proof. That means two separate 
proofs. But they can be stated together for convenience (when both are true): 

A - B  
A implies B and B implies A 

A is equivalent to B 
A is a necessary and suficient condition for B 

A is true if and only i f  B is true 

EXAMPLES [a, + L] - [2an -, 2L] - [a, + 1 + L + 11 - [a, - L+ 01. 

RULES FOR LIMITS 

Calculus needs a definition of limits, to define dyldx. That derivative contains two 
limits: Ax + 0 and AylAx + dyldx. Calculus also needs rules for limits, to prove the 
sum rule and product rule for derivatives. We started on the definition, and now we 
start on the rules. 

Given two convergent sequences, a, + L and b, + M, other sequences also converge: 

Addition: a, + b, + L + M Subtraction: a, - b, -, L - M 
Multiplication: a,b, -, LM Division: a,/b, + LIM (provided M # 0) 
We check the multiplication rule, which uses a convenient identity: 

a,b, - LM = (a, - L)(b, - M) + M(a, - L) + L(b, - M). (2) 
Suppose Jan - LJ < E beyond some point N, and 1 b, - MI < E beyond some other point 
N'. Then beyond the larger.of N and N', the right side of (2) is small. It is less than 
E E + ME + LE. This proves that (2) gives a,b, + LM. 

An important special case is can -, cL. (The sequence of b's is c, c, c, c, . . . .) Thus a 
constant can be brought "outside" the limit, to give lim can = c lim a,. 



THE LIMIT OF f ( x )  AS x -, a 

The final step is to replace sequences by functions. Instead of a,, a2, . . . there is a 
continuum of values f(x). The limit is taken as x approaches a specified point a 
(instead of n -, co). Example: As x approaches a = 0, the function f (x) = 4 - x2 
approaches L = 4. As x approaches a = 2, the function 5x approaches L = 10. Those 
statements are fairly obvious, but we have to say what they mean. Somehow it must 
be this: 

i f  x is close to a then f (x) is close to L. 

If x - a is small, then f (x) - L should be small. As before, the word small does not 
say everything. We really mean "arbitrarily small," or "below any E." The difference 
f(x) - L must become as small as anyone wants, when x gets near a. In that case 
lim,,, f (x) = L. Or we write f (x) -, L as x -, a. 

The statement is awkward because it involves two limits. The limit x + a is forcing 
f (x) + L. (Previously n + co forced a, + L.) But it is wrong to expect the same E in 
both limits. We do not and cannot require that Jx - a1 < E produces ) f (x) - LI < E. 
It may be necessary to push x extremely close to a (closer than E). We must guarantee 
that if x is close enough to a, then If (x) - LI < E. 

We have come to the "epsilon-delta definition" of limits. First, Socrates chooses E. 
He has to be shown that f (x) is within E of L, for every x near a. Then somebody 
else (maybe Plato) replies with a number 6. That gives the meaning of "near a." 
Plato's goal is to get f(x) within E of L, by keeping x within 6 of a: 

if 0 < lx - a1 < S then (f(x) - LI < E .  (3) 

The input tolerance is 6 (delta), the output tolerance is E. When Plato can find a 6 
for every E, Socrates concedes that the limit is L. 

EXAMPLE Prove that lim 5x = 10. In this case a = 2 and L = 10. 
x+2 

Socrates asks for 15x - 101 < E. Plato responds by requiring Ix - 21 < 6. What 6 should 
he choose? In this case 15x - 101 is exactly 5 times Jx - 21. So Plato picks 6 below ~ / 5  
(a smaller 6 is always OK). Whenever Jx  - 21 < 45, multiplication by 5 shows that 
15x - 101 < E. 

Remark 1 In Figure 2.19, Socrates chooses the height of the box. It extends above 
and below L, by the small number E. Second, Plato chooses the width. He must make 
the box narrow enough for the graph to go out the sides. Then If (x) - Ll< E. 

1 limit L is not f ( o )  f ( x )  = step function 
I 
I 

Fig. 2.19 S chooses height 2.5, then P chooses width 26. Graph must go out the sides. 



When f(x) has a jump, the box can't hold it. A step function has no limit as x 
approaches the jump, because the graph goes through the top or bottom-no matter 
how thin the box. 

Remark 2 The second figure has f (x) +L, because in taking limits we ignore the 
Jinalpoint x = a. The value f (a) can be anything, with no effect on L. The first figure 
has more: f (a) equals L. Then a special name applies- f is continuous.The left figure 
shows a continuous function, the other figures do not. 

We soon come back to continuous functions. 

Remark 3 In the example with f = 5x and 6 = 45, the number 5 was the slope. That 
choice barely kept the graph in the box-it goes out the corners. A little narrower, 
say 6 = ~110, and the graph goes safely out the sides. A reasonable choice is 
to divide E by 21 ff(a)l. (We double the slope for safety.) I want to say why this 6 
works-even if the E-6 test is seldom used in practice. 

The ratio off (x) -L to x -a is distance up over distance across. This is Af/Ax, 
close to the slope f'(a). When the distance across is 6, the distance up or down is 
near 61 ff(a)l. That equals ~ / 2  for our "reasonable choice" of 6-so we are safely 
below E. This choice solves most exercises. But Example 7 shows that a limit might 
exist even when the slope is infinite. 

EXAMPLE 7 lim ,/x - 1 = 0 (a one-sided limit). 
x+1+  

Notice the plus sign in the symbol x + 1+ . The number x approaches a = 1 only from 
above. An ordinary limit x + 1 requires us to accept x on both sides of 1 (the exact 
value x = 1 is not considered). Since negative numbers are not allowed by the square 
root, we have a one-sided limit. It is L = 0. 

Suppose E is 1/10. Then the response could be 6 = 1/100. A number below 1/100 
has a square root below 1/10. In this case the box must be made extremely 
narrow, 6 much smaller than E, because the square root starts with infinite slope. 

Those examples show the point of the 6-6 definition. (Given E, look for 6. This 
came from Cauchy in France, not Socrates in Greece.) We also see its bad feature: 
The test is not convenient. Mathematicians do not go around proposing 8's and 
replying with 8's. We may live a strange life, but not that strange. 

It is easier to establish once and for all that 5x approaches its obvious limit 5a. 
The same is true for other familiar functions: xn+an and sin x +sin a and 
(1 - x)-' -t (1 - a)- '-except at a = 1. The correct limit L comes by substituting 
x = a into the function. This is exactly the property of a "continuous function." Before 
the section on continuous functions, we prove the Squeeze Theorem using E and 6. 

Proof g(x) is squeezed between f (x) and h(x). After subtracting L, g(x) -L is between 
f(x) -L and h(x) -L. Therefore 

Ig(x) -LI < E if If(x) -L(< E  and Ih(x)- LJ < E .  

For any E, the last two inequalities hold in some region 0 < Jx- a1 < 6. So the first 
one also holds. This proves that g(x) +L. Values at x = a are not involved-until 
we get to continuous functions. 



---- 

---- 

---- 
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2.6 EXERCISES 
Read-through questions 

The limit of a, = (sin n)/n is a . The limit of a, = n4/2" is 
b . The limit of a, = (- I)" is c . The meaning of a, -+ 0 

is: Only d of the numbers la,/ can be e . The meaning 
of a, -+ L is: For every f there is an g such that 

h i f n>  i .Thesequencel,l+$,l+$+~,...isnot 
i because eventually those sums go past k . 

The limit of f (x)  = sin x as x -+ a is I . The limit of 
f ( x ) = x / l x l a s x - + - 2 i s  m , b u t  the l imi tasx+Odoes  
not n . This function only has o -sided limits. The 
meaning of lirn,,, f (x)= L is: For every E there is a 6 such 
that I f  (x)-LI < E whenever P . 

Two rules for limits, when a, -+ L and b, -+ M, are 
u, + h, -+ q and a,b, -+ r . The corresponding rules 
for functions, when f(x) -+ L and g(x) -+ M as x -+a, are 

s and t . In all limits, la, -LI or I f  (x)-LI must 
eventually go below and u any positive v . 

A * B means that A is a w condition for B. Then B is 
true x A is true. A -B means that A is a Y condition 
for B. Then B is true z A is true. 

1 What is u, and what is the limit L? After which N is 
la, -LI < &?(Calculator allowed) 

(a)  -1, + f ,  - f ,  ... (b) 4,++$,$ + a + & ,  ... 
(c) i,$, i,... an=n/2"  (d) 1.1, 1.11, 1.111, ... 

r (e) a,, (f) ~ , = , / ' ~ - n  ;/= n 

"5 If the sequence a, ,  a,, a,, . . . approaches zero, prove that 
we can put those numbers in any order and the new sequence 
still approaches zero. 

*6 Suppose f (x) -+ L and g(x) -,M as x -t a. Prove from the 
definitions that f (x)+ g(x)-,L + M as x -,a. 

Find the limits 7-24 if they exist. An E-6 test is not required. 

t + 37 lirn -
t + 2  t 2 -2  

9 lim f (X+ h) -f (4 
X - ~ O  h 

sin2 h cos2 h11 lirn 
h+O h2 

1x113 lim+ - (one-sided) 

12 lirn 
X + O  

14 lirn 
x - 0 -

.01) 20 lim 
x 4 2  

2x tan x 
sin x 

I x I 
- (one-sided)
X 

J4 -x  

x + o  

15 lirn 
x - + l  

17 lirn 
x - + 5  

19 lim 
x + o  

x 

sin x 
-x 

x2 + 25 
x - 5  

J I + x - 1  
(test x = 

Y 

21 lim [f(x)-f(a)](?) 
x-+a 

22 lim (sec x - tan x) 
x + 4 2  

(g) 1 + 1, (1  +4I2, (1  +f )3 ,  ... 

2 Show by example that these statements are false: 
(a) If a, -,L and h, -+ L then a,/b, -+ 1 
(b) u, -+ L if and only if a: -+ L~ 
(c) If u, < 0 and a, -+ L then L < 0 
(d) If infinitely many an's are inside every strip around 
zero then a, -+ 0. 

3 Which of these statements are equivalent to B = A? 
(a) If A is true so is B 
(b) A is true if and only if B is true 
(c) B is a sufficient condition for A 
(d) A is a necessary condition for B. 

4 Decide whether A B or B * A or neither or both: 
(a) A = [a, -+ 11 B = [-a, -+ - 11 
(b) A =[a, -+0] B = [a,-a,-, -01 
(c) A = [a, < n] B = [a, = n] 
(d) A = [a, -,O] B = [sin a, -+ 0) 
(e) A = [a, -+ 01 B = [lla, fails to converge] 
(f) A = [a, < n] B = [a,/n converges] 

sin x 24 lim sin (x - 1)23 lirn -
sin x/2 x - t l  x2-1X + O  

25 Choose 6 so that I f(.x)l <Aif 0 < x < 6. 

26 Which does the definition of a limit require? 
(1) I f (x - ) -L l<~  = O < I x - a ( < 6  
(2) I f ( x ) - L l < ~  = O r l x - a l < G  
(3) If(x)- LI < E  - 0 ~ I . x - a 1  < 6  

27 The definition of "f(x) -+ L as x -+ x" is this: For any 
E there is an X such that < E if x > X. Give an 
example in which f (x)3 4 as x -+ rrc . 

28 Give a correct definition of ''f(.x) -+ 0 as x -,-x'." 

29 The limit of f(x)  =(sin x)/x as x -+ x is . For 
E = .O1 find a point X beyond which I f(x)l < E. 

30 The limit of f (x)= 2x/(l + x) as x -+ rx is L = 2. For 
t: = .O1 find a point X beyond which I f (x)- 21 < E .  

31 The limit of , f ( s )  = sin s as s -+ r_ does not exist. Explain 
why not. 
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:r 38 If a, -+ L prove that there is a number N with this prop- 
32 (Calculator) Estimate the limit of (1+- as x +a. erty: If n >N and m >N then (a, -a,( <2 ~ .This is Cauchy's 

33 For the polynomial f(x) =2x -5x2+7x3 find 
test for convergence. 

f ( 4(c) lirn - (d) lirn -f ( 4  
x-im x3 x4-00 x3 

34 For f (x)=6x3 + l00Ox find 

f (x)(a) lirn -
x+m X 

f ( 4  f ( 4(c) lirn - (d) lirn -
x-rm x4 x4m x3 + 1 

Important rule As x + co the ratio of polynomials f(x)/g(x) 
has the same limit as the ratio of their leading terms. f (x)= 
x3-x +2 has leading term x3 and g(x) =5x6+x + 1 has 
leading term 5x6. Therefore f (x)/g(x) behaves like x3/5x6 +0, 
g(x)/f (x) behaves like 5x6/x3 +a,(f ( x ) ) ~ / ~ ( x )  behaves like 
x6/5x6 115. 
35 Find the limit as x + co if it exists: 

3x2 + 2 x +  1 x4 x2 + 1000 1x sin -.3 + 2 x + x 2  x3+x2  x3-1000 x 
36 If a particular 6 achieves If (x)-LI <e, why is it OK to 
choose a smaller 6? 
37 The sum of 1 + r + r2 + ..-+ r"-' is a, =(1 -r")/(l -r). 
What is the limit of a, as n -,co? For which r does the limit 
exist? 

39 No matter what decimals come later, a l  = .4, a2 = .49, 
a, = .493, ... approaches a limit L. How do we know (when 
we can't know L)? Cauchy's test is passed: the a's get closer 
to each other. 

(a) From a, onwards we have la, -aml< 
(b) After which a, is lam -a,l < 

40 Choose decimals in Problem 39 so the limit is L = .494. 
Choose decimals so that your professor can't find L. 

41 If every decimal in .abcde-.. is picked at random from 
0, 1, ...,9, what is the "average" limit L? 

42 If every decimal is 0 or 1(at random), what is the average 
limit L? 

43 Suppose a, =$an- +4 and start from al = 10. Find a2 
and a, and a connection between a, -8 and a,-, -8. Deduce 
that a, -,8. 

44 "For every 6 there is an E such that If (x)]<e if 1x1 <6." 
That test is twisted around. Find e when f (x)=cos x, which 
does not converge to zero. 

45 Prove the Squeeze Theorem for sequences, using e: If 
a n + L  and c,-+ L and a n 6 b n d c n  for n >  N, then b,+ L. 

46 Explain in 110 words the difference between "we will get 
there if you hurry" and "we will get there only if you hurry" 
and "we will get there if and only if you hurry." 

1-1Continuous Functions  2.7 

This will be a brief section. It was originally included with limits, but the combination 
was too long. We are still concerned with the limit off (x) as x -,a, but a new number 
is involved. That number is f (a), the value off at x = a. For a "limit," x approached 
a but never reached it-so f(a) was ignored. For a "continuous function," this final 
number f (a) must be right. 

May I summarize the usual (good) situation as x approaches a? 

1. The number f (a) exists (f is defined at a) 
2. The limit of f (x) exists (it was called L) 
3. The limit L equals f (a) (f (a) is the right value) 

In such a case, f (x) is continuous at x = a. These requirements are often written in a 
single line: f (x) +f (a) as x -,a. By way of contrast, start with four functions that are 
not continuous at x = 0. 



Fig. 2.20 Four types of discontinuity (others are possible) at x =0. 

In Figure 2.20, the first function would be continuous if it had f (0)= 0. But it has 
f(0) = 1. After changing f (0) to the right value, the problem is gone. The discontinuity 
is removable. Examples 2, 3 ,  4 are more important and more serious. There is no 
"correct" value for f (0): 

2. f (x) = step function (jump from 0 to 1 at x = 0) 
3. f (x) = 1/x2 (infinite limit as x +0) 
4. f (x) = sin (1/x) (infinite oscillation as x +0). 

The graphs show how the limit fails to exist. The step function has a jump discontinu- 
ity. It has one-sided limits, from the left and right. It does not have an ordinary (two- 
sided) limit. The limit from the left (x +0-) is 0. The limit from the right (x +0') 
is 1. Another step function is x/lxl, which jumps from -1 to 1. 

In the graph of l/x2, the only reasonable limit is L= + co. I cannot go on record 
as saying that this limit exists. Officially, it doesn't-but we often write it anyway: 
l/x2+ m as x +0. This means that l/x2 goes (and stays) above every L as x +0. 

In the same unofficial way we write one-sided limits for f (x)= l/x: 
1 1From the left, lim -= - co. From the right, lim -= + oo. (1)

x+o- x x+o+  X 

Remark l/x has a "pole" at x = 0. So has l/x2 (a double pole). The function 
l/(x2 -X) has poles at x = 0 and x = 1. In each case the denominator goes to zero 
and the function goes to + oo or -oo. Similarly llsin x has a pole at every multiple 
of n (where sin x is zero). Except for l/x2 these poles are "simplew-the functions are 
completely smooth at x = 0 when we multiply them by x: 

1 and ( )(A)are continuous at x =0.(x)(!-) =1 and (x) 

l/x2 has a double pole, since it needs multiplication by x2 (not just x). A ratio of 
polynomials P(x)/Q(x) has poles where Q = 0, provided any common factors like 
(X + 1)/(x+ 1) are removed first. 

Jumps and poles are the most basic discontinuities, but others can occur. The 
fourth graph shows that sin(l/x) has no limit as x +0. This function does not blow 
up; the sine never exceeds 1. At x = 4 and $ and & it equals sin 3 and sin 4 and 
sin 1000. Those numbers are positive and negative and (?). As x gets small and l/x 
gets large, the sine oscillates faster and faster. Its graph won't stay in a small box of 
height E ,  no matter how narrow the box. 

CONTINUOUS FUNCTIONS 

DEFINITION f is "continuous at x = a" if f (a) is defined and f (x) 4f (a) as x -,a. 
Iff is continuous at every point where it is defined, it is a continuous function. 



_ I·_I _ _·___ __ · _  _·_I__ ____

2.7 Continuous FuncHons 87

Objection The definition makes f(x)= 1/x a continuous function! It is not defined
at x = 0, so its continuity can't fail. The logic requires us to accept this, but we don't
have to like it. Certainly there is no f(0) that would make 1lx continuous at x = 0.

It is amazing but true that the definition of "continuous function" is still debated
(Mathematics Teacher, May 1989). You see the reason-we speak about a discontinu-
ity of l/x, and at the same time call it a continuous function. The definition misses
the difference between 1/x and (sin x)/x. The function f(x) = (sin x)/x can be made
continuousat all x. Just set f(0) = 1.

We call a function "continuable'iif its definition can be extended to all x in a way
that makes it continuous. Thus (sin x)/x and \/; are continuable. The functions l/x
and tan x are not continuable. This suggestion may not end the debate, but I hope
it is helpful.

EXAMPLE sin x and cos x and all polynomials P(x) are continuous functions.

EXAMPLE2 The absolute value Ixl is continuous. Its slope jumps (not continuable).

EXAMPLE3 Any rational function P(x)/Q(x) is continuous except where Q = 0.

EXAMPLE4 The function that jumps between 1 at fractions and 0 at non-fractions
is discontinuous everywhere. There is a fraction between every pair of non-fractions
and vice versa. (Somehow there are many more non-fractions.)

EXAMPLE5 The function 02 is zero for every x, except that 00 is not defined. So
define it as zero and this function is continuous. But see the next paragraph where
00 has to be 1.

We could fill the book with proofs of continuity, but usually the situation is clear.
"A function is continuous if you can draw its graph without lifting up your pen."
At a jump, or an infinite limit, or an infinite oscillation, there is no way across the
discontinuity except to start again on the other side. The function x" is continuous
for n > 0. It is not continuable for n < 0. The function x0 equals 1 for every x, except
that 00 is not defined. This time continuity requires 00 = 1.

The interesting examples are the close ones-we have seen two of them:

sin x 1 -cos x
EXAMPLE6 and are both continuable at x = 0.x x

Those were crucial for the slope of sin x. The first approaches 1 and the second
approaches 0. Strictly speaking we must give these functions the correct values
(1 and 0) at the limiting point x = O-which of course we do.

It is important to know what happens when the denominators change to x2.

sin x 1 -cos x 1EXAMPLE7 blows up but has the limit at x = 0.
X2 2

Since (sin x)/x approaches 1, dividing by another x gives a function like 1lx. There
is a simple pole. It is an example of 0/0, in which the zero from x2 is reached more
quickly than the zero from sin x. The "race to zero" produces almost all interesting
problems about limits.
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For 1 - cos x and x2 the race is almost even. Their ratio is 1 to 2: 

1 - cos x -- 1 - cos2x --.sin2x 1 1- -+- as x -+ 0. 
x2 x2(1+c0sx)  x2 ~ + C O S X  1 + 1  

This answer will be found again (more easily) by "1'HBpital's rule." Here I emphasize 
not the answer but the problem. A central question of differential calculus is to know 
how fast the limit is approached. The speed of approach is exactly the information in 
the derivative. 

These three examples are all continuous at x = 0. The race is controlled by the 
slope-because f (x) -f (0) is nearly f '(0) times x: 

derivative of sin x is 1 - sin x decreases like x 
derivative of sin2x is 0 - sin2x decreases faster than x 

derivative of xli3 is CQ - x1I3decreases more slowly than x. 

DIFFERENTIABLE FUNCTIONS 

The absolute value 1x1 is continuous at x = 0 but has no derivative. The same is true 
for x113. Asking for a derivative is more than asking for continuity. The reason is 
fundamental, and carries us back to the key definitions: 

Continuous at x: f (x + Ax) -f(x)  -+ 0 as Ax -+ 0 
f (x + A.u) -f ( x )Derivative at x: -+f"(x) as Ax -+ 0.Ax 

In the first case, Af goes to zero (maybe slowly). In the second case, Af goes to zero 
as fast as Ax (because AflAx has a limit). That requirement is stronger: 

21 At a point where f(x) has a derivative, the function must be continuous. 
But f (x) can be continuous with no derivative. 

Proof The limit of Af = (Ax)(Af/Ax) is (O)(df/dx) = 0. So f (x + Ax) -f (x) -+ 0. 

The continuous function x113has no derivative at x = 0, because +xw2I3blows up. 
The absolute value 1x1 has no derivative because its slope jumps. The remarkable 
function 4cos 3x + cos 9x + is continuous at all points and has a derivative at 
no points. You can draw its graph without lifting your pen (but not easily-it turns 
at every point). To most people, it belongs with space-filling curves and unmeasurable 
areas-in a box of curiosities. Fractals used to go into the same box! They are 
beautiful shapes, with boundaries that have no tangents. The theory of fractals is 
very alive, for good mathematical reasons, and we touch on it in Section 3.7. 

I hope you have a clear idea of these basic definitions of calculus: 

1 Limit ( n -+ ,xor s -+a)  2 Continuity (at x = a) 3 Derivative (at x = a). 

Those go back to E and 6, but it is seldom necessary to follow them so far. In the 
same way that economics describes many transactions, or history describes many 
events, a function comes from many values f (x). A few points may be special, like 
market crashes or wars or discontinuities. At other points dfldx is the best guide to 
the function. 



2.7 Continuous Functions 

This chapter ends with two essential facts about a continuous function on a closed 
interval. The interval is a 6 x < b, written simply as [a, b1.t At the endpoints a and 
b we require f (x) to approach f (a) and f(b). 

Extreme Value Property A continuous function on the finite interval [a, b] has a 
maximum value M and a minimum value m. There are points x,,, and x,, in [a, b] 
where it reaches those values: 

f(xmax)=M 3 f(x) 3 f(xmin)=m for all x in [a, b]. 

Intermediate Value Property If the number F is between f(a) and f(b), there is a 
point c between a and b where f (c) = F. Thus if F is between the minimum m and 
the maximum M, there is a point c between xmin and x,,, where f (c)= F. 

Examples show why we require closed intervals and continuous functions. For 
0 < x < 1 the function f (x) = x never reaches its minimum (zero). If we close the 
interval by defining f (0) = 3 (discontinuous) the minimum is still not reached. Because 
of the jump, the intermediate value F = 2 is also not reached. The idea of continuity 
was inescapable, after Cauchy defined the idea of a limit. 

2.7 EXERCISES 
Read-through questions 
Continuity requires the a of f (x) to exist as x -,a and 
to agree with b . The reason that x/lxl is not continuous 
at x = 0 is c . This function does have d limits. The 
reason that l/cos x is discontinuous at e is f . The 
reason that cos(l/x) is discontinuous at x = 0 is g . 
The function f(x) = h has a simple pole at x = 3, where 
f has a i pole. 

The power xn is continuous at all x provided n is i . It 
has no derivative at x = 0 when n is k . f (x)= sin (-x)/x 
approaches I as x -,0, so this is a m function pro- 
vided we define f (0)= n . A "continuous function" must 9 f ( 4  = 

(sin x)/x2 x # 0 
lo f(x)= 

x + c  
1 

x d c  
x > c  

be continuous at all 0 . A ','continuable function" can be 
extended to every point x so that P . 

Iff has a derivative at x = a then f is necessarily q at 
11 f(x)= 

c 
112 

x # 4  
~ = 4  

12 f(x)= 
c 

sec x 
xQO 
x 2 0 

x = a. The derivative controls the speed at which f(x) 
approaches r . On a closed interval [a, b], a continuous 
f has the s value property and the t value property. 
It reaches its t~ M and its v m, and it takes on every 
value w . 
In Problems 1-20, find the numbers c that make f(x) into 
(A) a continuous function and (B) a differentiable function. (tan x)/x x # 0 x2 x d c  

15 f(x)= { 16 f(x)=In one case f (x) -,f(a) at every point, in the other case Af /Ax c x = o  2x x > c  
has a limit at every point. 

sin x x < 1 cos3x X # 7 r  
1 f (4 = i 2 f (x)= ic x 2 l  C x = n  

+The interval [a, b] is closed (endpoints included). The interval (a, b) is open (a and b left out). 
The infinite interval [0, ao) contains all x 3 0. 



(sin x -x)/xc x # 0 
19 f(x) = i 20 f(x)=Ix2+c21 

O x=O 

Construct your own f (x) with these discontinuities at x = 1. 
Removable discontinuity 
Infinite oscillation 
Limit for x -+ 1+,no limit for x + 1-
A double pole 
lirn f(x)= 4 + lim+ f(x) 

x+1- x+ 1 

lim f (x)= GO but lim (x - 1)f (x)= 0 
x+ 1 x-r 1 

lim (X - 1)f (x)= 5 
x-r 1 

The statement "3x + 7 as x -+ 1" is false. Choose an E for 
which no 6 can be found. The statement "3x -* 3 as x -,1" is 
true. For E = 4 choose a suitable 6.  
29 How many derivatives f ', f ", .. . are continuable 
functions? 

(a) f = x3I2 (b) f = x3I2 sin x (c) f = (sin x)'I2 
30 Find one-sided limits at points where there is no two- 
sided limit. Give a 3-part formula for function (c). 

(b) sin 1x1 

31 Let f(1)= 1 and f (- 1)= 1 and f (x) = (x2-x)/(x2- 1) 
otherwise. Decide whether f is continuous at 

(a) x = 1 (b) x = 0 (c) x=-1. 
'32 Let f(x)= x2 sin l/x for x # 0 and f (0)= 0. If the limits 
exist, find 

(a) f ( 4  (b) df /dx at x = 0 (c) X+Olim f '(x). 

33 If f(0) = 0 and f'(0) = 3, rank these functions from 
smallest to largest as x decreases to zero: 

34 Create a discontinuous function f(x) for which f 2(x) is 
continuous. 
35 True or false, with an example to illustrate: 

(a) If f(x) is continuous at all x, it has a maximum 
value M. 

(b) I f f  (x) < 7 for all x, then f reaches its maximum. 
(c) If f (1)= 1 and f (2)= -2, then somewhere f(x)= 0. 
(d) If f (1)= 1 and f (2) = -2 and f is continuous on 
[I, 21, then somewhere on that interval f(x) = 0. 

36 The functions cos x and 2x are continuous. Show from 
the property that cos x = 2x at some point between 
0 and 1. 

37 Show by example that these statements are false: 
(a) If a function reaches its maximum and minimum then 
the function is continuous. 
(b) If f(x) reaches its maximum and minimum and all 
values between f(0) and f(1), it is continuous at x = 0. 
(c) (mostly for instructors) If f(x) has the intermediate 
value property between all points a and b, it must be 
continuous. 

38 Explain with words and a graph why f(x) = x sin (llx) is 
continuous but has no derivative at x = 0. Set flO) = 0. 

39 Which of these functions are continuable, and why? 
sin x x c 0 sin llx x<O 

f l ( ~ )= f2(4 = cos x x > 1 cos l/x x >  1 

X 
f3(x)= -when sin x # 0 f4(x)= x0 + 0"'sin x 

40 Explain the difference between a continuous function and 
a continuable function. Are continuous functions always con- 
tinuable? 

"41 f(x) is any continuous function with f (0)=f (1). 
(a) Draw a typical f (x). Mark where f (x)=f (x + 4). 
(b) Explain why g(x) =f(x + 3)-f(x) has g(4) = -g(0). 
(c) Deduce from (b) that (a) is always possible: There must 
be a point where g(x) = 0 and f (x)=f(x + 4). 

42 Create an f (x) that is continuous only at x = 0. 

43 If f (x) is continuous and 0 <f(x)< 1 for all x, then there 
is a point where f (x*)= x*. Explain with a graph and prove 
with the intermediate value theorem. 

44 In the E-8 definition of a limit, change 0 c Ix -a1 c 6 to 
Ix -a1 c 6. Why is f (x) now continuous at x = a? 

45 A function has a at x = 0 if and only if 
( f  (x) -f (0))lx is at x = 0. 
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C H A P T E R   

Applications of the Derivative  

Chapter 2 concentrated on computing derivatives. This chapter concentrates on using 
them. Our computations produced dyldx for functions built from xn and sin x and 
cos x. Knowing the slope, and if necessary also the second derivative, we can answer 
the questions about y =f(x) that this subject was created for: 

1. How does y change when x changes? 
2. What is the maximum value of y? Or the minimum? 
3. How can you tell a maximum from a minimum, using derivatives? 

The information in dyldx is entirely local. It tells what is happening close to the point 
and nowhere else. In Chapter 2, Ax and Ay went to zero. Now we want to get them 
back. The local information explains the larger picture, because Ay is approximately 
dyldx times Ax. 

The problem is to connect the finite to the infinitesimal-the average slope to the 
instantaneous slope. Those slopes are close, and occasionally they are equal. Points 
of equality are assured by the Mean Value Theorem-which is the local-global 
connection at the center of differential calculus. But we cannot predict where dyldx 
equals AylAx. Therefore we now find other ways to recover a function from its 
derivatives-or to estimate distance from velocity and acceleration. 

It may seem surprising that we learn about y from dyldx. All our work has been 
going the other way! We struggled with y to squeeze out dyldx. Now we use dyldx 
to study y. That's life. Perhaps it really is life, to understand one generation from 
later generations. 

3.1 Linear Approximation 

The book started with a straight line f = vt .  The distance is linear when the velocity 
is constant. As soon as v begins to change, f = v t  falls apart. Which velocity do we 
choose, when v( t )  is not constant? The solution is to take very short time intervals, 91 
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in which v is nearly constant: 
f = vt is completely false 

Af = vAt is nearly true 

df = vdt is exactly true. 

For a brief moment the functionf(t) is linear-and stays near its tangent line. 
In Section 2.3 we found the tangent line to y =f(x). At x = a, the slope of the curve 

and the slope of the line are f'(a). For points on the line, start at y =f(a). Add the 
slope times the "increment" x - a: 

Y =f(a) +f '(a)(x - a). ( 1 )  
We write a capital Y for the line and a small y for the curve. The whole point of 
tangents is that they are close (provided we don't move too far from a): 

That is the all- urpose linear approximation. Figure 3.1 shows the square root 
function y = A n d  its tangent line at x = a = 100. At the point y = @=lo, 
the slope is 1/2& = 1/20. The table beside the figure compares y(x) with Y(x). 

Fig. 3.1 Y ( x )is the linear approximation to f i near x = a = 100. 

The accuracy gets worse as x departs from 100. The tangent line leaves the curve. 
The arrow points to a good approximation at 102, and at 101 it would be even better. 
In this example Y is larger than y-the straight line is above the curve. The slope of 
the line stays constant, and the slope of the curve is decreasing. Such a curve will 
soon be called "concave downward," and its tangent lines are above it. 

Look again at x = 102, where the approximation is good. In Chapter 2, when we 
were approaching dyldx, we started with Ay/Ax: 

JiE-mslope z 102- 100 ' 

Now that is turned around! The slope is 1/20. What we don't know i s  J102: 

JZ w J-5+ (slope)(102 - 100). (4) 
You work with what you have. Earlier we didn't know dyldx, so we used (3). Now 
we are experts at dyldx, and we use (4). After computing y' = 1/20 once and for 



3.1 Linear Approximation 

all, the tangent line stays near & for every number near 100. When that nearby 
number is 100 + Ax, notice the error as the approximation is squared: 

The desired answer is 100 + Ax, and we are off by the last term involving AX)^. The 
whole point of linear approximation is to ignore every term after Ax. 

There is nothing magic about x = 100, except that it has a nice square root. Other 
points and other functions allow y x Y I would like to express this same idea in 
different symbols. Instead of starting from a and going to x, we start from x and go a 
distance Ax to x + Ax. The letters are different but the mathematics is identical. 

1 3A At any point x, and for any smooth betion y =fo, 

slope at x x f& + h)-Ax). (5)
I Ax 

EXAMPLE 1 An important linear approximation: (1 + x)" x 1 + nx for x near zero. 

EXAMPLE 2 A second important approximation: 1 / ( 1  + x)" x 1 -nx for x near zero. 
Discussion Those are really the same. By changing n to -n in Example 1 ,  it becomes 
Example 2. These are linear approximations using the slopes n and -n at x =0: 

( 1  + x)" z 1 + (slope at zero) times ( x  - 0)= 1 + nx. 

Here is the same thing with f (x )  = xn. The basepoint in equation (6)is now 1 or x: 

(1 +Ax)" x 1 + nAx ( x  + Ax)" z xn+ nxn-'Ax. 
Better than that, here are numbers. For n = 3 and -1 and 100, take Ax = .01: 

Actually that last number is no good. The 100th power is too much. Linear approxi- 
mation gives 1 + 100Ax = 2, but a calculator gives (l.O1)'OO= 2.7. ... This is close to 
e, the all-important number in Chapter 6. The binomial formula shows why the 
approximation failed: 

Linear approximation forgets the AX)^ term. For Ax = 1/100 that error is nearly 3. 
It is too big to overlook. The exact error is f"(c), where the Mean Value 
Theorem in Section 3.8 places c between x and x + Ax. You already see the point: 

y - Y is of order AX)^. Linear approximation, quadratic error. 

DIFFERENTIALS 

There is one more notation for this linear approximation. It has to be presented, 
because it is often used. The notation is suggestive and confusing at the same time- 
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it keeps the same symbols dx and dy that appear in the derivative. Earlier we took 
great pains to emphasize that dyldx is not an ordinary fraction.7 Until this paragraph, 
dx and dy have had no independent meaning. Now they become separate variables, 
like x and y but with their own names. These quantities dx and dy are called 
dzrerentials. 

The symbols dx and dy measure changes along the tangent line. They do for the 
approximation Y(x) exactly what Ax and Ay did for y(x). Thus dx and Ax both 
measure distance across. 

Figure 3.2 has Ax =dx. But the change in y does not equal the change in Y. One 
is Ay (exact for the function). The other is dy (exact for the tangent line). The 
differential dy is equal to AY, the change along the tangent line. Where Ay is the true 
change, dy is its linear approximation (dy/dx)dx. 

You often see dy written as f'(x)dx. 

Ay =change in y (along curve) 

Y 
dy =change in Y (along tangent) 

Ax- Fig. 3.2 The linear approximation to Ay is 

x = a  x + d x = x + A x  dy =f '(x) dx. 

EmMPLE 3 y = x2 has dyldx = 2x so dy = 2x dx. The table has basepoint x = 2. 
The prediction dy differs from the true Ay by exactly (Ax)2 = .0l and .04 and .09. 

The differential dy =f'(x)dx is consistent with the derivative dyldx =f'(x). We 
finally have dy = (dy/dx)dx, but this is not as obvious as it seems! It looks like 
cancellation-it is really a definition. Entirely new symbols could be used, but dx 
and dy have two advantages: They suggest small steps and they satisfy dy =f'(x)dx. 
Here are three examples and three rules: 

d(sin x) = cos x dx d(cf) = c df 

Science and engineering and virtually all applications of mathematics depend on 
linear approximation. The true function is "linearized,"using its slope v: 

Increasing the time by At increases the distance by x vAt 
Increasing the force by Af increases the deflection by x vAf 
Increasing the production by Ap increases its value by z vAp. 

+Fraction or not, it is absolutely forbidden to cancel the d's. 



3.1 Linear Approximation 

The goal of dynamics or statics or economics is to predict this multiplier v-the 
derivative that equals the slope of the tangent line. The multiplier gives a local 
prediction of the change in the function. The exact law is nonlinear-but Ohm's law 
and Hooke's law and Newton's law are linear approximations. 

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE 

The change Ay or Af can be measured in three ways. So can Ax: 

Absolute change f!f Ax 

df Relative change f(4 
Percentage change 

Relative change is often more realistic than absolute change. If we know the distance 
to the moon within three miles, that is more impressive than knowing our own height 
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles 
is much closer: 

3 miles 1 inch < or .001%< 1.4%. 
300,000 miles 70 inches 

EXAMPLE 4 The radius of the Earth is within 80 miles of r = 4000 miles. 
(a) Find the variation dV in the volume V = jnr3, using linear approximation. 
(b) Compute the relative variations dr/r and dV/V and AV/K 

Solution The job of calculus is to produce the derivative. After dV/dr = 4nr2, its 
work is done. The variation in volume is dV = 4n(4000)'(80) cubic miles. A 2% 
relative variation in r gives a 6% relative variation in V: 

Without calculus we need the exact volume at r = 4000 + 80 (also at r = 3920): 

One comment on dV = 4nr2dr. This is (area of sphere) times (change in radius). It is 
the volume of a thin shell around the sphere. The shell is added when the radius 
grows by dr. The exact AV/V is 3917312/640000%, but calculus just calls it 6%. 

3.4 EXERCISES 
Read-through questions In terms of x and Ax, linear approximation is 

f(x + Ax) x f (x )  + i . The error is of order (Ax)P orOn the graph, a linear approximation is given by the a ( x  -a)P with p = i . The differential d y  equals kline. At x = a, the equation for that line is Y =f(a) + b . times the differential r . Those movements are along the Near x = a = 10, the linear approximation to y = x3 is Y = 
-m line, where Ay is along the n .1000 + c . At x = 11 the exact value is ( 1  1)3= ' d . The 

approximation is Y = e . In this case Ay = f and Find the linear approximation Y to y =f (x)  near x = a: 
dy = g . If we know sin x, then to estimate sin(x + Ax) we 
add h . 1 f (x )  = x + x4, a = 0 2 A x )  = l / x ,  a = 2 
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3 f(x) = tan x, a = n/4 4 f(x) = sin x, a = n/2 

5 f(x) = x sin x, a = 2n 6 f(x) = sin2x, a = 0 

Compute 7-12 within .O1 by deciding on f(x), choosing the 
basepoint a, and evaluating f(a) + f'(a)(x - a). A calculator 
shows the error. 

7 (2.001)(j 8 sin(.02) 

9 cos(.O3) 10 ( 15.99)'14 

1 1  11.98 12 sin(3.14) 

Calculate the numerical error in these linear approximations 
and compare with +(Ax)2f"(x): 

13 (1.01)3z 1 + 3(.01) 14 cos(.Ol)z 1 + 0(.01) 

15 (sin .01)2 z 0 + 0(.01) 16 (1 .01)-~z 1 - 3(.Ol) 

Confirm the approximations 19-21 by computing f'(0): 

19 J K z  1 - f x  

20 I IJ= z I + +x2 (use f =  I 1JI-u. then put u = x2) 

21 J,."u'c+ ;$ (use f ( u ) = j = ,  then put u = r 2 )  

22 Write down the differentials d f  for f(x) = cos x and 
(x + l)/(x- 1) and (.x2 + I)'. 

In 23-27 find the linear change dV in the volume or d A  in the 
surface area. 

23 d V  if the sides of a cube change from 10 to 10.1 

24 d A  if the sides of a cube change from x to x + dx. 

25 d A  if the radius of a sphere changes by dr. 

26 d V  if a circular cylinder with r = 2 changes height from 3 
to 3.05 (recall V = nr2h). 

27 dV if a cylinder of height 3 changes from r = 2 to r = 1.9. 
Extra credit: What is d V  i f  r and h both change (dr  and dh)? 

28 In relativity the mass is m , / J w  at velocity u. By 
Problem 20 this is near mo + for small v. Show that 
the kinetic energy fmv2 and the change in mass satisfy 
Einstein's equation e = (Am)c2. 

29 Enter 1.1 on your calculator. Press the square root key 5 
times (slowly). What happens each time to the number after 
the decimal point? This is because JGz . 
30 In Problem 29 the numbers you see are less than 1.05, 
1 .025, . . . . The second derivative of Jlfris so the 
linear approximation is higher than the curve. 

31 Enter 0.9 on your calculator and press the square root 
key 4 times. Predict what will appear the fifth time and press 
again. You now have the root of 0.9. How many 
decimals agree with 1 -h ( 0 .I)? 

Our goal is to learn about f(x) from dfldx. We begin with two quick questions. 
If dfldx is positive, what does that say about f ?  If the slope is negative, how is that 
reflected in the function? Then the third question is the critical one: 

How do you identify a maximum or minimum? Normal answer: The slope is zero. 

This may be the most important application of calculus, to reach df1d.x = 0. 
Take the easy questions first. Suppose dfldx is positive for every x between a and b. 

All tangent lines slope upward. The function f(x) is increasing as  x goes from n to b. 

3B If dfldx > 0 then f(x) is increasing. If dfldx < 0 then f(x) is decreasing. 

To define increasing and decreasing, look at any two points x < X .  "Increasing" 
requires f(x) < f (X) .  "Decreasing" requires j(x)  > f (X) .  A positive slope does not mean 
a positive function. The function itself can be positive or negative. 

EXAMPLE 1 f(x) = x2 - 2x has slope 2x - 2. This slope is positive when x > 1 and 
negative when x < 1. The function increases after x = 1 and decreases before x = 1. 



3.2 Maximum and Minimum Problems 

Fig. 3.3 Slopes are - +. Slope is + - + - + so f is up-down-up-down-up. 

We say that without computing f ( x )  at any point! The parabola in Figure 3.3 goes 
down to its minimum at x = 1 and up again. 

EXAMPLE 2 x2 - 2x + 5 has the same slope. Its graph is shifted up by 5, a number 
that disappears in dfldx. All functions with slope 2x - 2 are parabolas x2  - 2x + C, 
shifted up or down according to C. Some parabolas cross the x axis (those crossings 
are solutions to f ( x )  = 0). Other parabolas stay above the axis. The solutions to 
x2 - 2x + 5 = 0 are complex numbers and we don't see them. The special parabola 
x2 - 2x + 1 = ( x  - 1)2grazes the axis at x = 1. It has a "double zero," where f (x )  = 
dfldx = 0. 

EXAMPLE 3 Suppose dfldx = (x- l ) ( x- 2)(x- 3)(x- 4). This slope is positive 
beyond x = 4 and up to x = 1 (dfldx = 24 at x = 0). And dfldx is positive again 
between 2 and 3. At x = 1, 2, 3,4,  this slope is zero and f ( x )  changes direction. 

Here f ( x )  is a fifth-degree polynomial, because f ' (x)is fourth-degree. The graph of 
f goes up-down-up-down-up. It might cross the x axis five times. I t  must cross 
at least once (like this one). When complex numbers are allowed, every fifth-degree 
polynomial has five roots. 

You may feel that "positive slope implies increasing function" is obvious-perhaps 
it is. But there is still something delicate. Starting from dfldx > 0 at every single point, 
we have to deduce f ( X )  >f ( x )  at pairs of points. That is a "local to global" question, 
to be handled by the Mean Value Theorem. It could also wait for the Fundamental 
Theorem of Calculus: The diflerence f ( X )  -f ( x )  equals the area under the graph of 
dfldx. That area is positive, so f ( X )  exceeds f (x) .  

MAXIMA AND MINIMA 

Which x makes f ( x )  as large as possible? Where is the smallest f(x)? Without calculus 
we are reduced to computing values of f ( x )  and comparing. With calculus, the infor- 
mation is in dfldx. 

Suppose the maximum or minimum is at a particular point x. It is possible that 
the graph has a corner-and no derivative. But ifdfldx exists, it must be zero. The 
tangent line is level. The parabolas in Figure 3.3 change from decreasing to increasing. 
The slope changes from negative to positive. At this crucial point the slope is zero. 
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3C Local Maximum or Minimum Suppose the maximum or minimum 
occurs at a point x inside an interval where f(x) and df[dx are defined. Then 
f '(x) = 0. 

The word "local" allows the possibility that in other intervals, f(x) goes higher or 
lower. We only look near x, and we use the definition of dfldx. 

Start with f(x + Ax) -f(x). If f(x) is the maximum, this difference is negative or 
zero. The step Ax can be forward or backward: 

if Ax > 0: f(x + AX)-f(x) - negative < 0 and in the limit -df 6 0.
Ax positive dx 

f(x+Ax)-f(x) negative df-if Ax < 0: -- 2 0 and in the limit -3 0.Ax negative dx 
Both arguments apply. Both conclusions dfldx <0 and dfldx 2 0 are correct. Thus 
dfldx = 0. 

Maybe Richard Feynman said it best. He showed his friends a plastic curve that 
was made in a special way - "no matter how you turn it, the tangent at the lowest 
point is horizontal." They checked it out. It was true. 

Surely You're Joking, Mr. Feynman! is a good book (but rough on mathematicians). 

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out 
are not the "ups" or "downs" but the "turns." Those are stationary points, where 
dfldx = 0. We see two maxima and two minima. None of them are absolute maxima 
or minima, because f(x) starts at - co and ends at + co. 
EXAMPLE 4 f(x) = 4x3 - 3x4 has slope 12x2 - 12x3. That derivative is zero when 
x2 equals x3, at the two points x = 0 and x = 1. To decide between minimum and 
maximum (local or absolute), the first step is to evaluate f(x) at these stationary points. 
We find f(0) = 0 and f(1) = 1. 

Now look at large x. The function goes down to - co in both directions. (You can 
mentally substitute x = 1000 and x = -1000). For large x, -3x4 dominates 4x3. 
Conclusion f = 1 is an absolute maximum. f = 0 is not a maximum or minimum 
(local or absolute). We have to recognize this exceptional possibility, that a curve (or 
a car) can pause for an instant (f '  = 0) and continue in the same direction. The reason 
is the "double zero" in 12x2 - 12x3, from its double factor x2. 

absolute max 

Y!h local max 

-
-3 rough point 

Fig. 3.4 The graphs of 4x3 - 3x4 and x + x-'. Check rough points and endpoints. 

2 



3.2 Maximum and Minimum Problems 

EXAMPLE 5 Define f(x) = x + x-I for x > 0. Its derivative 1 - 1/x2 is zero at x = 1. 
At that point f(1) = 2 is the minimum value. Every combination like f + 3 or 4 + 
is larger than fmin = 2. Figure 3.4 shows that the maximum of x + x- ' is + oo.? 
Important The maximum always occurs at a stationarypoint (where dfldx = 0) or a 
rough point (no derivative) or an endpoint of the domain. These are the three types 
of critical points. All maxima and minima occur at critical points! At every other 
point df/dx > 0 or df/dx < 0. Here is the procedure: 

1. Solve df/dx = 0 to find the stationary points f(x). 
2. Compute f(x) at every critical point-stationary point, rough point, endpoint. 
3. Take the maximum and minimum of those critical values of f(x). 

EXAMPLE 6 (Absolute value f(x) = 1x1) The minimum is zero at a rough point. The 
maximum is at an endpoint. There are no stationary points. 

The derivative of y = 1x1 is never zero. Figure 3.4 shows the maximum and mini- 
mum on the interval [- 3,2]. This is typical of piecewise linear functions. 

Question Could the minimum be zero when the function never reaches f(x) = O? 
Answer Yes, f(x) = 1/(1+ x ) ~  approaches but never reaches zero as x + oo. 

Remark 1 x + foo and f(x) -, + oo are avoided when f is continuous on a closed 
interval a < x < b. Then f(x) reaches its maximum and its minimum (Extreme Value 
Theorem). But x -, oo and f(x) + oo are too important to rule out. You test x + ca 
by considering large x. You recognize f(x) + oo by going above every finite value. 

Remark 2 Note the difference between critical points (specified by x) and critical 
values (specified by f(x)). The example x + x- had the minimum point x = 1 and the 
minimum value f(1) = 2. 

MAXIMUM AND MINIMUM IN APPLICATIONS 

To find a maximum or minimum, solve f'(x) = 0. The slope is zero at the top and 
bottom of the graph. The idea is clear-and then check rough points and endpoints. 
But to be honest, that is not where the problem starts. 

In a real 'application, the first step (often the hardest) is to choose the unknown 
and find the function. It is we ourselves who decide on x and f(x). The equation 
dfldx = 0 comes in the middle of the problem, not at the beginning. I will start on 
a new example, with a question instead of a function. 

EXAMPLE 7 Where should you get onto an expressway for minimum driving time, 
if the expressway speed is 60 mph and ordinary driving speed is 30 mph? 
I know this problem well-it comes up every morning. The Mass Pike goes to MIT 
and I have to join it somewhere. There is an entrance near Route 128 and another 
entrance further in. I used to take the second one, now I take the first. Mathematics 
should decide which is faster-some mornings I think they are maxima. 

Most models are simplified, to focus on the key idea. We will allow the expressway 
to be entered at any point x (Figure 3.5). Instead of two entrances (a discrete problem) 

?A good word is approach when f (x) + a.Infinity is not reached. But I still say "the maximum 
is XI." 



3 Applications of the Derivative 

we have a continuous choice (a calculus problem). The trip has two parts, at  speeds 
30 and 60: 

a distance ,/- up to the expressway, in 4 7 T 3 3 0  hours 

a distance b - x on the expressway, in (b - x)/60 hours 

1 1 
Problem Minimize f(x)= total time = -Jm-+ -(b - x) .

30 60 

We have the function f(x).  Now comes calculus. The first term uses the power rule: 
The derivative of u1I2 is ~ ~ ' ~ ~ d u / d x .a2+ x2 has duldx = 2x:Here u = 

1 1  
f ' ( x )= --(a2+ x2)- lI2(2x)--

1 
30 2 60 

To solve f '(x) = 0,  multiply by 60 and square both sides: 

(a2+ x2) -  'I2(2x) = 1 gives 2x = (a2+ x2)'I2 and 4x2= a2+ x2. (2) 

Thus 3x2= a2. This yields two candidates, x = a/& and x = - a/&. But a 
negative x would mean useless driving on the expressway. In fact f '  is not zero at 
x = - a/&. That false root entered when we squared 2x. 

driving timef (s) driving timef(.r) 
when h > u / f i  when h < u / f i  

h - .\-

t**(L - / f *** f * *  (\-/ 
f*** 

enter Pfreeway 
\-

* * y 
h h

'1/o 
Fig. 3.5 Join the freeway at x-minimize the driving time f (x). 

I notice something surprising. The stationary point x = a/& does not depend on 
b. The total time includes the constant b/60, which disappeared in dfldx. Somehow 
b must enter the answer, and this is a warning to go carefully. The minimum might 
occur at a rough point or an endpoint. Those are the other critical points off, and 
our drawing may not be realistic. Certainly we expect x 6 b, or we are entering the 
expressway beyond MIT. 

Con t i n~e  with calculus. Compute the driving time f(.u) for an entrance at 

The s uare root of 4a2/3 is 2a/&. We combined 2/30 - 1/60= 3/60 and divided 
by $. Is this stationary value f * a minimum? You must look also at endpoints: 

enter at s= 0 : travel time is ni30 + hi60 =f ' * *  

enter at x = h: travel time is J o L  + h2/30= f * * * .  



--- 

3.2 Maximum and Minimum Problems 

The comparison f * <f ** should be automatic. Entering at x = 0 was a candidate 
and calculus didn't choose it. The derivative is not zero at x = 0. It is not smart to 
go perpendicular to the expressway. 

The second comparison has x = b. We drive directly to MIT at speed 30. This 
option has to be taken seriously. In fact it is optimal when b is small or a is large. 

This choice x = b can arise mathematically in two ways. If all entrances are between 
0 and b, then b is an endpoint. If we can enter beyond MIT, then b is a rough point. 
The graph in Figure 3 . 5 ~  has a corner at x = b, where the derivative jumps. The 
reason is that distance on the expressway is the absolute value Ib -XI-never negative. 

Either way x = b is a critical point. The optimal x is the smaller of a/& and b. 

if a/& <b: stationary point wins, enter at x = a l f i ,  total time f * 
if a / f i  2 b: no stationary point, drive directly to MIT, time f *** 

The heart of this subject is in "word problems." All the calculus is in a few lines, 
computingf '  and solving f '(x) = 0. The formulation took longer. Step 1 usually does: 

1. Express the quantity to be minimized or maximized as a function f(x). 
The variable x has to be selected. 

2. Compute f '(x), solve f '(x) = 0, check critical points for fmin and fmax. 
A picture of the problem (and the graph of f(x)) makes all the difference. 

EXAMPLE 7 (continued) Choose x as an angle instead of a distance. Figure 3.6 
shows the triangle with angle x and side a. The driving distance to the expressway is 
a sec x. The distance on the expressway is b - a tan x. Dividing by the speeds 30 and 
60, the driving time has a nice form: 

a sec x + b - a tan x 
f(x) = total time = -

30 60 (3) 

The derivatives of sec x and tan x go into dfldx: 
a

df - a sec x tan x --sec2x.dx 30 60 
Now set dfldx = 0, divide by a, and multiply by 30 cos2x: 

sin x = +. (5 )  
This answer is beautiful. The angle x is 30°! That optimal angle (n/6 radians) has 
sin x = i.The triangle with side a and hy otenuse a/& is a 30-60-90 right triangle. 

I don't know whether you prefer JT or trigonometry. The minimum is 
exactly as before-either at 30" or going directly to MIT. 

h - ci tan .t- b energyi 
energy -ntl 

Fig. 3.6 (a) Driving at angle x. (b) Energies of spring and mass. (c) Profit = income -cost. 
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EXAMPLE 8 In mechanics, nature chooses minimum energy. A spring is pulled down 
by a mass, the energy is f(x), and dfldx = 0 gives equilibrium. It is a philosophical 
question why so many laws of physics involve minimum energy or minimum time- 
which makes the mathematics easy. 

The energy has two terms-for the spring and the mass. The spring energy is 
+kx2-positive in stretching (x > 0 is downward) and also positive in compression 
(x < 0). The potential energy of the mass is taken as -mx-decreasing as the mass 
goes down. The balance is at the minimum of f(x) = 4 kx2 -mx. 

I apologize for giving you such a small problem, but it makes a crucial point. 
When f(x) is quadratic, the equilibrium equation dfldx = 0 is linear. 

Graphically, x = m/k is at the bottom of the parabola. Physically, kx = m is a balance 
of forces-the spring force against the weight. Hooke's law for the spring force is 
elastic constant k times displacement x. 

EXAMPLE 9 Derivative of cost = marginal cost (our first management example). 

The paper to print x copies of this book might cost C = 1000 + 3x dollars. The 
derivative is dCldx = 3. This is the marginal cost of paper for each additional book. 
If x increases by one book, the cost C increases by $3. The marginal cost is like the 
velocity and the total cost is like the distance. 

Marginal cost is in dollars per book. Total cost is in dollars. On the plus side, the 
income is I(x) and the marginal income is dlldx. To apply calculus, we overlook the 
restriction to whole numbers. 

Suppose the number of books increases by dx.? The cost goes up by (dCldx) dx. 
The income goes up by (dlldx) dx. If we skip all other costs, then profit P(x) = 
income I(x)- cost C(x). In most cases P increases to a maximum and falls back. 

At the high point on the profit curve, the marginal profit is zero: 

Profit is maximized when marginal income I '  equals marginal cost C' .  

This basic rule of economics comes directly from calculus, and we give an example: 

C(x)= cost of x advertisements = 900 + 400x - x2 
setup cost 900, print cost 400x, volume savings x2 

I(x)= income due to x advertisements = 600x - 6x2 
sales 600 per advertisement, subtract 6x2 for diminishing returns 

optimal decision dCldx = dI/dx or 400 - 2x = 600 - 12x or x = 20 

profit = income - cost = 9600 - 8500 = 1 100. 

The next section shows how to verify that this profit is a maximum not a minimum. 
The first exercises ask you to solve dfldx = 0. Later exercises also look for f(x). 

+Maybe dx is a differential calculus book. I apologize for that. 
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3.2 EXERCISES 
Read-through questions 
If dfldx >0 in an interval then f(x) is a . If a maximum 
or minimum occurs at x then fl(x) = b . Points where 
f '(x) =0 are called c points. The function flx) = 3x2-x 
has a (minimum)(maximum) at x = d .A stationary point 
that is not a maximum or minimum occurs forflx) = e . 

Extreme values can also occur where f is not defined 
or at the g of the domain. The minima of 1x1 and 5x for 
- 2 < x < ? a r e a t x =  h a n d x =  1 ,eventhough 
dfldx is not zero. x* is an absolute I whenflx*) aflx) 
for all x. A k minimum occurs when f(x*) <fix) for 
all x near x*. 

The minimum of +ax2 -bx is I at x = m . 

Find the stationary points and rough points and endpoints. 
Decide whether each point is a local or absolute minimum or 
maximum. 

1 f(x)=x2+4x+5, -m < x < m  
2 f(x)=x3-12x, - m < x < m  
3 f(x)=x2+3, - 1 < x < 4  

4 f(x) =x2+(2/x), 1 <x <4 
5 f ( x ) = ( x - ~ ~ ) ~ ,-1 < x <  1 

6 f(x) = l/(x -x2), 0 <x < 1 

7 f(x)=3x4+8x3-18x2, -m < x < m  
8 f(x)= {x2 -4x for O <  x < 1, x2 -4 for 1 < x  <2) 

9 f ( x ) = m + , / G ,  1 < x < 9  
10 f(x) =x +sin x, o <x <271 
11 f(x) =x71 - x ) ~ ,  -00 c x < m 

12 f(x)=x/(l +x), O<x < 100 
13 f(x) =distance from x 3 0 to nearest whole number 
14 f(x) =distance from x 3 0 to nearest prime number 

15 f(x)=Ix+lI+I~-11, - 3 < x < 2  
16 f(x)=xJm,O < X <  1 
17f(x)=x1I2-x3I2, O<x < 4  
18 f(x) =sin x +cos x, 0 <x <2n 

20 f(8) =cos28 sin 8, -7 <8 <71 

In applied problems, choose metric units if you prefer. 
23 The airlines accept a box if length +width +height = 
1+w +h < 62" or 158 cm. If h is fixed show that the maxi- 
mum volume (62-w-h)wh is V= h(31- ih)2. Choose h to 
maximize K The box with greatest volume is a 

24 If a patient's pulse measures 70, then 80, then 120, what 
least squares value minimizes (x -70)2+(x - + 
(x - 120)2? If the patient got nervous, assign 120 a lower 
weight and minimize (x -70)2+(x - +&c -120)~. 
25 At speed v, a truck uses av +(blu) gallons of fuel per mile. 
How many miles per gallon at speed v? Minimize .the fuel 
consumption. Maximize the number of miles per gallon. 
26 A limousine gets (120 -2v)/5 miles per gallon. The 
chauffeur costs $10/hour, the gas costs $l/gallon. 

(a) Find the cost per mile at speed v. 
(b) Find the cheapest driving speed. 

27 You should shoot a basketball at the angle 8 requiring 
minimum speed. Avoid line drives and rainbows. Shooting 
from (0,O) with the basket at (a, b), minimize A@)= 
l/(a sin 8 cos 8 -b cos2 8). 

(a) If b = O  you are level with the basket. Show that 
8 =45" is best (Jabbar sky hook). 
(b) Reduce df/d8 =0 to tan 28 = -a/b. Solve when a =b. 
(c) Estimate the best angle for a free throw. 

The same angle allows the largest margin of error (Sports 
Science by Peter Brancazio). Section 12.2 gives the flight path. 

28 On the longest and shortest days, in June and December, 
why does the length of day change the least? 

29 Find the shortest Y connecting P, Q, and B in the figure. 
Originally B was a birdfeeder. The length of Y is L(x) = 
(b -x) + 2 J Z i 7 .  

(a) Choose x to minimize L (not allowing x >b). 
(b)Show that the center of the Y has 120" angles. 
(c) The best Y becomes a V when a/b = 

h - s  

21 f(8) =4 sin 8 -3 cos 8, 0 <8 <271 30 If the distance function is f(t) =(1 + 3t)/(l + 3t2), when 
does the forward motion end? How far have you traveled? 

22 f(x)=(x2+1 for x<1 ,x2 -4x+5fo rx> l ) .  Extra credit: Graph At) and dfldt. 
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In 31-34, we make and sell x pizzas. The income is R(x) = 
ax + bx2 and the cost is C(x) = c + dx + ex2. 

31 The profit is n(x)  = . The average profit per 
pizza is = . The marginal profit per additional pizza 
is dnldx  = . We should maximize the 
(profit) (average profit) (marginal profit). 

32 We receive R(x) = ax + bx2 when the price per pizza is 
P(X)=-. In reverse: When the price is p we sell x = 

pizzas (a function of p). We expect b < 0 because 

33 Find x to maximize the profit n(x). At that x the marginal 
profit is d n/dx = 

34 Figure B shows R(x) = 3x -x2 and C,(x) = 1 + x2 and 
C2(x)= 2 + x2. With cost C , ,  which sales x makes a profit? 
Which x makes the most profit? With higher fixed cost in C2, 
the best plan is . 

The cookie box and popcorn box were created by Kay Dundas 
from a 12" x 12" square. A box with no top is a calculus classic. 

35 Choose x to find the maximum volume of the cookie box. 

36 Choose x to maximize the volume of the popcorn box. 

37 A high-class chocolate box adds a strip of width x down 
across the front of the cookie box. Find the new volume V(x) 
and the x that maximizes it. Extra credit: Show that Vma,is 
reduced by more than 20%. 

38 For a box with no top, cut four squares of side x from the 
corners of the 12" square. Fold up the sides so the height is 
x. Maximize the volume. 

Geometry provides many problems, more applied than they 
seem. 

39 A wire four feet long is cut in two pieces. One piece forms 
a circle of radius r, the other forms a square of side x. Choose 
r to minimize the sum of their areas. Then choose r to 
maximize. 

40 A fixed wall makes one side of a rectangle. We have 200 
feet of fence for the other three sides. Maximize the area A in 
4 steps: 

1 Draw a picture of the situation. 
2 Select one unknown quantity as x (but not A!). 
3 Find all other quantities in terms of x. 
4 Solve dA/dx =0 and check endpoints. 

41 With no fixed wall, the sides of the rectangle satisfy 
2x + 2y =200. Maximize the area. Compare with the area of 
a circle using the same fencing. 

42 Add 200 meters of fence to an existing straight 100-meter 
fence, to make a rectangle of maximum area (invented by 
Professor Klee). 

43 How large a rectangle fits into the triangle with sides 
x =0, y = 0, and x/4 + y/6 = I? Find the point on this third 
side that maximizes the area xy. 

44 The largest rectangle in Problem 43 may not sit straight 
up. Put one side along x/4 + y/6 = 1 and maximize the area. 

45 The distance around the rectangle in Problem 43 is 
P = 2x + 2y. Substitute for y to find P(x). Which rectangle 
has Pma,= 12? 

46 Find the right circular cylinder of largest volume that fits 
in a sphere of radius 1. 

47 How large a cylinder fits in a cone that has base radius R 
and height H? For the cylinder, choose r and h on the sloping 
surface r/R + h/H = 1 to maximize the volume V = nr2h. 

48 The cylinder in Problem 47 has side area A =2nrh. 
Maximize A instead of V. 

49 Including top and bottom, the cylinder has area 

Maximize A when H > R. Maximize A when R > H. 

*50 A wall 8 feet high is 1 foot from a house. Find the length 
L of the shortest ladder over the wall to the house. Draw a 
triangle with height y, base 1 + x, and hypotenuse L. 

51 Find the closed cylinder of volume V = nr2h = 16n that 
has the least surface area. 

52 Draw a kite that has a triangle with sides 1, 1, 2x next to 
a triangle with sides 2x, 2, 2. Find the area A and the x that 
maximizes it. Hint: In dA/dx simplify Jm-x 2 / , / m  

In 53-56, x and y are nonnegative numbers with x + y = 10. 
Maximize and minimize: 

53 xy 54 x2 + y2 55 y-(llx) 56 sin x sin y 

57 Find the total distance f(x) from A to X to C. Show that 
dfldx =0 leads to sin a = sin c. Light reflects at an equal angle 
to minimize travel time. 
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X x S - X  

reflection 

58 Fermat's principle says that light travels from A to B on 
the quickest path. Its velocity above the x axis is v and below 
the x axis is w. 

(a) Find the time T(x) from A to X to B. On AX, time = 
distancelvelocity = J ~ / v .  
(b) Find the equation for the minimizing x. 
(c) Deduce Jnell's law (sin a)/v =(sin b)/w. 

"Closest point problems" are models for many applications. 
59 Where is the parabola y =x2 closest to x =0, y =2? 
60 Where is the line y = 5 -2x closest to (0, O)? 
61 What point on y =  -x2 is closest to what point on 
y = 5 -2x? At the nearest points, the graphs have the same 
slope. Sketch $he graphs. 
62 Where is y =x2 closest to (0, f)? Minimizing 
x2+(y -f)2+ y +(y -$)2 gives y <0. What went wrong? 
63 Draw the l b  y =mx passing near (2, 3), (1, I), and (- 1, 1). 
For a least squares fit, minimize 

64 A triangle has corners (-1, l), (x, x2), and (3, 9) on the 
parabola y =x2. Find its maximum area for x between -1 
and 3. Hint: The distance from (X, Y) to the line y =mx + b 
is IY -mX -bl/JW. 
65 Submarines are located at (2,O) and (1, 1). Choose the 
slope m so the line y =mx goes between the submarines but 
stays as far as possible from the nearest one. 

Problems 66-72 go back to the theory. 
66 To find where the graph of fix) has greatest slope, solve 

. For y = 1/(1+x2) this point is . 
67 When the difference between f(x) and g(x) is smallest, their 
slopes are . Show this point on the graphs of 
f = 2 + x 2  andg=2x-x2. 
68 Suppose y is fixed. The minimum of x2 + xy -y2 (a func- 
tion of x) is m(y) = . Find the maximum of m(y). 

Now x is fixed. The maximum of x2 + xy -y2 (a function 
of y) is M(x) = . Find the minimum of M(x). 
69 For each m the minimum value of f(x) -mx occurs at x = 
m. What is f(x)? 
70 y =x + 2x2 sin(l/x) has slope 1 at x =0. But show that y 
is not increasing on an interval around x =0, by finding points 
where dyldx = 1-2 cos(l/x) + 4x sin(1lx) is negative. 

71 True orfalse, with a reason: Between two local minima of 
a smooth function f(x) there is a local maximum. 
72 Create a function y(x) that has its maximum at a rough 
point and its minimum at an endpoint. 
73 Draw a circular pool with a lifeguard on one side and 
a drowner on the opposite side. The lifeguard swims with 
velocity v and runs around the rest of the pool with velocity 
w = lOv. If the swim direction is at angle 8 with the direct 
line, choose 8 to minimize and maximize the arrival time. 

13.3 Second Derivatives: Bending and Acceleration 

When f '(x) is positive, f(x) is increasing. When dyldx is negative, y(x) is decreasing. 
That is clear, but what about the second derivative? From looking at the curve, 
can you decide the sign off "(x) or d2y/dx2? The answer is yes and the key is in the 
bending. 

A straight line doesn't bend. The slope of y = mx + b is m (a constant). The second 
derivative is zero. We have to go to curves, to see a changing slope. Changes in the 
herivative show up in fv(x): 

f = x2 has f'= 2x and f "  = 2 (this parabola bends up) 

y = sin x has dyldx = cos x and d 'y/dx2 = - sin x (the sine bends down) 
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The slope 2x gets larger even when the parabola is falling. The sign off or f '  is not 
revealed by f ". The second derivative tells about change in slope. 

A function with f "(x)> 0 is concave up. It bends upward as the slope increases. It 
is also called convex. A function with decreasing slope-this means f "(x)< 0-is 
concave down. Note how cos x and 1 + cos x and even 1+ $x + cos x change from 
concave down to concave up at x = 7~12. At that point f "  = - cos x changes from 
negative to positive. The extra 1 + $x tilts the graph but the bending is the same. 

tangent below 

Fig. 3.7 Increasing slope =concave up (f" >0). Concave down is f" <0. Inflection point f" = 0. 

Here is another way to see the sign off ". Watch the tangent lines. When the curve 
is concave up, the tangent stays below it. A linear approximation is too low. This 
section computes a quadratic approximation-which includes the term with f "  > 0. 
When the curve bends down (f" < O), the opposite happens-the tangent lines are 
above the curve. The linear approximation is too high, and f "  lowers it. 

In physical motion, f "(t) is the acceleration-in units of di~tance/(time)~. Accelera-
tion is rate of change of velocity. The oscillation sin 2t has v = 2 cos 2t (maximum 
speed 2) and a = - 4 sin 2t (maximum acceleration 4). 

An increasing population means f '  > 0. An increasing growth rate means f "  > 0. 
Those are different. The rate can slow down while the growth continues. 

MAXIMUM VS. MINIMUM 

Remember that f '(x) = 0 locates a stationary point. That may be a minimum or a 
maximum. The second derivative decides! Instead of computing f(x) at many points, 
we compute f "(x) at one point-the stationary point. It is a minimum iff "(x) > 0. 

3D When f '(x) = 0 and f "(x) > 0, there is a local minimum at x. 
When f '(x) = 0 and f"(x) < 0,there is a local maximrcm at x. 

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The 
slope has changed from negative to positive. The graph bends upward and f "(x)> 0. 

At a maximum the slope drops from positive to negative. In the exceptional case, 
when f '(x) = 0 and also f "(x)= 0, anything can happen. An example is x3, which 
pauses at x = 0 and continues up (its slope is 3x2 2 0). However x4 pauses and goes 
down (with a very flat graph). 

We emphasize that the information from fr(x) and f "(x) is only "local ." To be 
certain of an absolute minimum or maximum, we need information over the whole 
domain. 
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EXAMPLE I f(x) = x3 - x2 has f '(x) = 3x2- 2x and f "(x)= 6x - 2. 

To find the maximum and/or minimum, solve 3x2 - 2x = 0. The stationary points 
are x = 0 and x = f . At those points we need the second derivative. It is f "(0)= - 2 
(local maximum) and f "(4)= + 2 (local minimum). 

Between the maximum and minimum is the inflection point. That is where 
f "(x) = 0. The curve changes from concave down to concave up. This example has 
f "(x) = 6x - 2, so the inflection point is at x = 4. 

INFLECTION POINTS 

In mathematics it is a special event when a function passes through zero. When the 
function isf, its graph crosses the axis. When the function is f', the tangent line is 
horizontal. When f "  goes through zero, we have an injection point. 

The direction of bending changes at an inflection point. Your eye picks that out in 
a graph. For an instant the graph is straight (straight lines have f "  = 0). It is easy to 
see crossing points and stationary points and inflection points. Very few people can 
recognize where f "'= 0 or f '" = 0. I am not sure if those points have names. 

There is a genuine maximum or minimum when f '(x) changes sign. Similarly, there 
is a genuine inflection point when f "(x) changes sign. The graph is concave down on 
one side of an inflection point and concave up on the other side.? The tangents are 
above the curve on one side and below it on the other side. At an inflection point, 
the tangent line crosses the curve (Figure 3.7b). 

Notice that a parabola y = ax2+ bx + c has no inflection points: y" is constant. A 
cubic curve has one inflection point, because f "  is linear. A fourth-degree curve might 
or might not have inflection points-the quadratic fM(x) might or might not cross 
the axis. 

EXAMPLE 2 x4 - 2x2 is W-shaped, 4x3 -4x has two bumps, 12x2 - 4 is U-shaped. 
The table shows the signs at the important values of x: 

x -Jz -1  - l i d  o I / 1 f i  

Between zeros of f(x) come zeros off '(x) (stationary points). Between zeros off '(x) 
come zeros off "(x) (inflection points). In this example f(x) has a double zero at the 
origin, so a single zero off' is caught there. It is a local maximum, since f "(0) < 0. 

Inflection points are important-not just for mathematics. We know the world 
population will keep rising. We don't know if the rate of growth will slow down. 
Remember: The rate of growth stops growing at the inflection point. Here is the 1990 
report of the UN Population Fund. 

The next ten years will decide whether the world population trebles or merely 
doubles before it finally stops growing. This may decide the future of the earth as 
a habitation for humans. The population, now 5.3 billion, is increasing by a quarter 
of a million every day. Between 90 and 100 million people will be added every year 

?That rules out f (x) = x4, which has f"= 12x2 > 0 on both sides of zero. Its tangent line is 
the x axis. The line stays below the graph-so no inflection point. 
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during the 1990s; a billion people-a whole China-over the decade. The fastest 
growth will come in the poorest countries. 

A few years ago it seemed as if the rate of population growth was slowing? 
everywhere except in Africa and parts of South Asia. The world's population 
seemed set to stabilize around 10.2 billion towards the end of the next century. 

Today, the situation looks less promising. The world has overshot the marker 
points of the 1984 "most likely" medium projection. It is now on course for an 
eventual total that will be closer to 11 billion than to 10 billion. 

If fertility reductions continue to be slower than projected, the mark could be 
missed again. In that case the world could be headed towards a total of up to 14 
billion people. 

Starting with a census, the UN follows each age group in each country. They 
estimate the death rate and fertility rate-the medium estimates are published. This 
report is saying that we are not on track with the estimate. 

Section 6.5 will come back to population, with an equation that predicts 10 billion. 
It assumes we are now at the inflection point. But China's second census just started 
on July 1 ,  1990. When it's finished we will know if the inflection point is still ahead. 

You now understand the meaning off "(x).Its sign gives the direction of bending- 
the change in the slope. The rest of this section computes how much the curve bends- 
using the size off" and not just its sign. We find quadratic approximations based on 
f l ' (x). In some courses they are optional-the main points are highlighted. 

CENTERED DIFFERENCES AND SECOND DIFFERENCES 

Calculus begins with average velocities, computed on either side of x: 

We never mentioned it, but a better approximation to J"(x)comes from averaging 
those two averages. This produces a centered difference, which is based on x + Ax 
and x - Ax.  It divides by 2 Ax:  

1 .f(s+ A x )  -f ( x )  + Y ) -f - A )1 f(-Y+ A X )-f'(x - A x )  
'f f ( x )z -2 [ . (2)A x  Ax = 2 A x  

We claim this is better. The test is to try it on powers of x.  
For f ( x )  = x these ratios all give f '  = 1 (exactly). For f ( x )= x2 ,  only the centered 

difference correctly gives f '  = 2x.  The one-sided ratio gave 2.x + Ax (in Chapter 1 it 
was 2t + h). It is only "first-order accurate." But centering leaves no error. We are 
averaging 2x + Ax with 2x - Ax.  Thus the centered difference is "second-order 
accurate." 

I ask now: What ratio converges to the second derivative? One answer is to take 
differences of the first derivative. Certainly Af ' lAx approaches f ". But we want a 
ratio involving f itself. A natural idea is to take diflerences of diferences, which 
brings us to "second differences": 

f ( x + A x ) - f ( x )  - f ( 4 - f ( x - A x )  
A x  

Ax 
A x  --f(x + Ax) - 2j'(x) +.f(x - A.Y) . d 2f 

d s 2  
(3)  

tThe United Nations watches the second derivative! 
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On the top, the difference of the difference is A(Af)= A2f. It corresponds to d2f.
On the bottom, (Ax)2 corresponds to dx2 . This explains the way we place the 2's in
d 2f/dx 2. To say it differently: dx is squared, dfis not squared-as in distance/(time) 2.

Note that (Ax)2 becomes much smaller than Ax. If we divide Af by (Ax)2, the ratio
blows up. It is the extra cancellation in the second difference A2fthat allows the limit
to exist. That limit is f"(x).
Application The great majority of differential equations can't be solved exactly.
A typical case is f"(x) = - sinf(x) (the pendulum equation). To compute a solution,
I would replace f"(x) by the second difference in equation (3). Approximations at
points spaced by Ax are a very large part of scientific computing.

To test the accuracy of these differences, here is an experiment on f(x)=
sin x + cos x. The table shows the errors at x = 0 from formulas (1), (2), (3):
step length Ax one-sided errors centered errors second difference errors

1/4 .1347 .0104 - .0052
1/8 .0650 .0026 - .0013
1/16 .0319 .0007 - .0003
1/32 .0158 .0002 - .0001

The one-sided errors are cut in half when Ax is cut in half. The other columns
decrease like (Ax)2. Each reduction divides those errors by 4. The errors from one-
sided differences are O(Ax) and the errors from centered differences are O(Ax) 2.
The "big 0" notation When the errors are of order A x, we write E = O(Ax). This
means that E < CAx for some constant C. We don't compute C-in fact we don't
want to deal with it. The statement "one-sided errors are Oh of delta x" captures
what is important. The main point of the other columns is E = O(Ax) 2 .

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION

The second derivative gives a tremendous improvement over linear approximation
f(a) +f'(a)(x - a). A tangent line starts out close to the curve, but the line has no
way to bend. After a while it overshoots or undershoots the true function (see
Figure 3.8). That is especially clear for the model f(x) = x2, when the tangent is the
x axis and the parabola curves upward.

You can almost guess the term with bending. It should involve f", and also (Ax) 2.
It might be exactly f"(x) times (Ax) 2 but it is not. The model function x2 hasf" = 2.
There must be a factor 1 to cancel that 2:

At the basepoint this is f(a) =f(a). The derivatives also agree at x = a. Furthermore
the second derivatives agree. On both sides of (4), the second derivative at x = a is
f"(a).

The quadratic approximation bends with the function. It is not the absolutely
final word, because there is a cubic term -f"'(a)(x - a)3 and a fourth-degree term
N f""(a)(x - a)4 and so on. The whole infinite sum is a "Taylor series." Equation (4)
carries that series through the quadratic term-which for practical purposes gives a
terrific approximation. You will see that in numerical experiments.
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Two things to mention. First, equation (4)shows why f" > 0 brings the curve above 
the tangent line. The linear part gives the line, while the quadratic part is positive 
and bends upward. Second, equation (4)  comes from (2)  and (3). Where one-sided 
differences give f (x  + A x )  x f (x)  +f '(x)Ax, centered differences give the quadratic: 

from (2): f(x + Ax)  a f(x -Ax)  + 2 f f ( x )  Ax 
from (3): f ( x + A x )  a 2f(x)-f(x-A~)+f"(x)(Ax)~. 

Add and divide by 2. The result is f(x + Ax)  xf(x)  + r ( x ) A x  +4f AX)^. This is 
correct through (Ax)2and misses by (Ax)', as examples show: 

EXAMPLE4 ( 1  + x)" x 1 + n x + f n ( n -  l )x2 .  
The first derivative at x = 0 is n. The second derivative is n(n- 1). The cubic term 
would be $n(n- l ) (n- 2)x3.We are just producing the binomial expansion! 1 +.Y 

can't 
bend 1 

EXAMPLE 5 -a 1 + x + x2 = start of a geometric series. 1 - x  
I 

-.5 .5 1 / ( 1  - x)  has derivative 1 / ( 1  - x ) ~ .Its second derivative is 2/(1 - x)'. At x = 0 those 
I + -r+ x2 equal 1,1,2. The factor f cancels the 2, which leaves 1,1,1. This explains 1 + x + x2.  

1 The next terms are x3 and x4.  The whole series is 1 / ( 1  - x)  = 1 + x + x2 + x3 + .-..near -I -.Y 
Numerical experiment i/Ji% a 1 - i x  + ax2 is tested for accuracy. Dividing xFig. 3.8 by 2 almost divides the error by 8. If we only keep the linear part 1 - fx, the error 
is only divided by 4. Here are the errors at x = a, &, and A: 

linear approximation (error - - x 2  : .0194 .0053 .00143  
- 5

quadratic approximation error = K ~ 3 ) :-00401 - .OOOSS - .OOOO? 

3.3 EXERCISES 
Read-through questions 1 A graph that is concave upward is inaccurately said to 

The direction of bending is given by the sign of a . If the "hold water." Sketch a graph with f "(x)>0 that would not 
hold water. second derivative is b in an interval, the function is con- 

cave up (or convex). The graph bends c . The tangent 2 Find a function that is concave down for x <0 and con- 
lines are d the graph. Iff "(x) c 0 then the graph is con- cave up for 0 <x < 1 and concave down for x > 1. 
cave e ,and the slope is f . 3 Can a function be always concave down and never cross 

At a point where f '(x) =0 and f "(x)>0, the function has a zero? Can it be always concave down and positive? Explain. 
s .At a point where h ,the function has a maximum. 4 Find a function with f"(2) =0 and no other inflection A point where f "(x) =0 is an i point, provided f "  point.changes sign. The tangent line i the graph. 
The centered approximation to fl(x) is 6 k ]/2Ax. The True or false, when f(x) is a 9th degree polynomial with 

3-point approximation to f "(x) is 6 1 ]/(Ax)*. The second- f '(1) =0 and f '(3) =0. Give (or draw) a reason. 
order approximation to f(x + Ax) is f(x) +f '(x)Ax + m . 5 f(x) =0 somewhere between x = 1 and x = 3.without that extra term this is just the n approximation. 
With that term the error is O( 0 ). 6 f "(x)=0 somewhere between x = 1 and x = 3. 
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7 There is no absolute maximum at x = 3. 
8 There are seven points of inflection. 
9 If Ax) has nine zeros, it has seven inflection points. 

10 If Ax) has seven inflection points, it has nine zeros. 

In 11-16 decide which stationary points are maxima or 
minima. 

11 f(x)=x2-6x 12 f(x)=x3 -6x2 

13 f(x) =x4 -6x3 14 f(x) =xl' -6xl0 

15 f(x) =sin x -cos x 16 Ax) =x + sin 2x 

Locate the inflection points and the regions where f(x) is con-
cave up or down. 

17 f(x)=x+x2-x3 18 f(x) =sin x + tan x 
19 f(x) =(X-2 )2 (~-4)2 20 f(x) =sin x + (sin x ) ~  
21 If f(x) is an even function, the centered difference 
[f(Ax) -f(-Ax)]l2Ax exactly equals f '(0) =0. Why? 

22 If f(x) is an odd function, the second difference 
AX) -2 f(0) +f(- Ax)~l(Ax)~ exactly equals f "(0)=0. Why? 

Write down the quadraticf(0) +f '(0)x +4f "(0)x2in 23-26. 

23 f(x) =cos x + sin x 24 f(x) = tan x 
25 f(x) =(sin x)/x 26 f(x) = 1+x + x2 
In 26, find f(1) +f '(l)(x - 1)+4f "(l)(x- 1)2 around a = 1. 
27 Find A and B in JG'x 1+ Ax +BX'. 

28 Find A and B in 1/(1- x ) ~  x 1+Ax + B X ~ .  
29 Substitute the quadratic approximation into 
[fix +Ax) -f(x)]/Ax, to estimate the error in this one-sided 
approximation to f '(x). 
30 What is the quadratic approximation at x =0 to f(-Ax)? 
31 Substitute for f(x +Ax) and f(x -Ax) in the centered 
approximation [f(x +Ax) -f(x -Ax)]/2Ax, to get 
f'(x) +error. Find the Ax and (Ax)2 terms in this error. Test 
on f(x)=x3 at x=0.  
32 Guess a third-order approximation f(Ax) x f(0) + 

+f '(0)Ax +4~"(O)(AX)~ . Test it on f(x) =x3. 

Construct a table as in the text, showing the actual errors at 
x =0 in one-sided differences, centered differences, second 
differences, and quadratic approximations. By hand take two 
values of Ax, by calculator take three, by computer take four. 

35 f(x) =x2+sin x 
36 Example 5 was 1/(1- x) x 1 +x +x2. What is the error 
at x =0.1? What is the error at x =2? 
37 Substitute x = .Ol and x = -0.1 in the geometric series 
1/(1- x) = 1+ x +x2+ - - - to find 11.99 and 111.1-first to 
four decimals and then to all decimals. 
38 Compute cos lo  by equation (4) with a =0. OK to check 
on a calculator. Also compute cos 1. Why so far off! 
39 Why is sin x =x not only a linear approximation but also 
a quadratic approximation? x =0 is an point. 

40 Ifflx) is an even function, find its quadratic approximation 
at x =0. What is the equation of the tangent line? 
41 For f(x) =x + x2+x3, what is the centered difference 
[f(3) -f(1)]/2, and what is the true slope f '(2)? 
42 For f(x) =x +x2 + x3, what is the second difference 
[f(3) -2 f(2) +f(1)]/12, and what is the exact f "(2)? 
43 The error in f(a) +f '(a)(x -a) is approximately
4f"(a)(x -a)2. This error is positive when the function is 

. Then the tangent line is the curve. 

44 Draw a piecewise linear y(x) that is concave up. Define 
"concave up" without using the test d 2y /d~2  2 0. If derivatives 
don't exist, a new definition is needed. 
45 What do these sentences say about f or f '  or f "  or f "'? 

1. The population is growing more slowly. 
2. The plane is landing smoothly. 
3. The economy is picking up speed. 
4. The tax rate is constant. 
5. A bike accelerates faster but a car goes faster. 
6. Stock prices have peaked. 
7. The rate of acceleration is slowing down. 
8. This course is going downhill. 

46 (Recommended) Draw a curve that goes up-down-up. 
Below it draw its derivative. Then draw its second derivative. 
Mark the same points on all curves-the maximum, minimum, 
and inflection points of the first curve. 
47 Repeat Problem 46 on a printout showing y(x)= 
x3-4x2+ x + 2 and dyldx and d2yldx2 on the same graph. 
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13.4 Graphs 1 
Reading a graph is like appreciating a painting. Everything is there, but you have to 
know what to look for. One way to learn is by sketching graphs yourself, and in the 
past that was almost the only way. Now it is obsolete to spend weeks drawing 
curves-a computer or graphing calculator does it faster and better. That doesn't 
remove the need to appreciate a graph (or a painting), since a curve displays a 
tremendous amount of information. 

This section combines two approaches. One is to study actual machine-produced 
graphs (especially electrocardiograms). The other is to understand the mathematics 
of graphs-slope, concavity, asymptotes, shifts, and scaling. We introduce the 
centering transform and zoom transform. These two approaches are like the rest of 
calculus, where special derivatives and integrals are done by hand and day-to-day 
applications are by computer. Both are essential-the machine can do experiments 
that we could never do. But without the mathematics our instructions miss the point. 
To create good graphs you have to know a few of them personally. 

READING AN ELECTROCARDIOGRAM (ECG or EKG)-
REFERENCE The graphs of an ECG show the electrical potential during a heartbeat. There are 

twelve graphs-six from leads attached to the chest, and six from leads to the arms 
500 - and left leg. (It doesn't hurt, but everybody is nervous. You have to lie still, because 400-

contraction of other muscles will mask the reading from the heart.) The graphs record 300-
electrical impulses, as the cells depolarize and the heart contracts. 

200 - What can I explain in two pages? The graph shows the fundamental pattern of the - 175- ECG. Note the P wave, the Q R S  complex, and the T wave. Those patterns, seen v8 150- differently in the twelve graphs, tell whether the heart is normal or out of rhythm- 140-
130- or suffering an infarction (a heart attack). 

ro 120-
N 

110-
Y 100-
$) 95-
a 90-2 85-
if 00-
& 75-
a 3 70-

I s 65- First of all the graphs show the heart rate. The dark vertical lines are by convention 2 60- f second apart. The light lines are & second apart. If the heart beats every f secondW y 55- (one dark line) the rate is 5 beats per second or 300 per minute. That is extreme 
W 
Lf tachycardia-not compatible with life. The normal rate is between three dark lines W 
k 50- per beat (2 second, or 100 beats per minute) and five dark lines (one second between a  
I beats, 60 per minute). A baby has a faster rate, over 100 per minute. In this figure 0  
E the rate is . A rate below 60 is bradycardia, not in itself dangerous. For a resting U- 45-
V) 

9 athlete that is normal. 
Y Doctors memorize the six rates 300, 150, 100, 75, 60, 50. Those correspond to 1, 2,
0  
@ 40- 3, 4, 5, 6 dark lines between heartbeats. The distance is easiest to measure between 
W 
k spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart. 
Lf One textbook emphasizes that "Where the next wave falls determines the rate. No 
l-a  

mathematical computation is necessary." But you see where those numbers come 4 = 35- from. 



-- 

3.4 Graphs 

The next thing to look for is heart rhythm. The regular rhythm is set by the 
pacemaker, which produces the P wave. A constant distance between waves is good- 
and then each beat is examined. When there is a block in the pathway, it shows as 
a delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows 
sinus arrythmia (fairly normal). The time between peaks is changing. In disease or 
emergency, there are potential pacemakers in all parts of the heart. 

I should have pointed out the main parts. We have four chambers, an atrium- 
ventricle pair on the left and right. The SA node should be the pacemaker. The 
stimulus spreads from the atria to the ventricles- from the small chambers that 
"prime the pump" to the powerful chambers that drive blood through the body. The 
P wave comes with contraction of the atria. There is a pause of & second at the AV 
node. Then the big QRS wave starts contraction of the ventricles, and the T wave is 
when the ventricles relax. The cells switch back to negative charge and the heart cycle 
is complete. 

ectrodes 
D 

ground 

Fig. 3.9 Happy person with a heart and a normal electrocardiogram. 

The ECG shows when the pacemaker goes wrong. Other pacemakers take over- 
the AV node will pace at 60/minute. An early firing in the ventricle can give a wide 
spike in the QRS complex, followed by a long pause. The impulses travel by a slow 
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is 
150-250/minute). But the most critical danger is fibrillation. 

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions-no 
normal PQRST sequence at all. What kind of heart would generate such a rhythm? 
The muscles are quivering or "fibrillating" independently. The pumping action is 
nearly gone, which means emergency care. The patient needs immediate CPR- 
someone to do the pumping that the heart can't do. Cardio-pulmonary resuscitation 
is a combination of chest pressure and air pressure (hand and mouth) to restart the 
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which 
shocks the heart back to life. It depolarizes all the heart cells, so the timing can be 
reset. Then the charge spreads normally from SA node to atria to AV node to 
ventricles. 

This discussion has not used all twelve graphs to locate the problem. That needs 
uectors. Look ahead at Section 11.1 for the heart vector, and especially at Section 1 1.2 
for its twelve projections. Those readings distinguish between atrium and ventricle, 
left and right, forward and back. This information is of vital importance in the event 
of a heart attack. A "heart attack" is a myocardial infarction (MI). 

An MI occurs when part of an artery to the heart is blocked (a coronary occlusion). 
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Infarction 
Rg. 3.10 Doubtful rhythm. Serious fibrillation. Signals of a heart attack. 

An area is without blood supply-therefore without oxygen or glucose. Often the 
attack is in the thick left ventricle, which needs the most blood. The cells are first 
ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve 
those three 1's: 

Ischemia: Reduced blood supply, upside-down T wave in the chest leads. 
Injury: An elevated segment between S and T means a recent attack. 
Infarction: The Q wave, normally a tiny dip or absent, is as wide as a small 
square (& second). It may occupy a third of the entire QRS complex. 

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10~. 
It is absolutely amazing how much a good graph can do. 

THE MECHANICS OF GRAPHS 

From the meaning of graphs we descend to the mechanics. A formula is now given 
for f(x). The problem is to create the graph. It would be too old-fashioned to evaluate 
Ax) by hand and draw a curve through a dozen points. A computer has a much 
better idea of a parabola than an artist (who tends to make it asymptotic to a straight 
line). There are some things a computer knows, and other things an artist knows, 
and still others that you and I know-because we understand derivatives. 

Our job is to apply calculus. We extract information from f '  and f "  as well asf. 
Small movements in the graph may go unnoticed, but the important properties come 
through. Here are the main tests: 

1. The sign off (x) (above or below axis: f = 0at crossing point) 
2. The sign of f(x) (increasing or decreasing: f '  = 0 at stationary point) 
3. The sign of f"(x) (concave up or down: f" = 0 at injection point) 
4. The behavior of f(x) as x + oo and x -, - oo 
5. The points at which f(x) + oo or f(x) -, - oo 
6. Even or odd? Periodic? Jumps in f o r  f '? Endpoints? f(O)? 

The sign of f(x) depends on 1 - x2. Thus f(x) > 0 in the inner interval where x2 < 1. 
The graph bends upwards (f"(x) > 0) in that same interval. There are no inflection 
points, since f "  is never zero. The stationary point where f' vanishes is x = 0. We 
have a local minimum at x = 0. 

The guidelines (or asymptotes)meet the graph at infinity. For large x the important 
terms are x2 and -x2. Their ratio is + x2/-x2 = - 1-which is the limit as x -, or, 
and x -, - oo. The horizontal asymptote is the line y = - 1. 

The other infinities, where f blows up, occur when 1 -x2 is zero. That happens at 
x =  1 and x = - 1. The vertical asymptotes are the lines x = 1 and x = -1. The graph 
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in Figure 3.1 l a  approaches those lines. 
if f(x) +b as x -,+ oo or -oo, the line y = b is a horizontal asymptote 
if f(x) + + GO or -GO as x -,a, the line x = a is a vertical asymptote 
ifflx) - (mx + b) +0 as x -+ + oo or - a ,  the line y = mx + b is a sloping asymptote. 

Finally comes the vital fact that this function is even: f(x) =f(- x)  because squaring 
x obliterates the sign. The graph is symmetric across the y axis. 

To summarize the eflect of dividing by 1 - x2: No effect near x = 0. Blowup at 1 
and -1 from zero in the denominator. The function approaches -1 as 1x1 -+ oo. 

x2 x2 - 2xE U P L E  2 f(x) = ._, f ' (x)  = - f "(x) = -
2 

( x  - I)2 ( X  - 113 
This example divides by x - 1. Therefore x = 1 is a vertical asymptote, where f(x) 
becomes infinite. Vertical asymptotes come mostly from zero denominators. 

Look beyond x = 1. Both f(x) and f"(x) are positive for x > 1. The slope is zero at 
x = 2. That must be a local minimum. 

What happens as x -+ oo? Dividing x2 by x - 1, the leading term is x. The function 
becomes large. It grows linearly-we expect a sloping asymptote. To find it, do the 
division properly: 

The last term goes to zero. The function approaches y = x + 1 as the asymptote. 
This function is not odd or even. Its graph is in Figure 3.11b. With zoom out you 

see the asymptotes. Zoom in for f = 0 or f' = 0 or f" = 0. 

Fig. 3.11 The graphs of x2/(1 -x2) and x2/(x - 1) and sin x + 3 sin 3x. 

EXAMPLE 3 f(x) = sin x + sin 3x  has the slope f '(x) = cos x + cos 3x. 
Above all these functions are periodic. If x increases by 2n, nothing changes. The 
graphs from 2n to 47c are repetitions of the graphs from 0 to 271.Thusf(x + 2 4  =f (x)  
and the period is 2n. Any interval of length 27c will show a complete picture, and 
Figure 3.1 1c picks the interval from -n to n. 

The second outstanding property is that f is odd. The sine functions satisfy 
f(- x)  = -f(x). The graph is symmetric through the origin. By reflecting the right half 
through the origin, you get the left half. In contrast, the cosines in f f ( x )are even. 

To find the zeros of f(x) and f'(x) and f "(x),rewrite those functions as 
f(x) = 2 sin x - $ sin3x f'(x) = - 2 cos x + 4 cos3x f"(x) = - 10 sin x + 12 sin3x. 



3 Applications of the Derivative 

We changed sin 3x to 3 sin x - 4 sin3x. For the derivatives use sin2x = 1 - cos2x. 
Now find the zeros-the crossing points, stationary points, and inflection points: 

f = O  2 sin x = $  sin3x * sin x = O  or sin2x=$ * x=O, f n  

f " = O  5 sin x = 6  sin3x sin x = O  or s in2x=2 x=O, +66", +114", f n  
That is more than enough information to sketch the gra h. The stationary points 
n/4, n/2, 3 4 4  are evenly spaced. At those points f(x) is ,/!I3 (maximum), 213 (local 
minimum), d l 3  (maximum). Figure 3.1 1c shows the graph. 

I would like to mention a beautiful continuation of this same pattern: 
f(x) = sin x +3 sin 3x + :sin 5x + ..- f'(x) = cos x + cos 3x + cos 5x + -.. 

If we stop after ten terms, f(x) is extremely close to a step function. If we don't stop, 
the exact step function contains infinitely many sines. It jumps from -4 4  to +4 4  as 
x goes past zero. More precisely it is a "square wave," because the graph jumps back 
down at n and repeats. The slope cos x + cos 3x + ..-also has period 2n. Infinitely 
many cosines add up to a delta function! (The slope at the jump is an infinite spike.) 
These sums of sines and cosines are Fourier series. 

GRAPHS BY COMPUTERS AND CALCULATORS 

We have come to a topic of prime importance. If you have graphing software for a 
computer, or if you have a graphing calculator, you can bring calculus to life. A graph 
presents y(x) in a new way-different from the formula. Information that is buried 
in the formula is clear on the graph. But don't throw away y(x) and dyldx. The 
derivative is far from obsolete. 

These pages discuss how calculus and graphs go together. We work on a crucial 
problem of applied mathematics-to find where y(x) reaches its minimum. There is 
no need to tell you a hundred applications. Begin with the formula. How do you find 
the point x* where y(x) is smallest? 

First, draw the graph. That shows the main features. We should see (roughly) where 
x* lies. There may be several minima, or possibly none. But what we see depends on 
a decision that is ours to make-the range of x and y in the viewing window. 

If nothing is known about y(x), the range is hard to choose. We can accept a default 
range, and zoom in or out. We can use the autoscaling program in Section 1.7. 
Somehow x* can be observed on the screen. Then the problem is to compute it. 

I would like to work with a specific example. We solved it by calculus-to find 
the best point x* to enter an expressway. The speeds in Section 3.2 were 30 and 60. 
The length of the fast road will be b = 6. The range of reasonable values for the entering 
point is 0 < x <6. The distance to the road in Figure 3.12 is a = 3. We drive a distance 
,/=at speed 30 and the remaining distance 6 - x at speed 60: 

1
driving time y(x)= -

1 ,/- + -(6 - x). (2)30 60 
This is the function to be minimized. Its graph is extremely flat. 

It may seem unusual for the graph to be so level. On the contrary, it is common. 
AJat graph is the whole point of dyldx = 0. 

The graph near the minimum looks like y = cx2.  It is a parabola sitting on a 
horizontal tangent. At a distance of Ax = .01, we only go up by C(AX)~ = .0001 C. 
Unless C is a large number, this Ay can hardly be seen. 
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Fig. 3.12 Enter at x. The graph of driving time y(x). Zoom boxes locate x*. 

The solution is to change scale. Zoom in on x*. The tangent line stays flat, since 
dyldx is still zero. But the bending from C is increased. Figure 3.12 shows the zoom 
box blown up into a new graph of y(x). 

A calculator has one or more ways to find x*. With a TRACE mode, you direct a 
cursor along the graph. From the display of y values, read y,,, and x* to the 
nearest pixel. A zoom gives better accuracy, because it stretches the axes-each 
pixel represents a smaller Ax and Ay. The TI-81 stretches by 4 as default. Even 
better, let the whole process be graphical-draw the actual ZOOM BOX on the 
screen. Pick two opposite corners, press ENTER, and the box becomes the new 
viewing window (Figure 3.12). 
The first zoom narrows the search for x*. It lies between x = 1 and x = 3. We build 

a new ZOOM BOX and zoom in again. Now 1.5 < x* <2. Reasonable accuracy 
comes quickly. High accuracy does not come quickly. It takes time to create the box 
and execute the zoom. 
Question 1 What happens as we zoom in, if all boxes are square (equal scaling)? 
Answer The picture gets flatter and flatter. We are zooming in to the tangent line. 
Changing x to X/4 and y to Y/4, the parabola y =x2 flattens to Y =  X2/4. To see 
any bending, we must use a long thin zoom box. 

I want to change to a totally different approach. Suppose we have a formula for 
dyldx. That derivative was produced by an infinite zoom! The limit of Ay/Ax came by 
brainpower alone: 

-dy = X --I Call this f(x). 
dx 3 o J m  60' 

This function is zero at x*. The computing problem is completely changed: Solve 
Ax) =0. I t  is easier to find a root of f(x) than a minimum of y(x). The graph of f(x) 
crosses the x axis. The graph of y(x) goes flat-this is harder to pinpoint. 

Take the model function y =x2 for 1x1 c .01. The slope f =2x changes from -.02 
to +.02. The value of x2 moves only by .0001 -its minimum point is hard to see. 

To repeat: Minimization is easier with dyldx. The screen shows an order of magni- 
tude improvement, when we trace or zoom on f(x) =0. In calculus, we have been 
taking the derivative for granted. It is natural to get blask about dyldx =0. We forget 
how intelligent it is, to work with the slope instead of the function. 

zero slope Question 2 How do you get another order of magnitude improvement? 
at minimum Answer Use the next derivative! With a formula for dfldx, which is dZy/dx2, the 

Fig. 3.13 convergence is even faster. In two steps the error goes from .O1 to .0001 to .00000001. 
Another infinite zoom went into the formula for dfldx, and Newton's method takes 
account of it. Sections 3.6 and 3.7 study f(x) =0. 
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The expressway example allows perfect accuracy. We can solve dyjdx = 0 by alge- ,/-. bra. The equation simplifies to 60x = 30 
4x2 = 32+ x2. Then 3x2 = 3'. 

Dividing by 30 and squaring yields 
The exact solution is x* = & = 1.73205.. . 

A model like this is a benchmark, to test competing methods. It also displays what 
we never appreciated-the extreme flatness of the graph. The difference in driving 
time between entering at x* = & and x = 2 is one second. 

THE CENTERING TRANSFORM AND ZOOM TRANSFORM 

For a photograph we do two things-point the right way and stand at the right 
distance. Then take the picture. Those steps are the same for a graph. First we pick 
the new center point. The graph is shifted, to move that point from (a,b) to (0,O). 
Then we decide how far the graph should reach. It fits in a rectangle, just like the 
photograph. Rescaling to x/c and y/d puts the desired section of the curve into the 
rectangle. 

A good photographer does more (like an artist). The subjects are placed and the 
camera is focused. For good graphs those are necessary too. But an everyday calcula- 
tor or computer or camera is built to operate without an artist-just aim and shoot. 
I want to explain how to aim at y = f(x). 

We are doing exactly what a calculator does, with one big difference. It doesn't 
change coordinates. We do. When x = 1, y = - 2 moves to the center of the viewing 
window, the calculator still shows that point as (1, -2). When the centering transform 
acts on y + 2 = m(x - I), those numbers disappear. This will be confusing unless x 
and y also change. The new coordinates are X = x - 1 and Y = y + 2. Then the new 
equation is Y = mX. 

The main point (for humans) is to make the algebra simpler. The computer has no 
preference for Y = mX over y - yo = m(x - x,). It accepts 2x2 -4x as easily as x2. 
But we do prefer Y = mX and y = x2, partly because their graphs go through (0,O). 
Ever since zero was invented, mathematicians have liked that number best. 

EXAMPLE 4 The parabola y = 2x2- 4x has its minimum when dyldx = 4x -4 = 0. 
Thus x = 1 and y = - 2. Move this bottom point to the center: y = 2x2- 44 is 

The new parabola Y = 2X2 has its bottom at (0,O). It is the same curve, shifted across 
and up. The only simpler parabola is y = x2. This final step is the job of the zoom. 

Next comes scaling. We may want more detail (zoom in to see the tangent line). 
We may want a big picture (zoom out to check asymptotes). We might stretch one 
axis more than the other, if the picture looks like a pancake or a skyscraper. 

36 A z m m  tram@rna scdes the X and Y axes by c and d :  
X =  EX and y =  HY change Y= F ( X )  to y =  dF(x/c). 

The new x and y are boldface letten, and the graph is re&. Often c = d. 
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EXAMPLE 5 Start with Y = 2X2. Apply a square zoom with c = d. In the new xy 
coordinates, the equation is y/c = ~ ( x / c ) ~ .The number 2 disappears if c = d = 2. With 
the right centering and the right zoom, every parabola that opens upward is y = x2. 
Question 3 What happens to the derivatives (slope and bending) after a zoom? 
Answer The slope (first derivative) is multiplied by d/c. Apply the chain rule to y = 
dF(x/c). A square zoom has d/c = 1-lines keep their slope. The second derivative is 
multiplied by d/c2, which changes the bending. A zoom out divides by small numbers 
c = d, so the big picture is more, curved. 

Combining the centering and zoom transforms, as we do in practice, gives y in 
terms of x: 

y =f(x) becomes Y=f(X+a)-b andthen y = d  f - + a  )-bl.[ (: 

Fig. 3.14 Change of coordinates by centering and zoom. Calculators still show (x, y). 

Question 4 Find x and y ranges after two transforms. Start between -1 and 1. 
Answer The window after centering is -1 <x - a < 1 and -1 <y - b < 1. The 
window after zoom is -1<c(x - a) < 1 and -1 <d(y - b) < 1. The point (1, 1) was 
originally in the corner. The point (c-' + a, d + b) is now in the corner. 

The numbers a, b, c, d are chosen to produce a simpler function (like y = x2). Or 
else-this is important in applied mathematics-they are chosen to make x and y 
"dimensionless." An example is y =f cos 8t. The frequency 8 has dimension l/time. 
The amplitude f is a distance. With d = 2 cm and c = 8 sec, the units are removed 
and y = cos t. 

May I mention one transform that does change the slope? It is a rotation. The 
whole plane is turned. A photographer might use it-but normally people are sup- 
posed to be upright. You use rotation when you turn a map or straighten a picture. 
In the next section, an unrecognizable hyperbola is turned into Y = 1/X. 

3.4 EXERCISES 
Read-through questions around the graph looks long and I .We m in to that 
The position, slope, and bending of y =f(x) are decided by box for another digit of x*. But solving dyldx =0 is more 

a b and c .IfIf(x)l+ooasx+a,thelinex= accurate, because its graph n the x axis. The slope of 
-9-

a is a vertical d . If f(x) +.b for large x, then y =b is a dyldx is 0 . Each derivative is like an p zoom. 
e . If f(x) -mx +b for large x, then y =mx + b is a To move (a, b) to (0, 0), shift the variables to X = 
f . The asymptotes of y =x2/(x2-4) are $I . This and Y = r . This s transform changes y =Ax) to 

function is even because y(-x) = h . The function sin kx Y= t . The original slope at (a, b) equals the new slope 
has period i . at u . To stretch the axes by c and d, set x =cX and 

v .The w transformchanges Y =F ( X )to y = x . 
Near a point where dy/dx =0, the graph is extremely Slopes are multiplied by Y . Second derivatives are 
I .For the model y = cx2, x =.1gives y = k .A box multiplied by . 
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1 Find the pulse rate when heartbeats are second or two 
dark lines or x seconds apart. 

2 Another way to compute the heart rate uses marks for 
6-second intervals. Doctors count the cycles in an interval. 

(a) How many dark lines in 6 seconds? 
(b) With 8 beats per interval, find the rate. 
(c) Rule: Heart rate =cycles per interval times . 

Which functions in 3-18 are even or odd or periodic? Find all 
asymptotes: y =b or x =a or y =mx + b. Draw roughly by 
hand or smoothly by computer. 

3 f(x) =x -(9/x) 4 f (x)=xn (any integer n) 

1 x 
5 f(x)= - 6 f(x)= -1 -x2 4 -x2 

9 f(x) =(sin x)(sin 2x) 10 f(x) =cos x +cos 3x +cos 5x 

x sin x X 
11 f(x)= - 12 f(x) = -

x2-  1 sin x 

sin x +cos x 
16 f(x)= sin x -cos x 

In 19-24 constructf(x) with exactly these asymptotes. 

19 x =  1 and y = 2  20 x = l , x = 2 , y = O  

21 y = x a n d x = 4  22 y = 2 x + 3  and x=O 

23 y = x ( x + m ) ,  y =  -x(x+ -a) 

24 x = l , x = 3 , y = x  

25 For P(x)/Q(x) to have y = 2 as asymptote, the polynomials 
P and Q must be 

26 For P(x)/Q(x) to have a sloping asymptote, the degrees of 
P and Q must be . 
27 For P(x)/Q(x) to have the asymptote y =0, the degrees of 
P and Q must . The graph of x4/(l + x2) has what 
asymptotes? 
28 Both l/(x - 1) and l/(x - have x = 1 and y =0 as 
asymptotes. The most obvious difference in the graphs is 

29 If f '(x) has asymptotes x = 1 and y = 3 then f (x) has 
asymptotes 

30 True (with reason) or false (with example). 
(a) Every ratio of polynomials has asymptotes 
(b) If f(x) is even so is f "(x) 
(c) Iff "(x) is even so is f(x) 
(d) Between vertical asymptotes, f '(x) touches zero. 

31 Construct an f(x) that is "even around x = 3." 

32 Construct g(x) to be "odd around x =n." 

Create graphs of 33-38 on a computer or calculator. 

35 y(x) = sin(x/3)+ sin(x/5) 

36 y(x)=(2-x)/(~+x),  - 3 ~ ~ 6 3  

37 y(x) =2x3 + 3x2- 12x + 5 on [-3, 31 and C2.9, 3.11 

38 100[sin(x + .l) -2 sin x + sin(x - .I)] 

In 39-40 show the asymptotes on large-scale computer graphs. 
x3+8x-15 x4 -6x3 + 139 (a) y = x2-2 (b) Y =  2X4+ X 2  

x2-2 x 2 - x + 240 (a) y = x3 + 8x- 15 (b) y = X2 -zx + 1 

41 Rescale y =sin x so X is in degrees, not radians, and Y 
changes from meters to centimeters. 

Problems 42-46 minimize the driving time y(x) in the text. 
Some questions may not fit your software. 
42 Trace along the graph of y(x) to estimate x*. Choose an 
xy range or use the default. 

43 Zoom in by c =d =4. How many zooms until you reach 
x* = 1.73205 or 1.7320508? 

44 Ask your program for the minimum of y(x) and the solu- 
tion of dyldx = 0. Same answer? 

45 What are the scaling factors c and d for the two zooms in 
Figure 3.12? They give the stretching of the x and y axes. 

46 Show that dy/dx = - 1/60 and d 2 y / d ~ 2  = 1/90 at x =0. 
Linear approximation gives dyldx z - 1/60+x/90. So the 
slope is zero near x = . This is Newton's method, 
using the next derivative. 

Change the function to y(x)=d l 5  + x2/30+ (10 -x)/60. 
47 Find x* using only the graph of y(x). 

48 Find x* using also the graph of dyldx. 

49 What are the xy and X Y and xy equations for the line in 
Figure 3.14? 



3.5 Parabolas, Ellipses, and Hyperbolas 

50 Define f,(x) = sin x + 4 sin 3x + f sin 5x + (n terms). 
Graph f5 and f,, from - x  to 71. Zoom in and describe the 
Gibbs phenomenon at x = 0. 

On the graphs of 51-56, zoom in to all maxima and minima 
(3 significant digits). Estimate inflection points. 
51 y = 2x5- 16x4+ 5x3-37x2+ 21x + 683 
52 y = x 5 - ~ 4 -  J W - 2  
53 y = x(x - l)(x -2)(x -4) 

54 y = 7 sin 2x + 5 cos 3x 

55 y=(x3-2x+1)/(x4-3x2-15), -3 ,<x<5 
56 y = x sin (llx), 0.1 ,< x Q 1 
57 A 10-digit computer shows y = 0 and dy/dx = .O1 at x* = 1. 
This root should be correct to about (8 digits) (10 digits) 
(12 digits). Hint: Suppose y = .O1 (x - 1 + error). What errors 
don't show in 10 digits of y? 
58 Which is harder to compute accurately: Maximum point 
or inflection point? First derivative or second derivative? 

Here is a list of the most important curves in mathematics, so you can tell what is 
coming. It is not easy to rank the top four: 

1. straight lines 
2. sines and cosines (oscillation) 
3. exponentials (growth and decay) 
4. parabolas, ellipses, and hyperbolas (using 1, x, y, x2, xy, y2). 

The curves that I wrote last, the Greeks would have written first. It is so natural to 
go from linear equations to quadratic equations. Straight lines use 1,x, y. Second 
degree curves include x2, xy, y2. If we go on to x3 and y3, the mathematics gets 
complicated. We now study equations of second degree, and the curves they produce. 

It is quite important to see both the equations and the curves. This section connects 
two great parts of mathematics-analysis of the equation and geometry of the curve. 
Together they produce "analytic geometry." You already know about functions and 
graphs. Even more basic: Numbers correspond to points. We speak about "the point 
(5,2)." Euclid might not have understood. 

Where Euclid drew a 45" line through the origin, Descartes wrote down y = x. 
Analytic geometry has become central to mathematics-we now look at one part of it. 

Fig. 3.15 The cutting plane gets steeper: circle to ellipse to parabola to hyperbola. 
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CONIC SECTIONS 

The parabola and ellipse and hyperbola have absolutely remarkable properties. The 
Greeks discovered that all these curves come from slicing a cone by a plane. The 
curves are "conic sections." A level cut gives a circle, and a moderate angle produces 
an ellipse. A steep cut gives the two pieces of a hyperbola (Figure 3.15d). At the 
borderline, when the slicing angle matches the cone angle, the plane carves out a 
parabola. It has one branch like an ellipse, but it opens to infinity like a hyperbola. 

Throughout mathematics, parabolas are on the border between ellipses and 
hyperbolas. 

To repeat: We can slice through cones or we can look for equations. For a cone 
of light, we see an ellipse on the wall. (The wall cuts into the light cone.) For an 
equation AX^ + Bxy + Cy2+Dx + Ey + F = 0, we will work to make it simpler. The 
graph will be centered and rescaled (and rotated if necessary), aiming for an equation 
like y = x2. Eccentricity and polar coordinates are left for Chapter 9. 

THE PARABOLA y = m2+ bx + c 

You knew this function long before calculus. The graph crosses the x axis when 
y = 0. The quadratic formula solves y = 3x2- 4x + 1 = 0, and so does factoring into 
(x - 1)(3x- 1). The crossing points x = 1 and x =f come from algebra. 

The other important point is found by calculus. It is the minimum point, where 
dyldx = 6x - 4 = 0. The x coordinate is 8 = f ,  halfway between the crossing points. 
The height is ymin = -i.This is the vertex V in Figure 3.16a-at the bottom of the 
parabola. 

A parabola has no asymptotes. The slope 6x - 4 doesn't approach a constant. 
To center the vertex Shift left by 3 and up by f .  So introduce the new variables 
x = x - $  and Y = y + f .  hen x = f  and y =  - 3  correspond to X =  Y=O-which 
is the new vertex: 

y = 3x2-4x + 1 becomes Y = 3X 2. (1) 
Check the algebra. Y = 3X2 is the same as y +f = 3(x -3)2. That simplifies to the 
original equation y = 3x2-4x + 1. The second graph shows the centered parabola 
Y = 3X2, with the vertex moved to the origin. 
To zoom in on the vertex Rescale X and Y by the zoom factor a: 

Y = 3x2  becomes y/a = 3 ( ~ / a ) ~ .  
The final equation has x and y in boldface. With a = 3 we find y = x2-the graph is 
magnified by 3. In two steps we have reached the model parabola opening upward. 

I directrix at y = -

Fig. 3.16 Parabola with minimum at V. Rays reflect to focus. Centered in (b), rescaled in (c). 

4 
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A parabola has another important point-the focus. Its distance from the vertex 
is called p. The special parabola y = x2 has p = 114, and other parabolas Y = a x 2  
have p = 1/4a. You magnify by a factor a to get y = x2. The beautiful property of a 
parabola is that every ray coming straight down is reflected to the focus. 

Problem 2.3.25 located the focus F-here we mention two applications. A solar 
collector and a TV dish are parabolic. They concentrate sun rays and TV signals 
onto a point-a heat cell or a receiver collects them at the focus. The 1982 UMAP 
Journal explains how radar and sonar use the same idea. Car headlights turn the 
idea around, and send the light outward. 

Here is a classical fact about parabolas. From each point on the curve, the distance 
to the focus equals the distance to the "directrix." The directrix is the line y = -p 
below the vertex (so the vertex is halfway between focus and directrix). With p = 4, 
the distance down from any (x, y) is y + 4. Match that with the distance to the focus 
at (0,a)- this is the square root below. Out comes the special parabola y = x2: 

y + 4 = - (square both sides) - y = x2. (2) 

The exercises give practice with all the steps we have taken-center the parabola to 
Y = ax2 ,  rescale it to y = x2, locate the vertex and focus and directrix. 
Summary for other parabolas y = ax2+ bx + c has its vertex where dy/dx is zero. 
Thus 2ax + b = 0 and x = -b/2a. Shifting across to that point is "completing the 
square": 

ax2+ bx + e equals a (x + - + C. 
: l ) i  

Here C = c - (b2/4a) is the height of the vertex. The centering transform X = x + (b/2a), 
Y = y -C produces Y = ax2.  It moves the vertex to (0, 0), where it belongs. 

For the ellipse and hyperbola, our plan of attack is the same: 

1. Center the curve to remove any linear terms Dx and Ey. 
2. Locate each focus and discover the reflection property. 
3. Rotate to remove Bxy if the equation contains it. 

x2 y2ELLIPSES -+ -= 1 (CIRCLES HAVE a= b )a2 b2 

This equation makes the ellipse symmetric about (0, 0)-the center. Changing x to 
-x or y to -y leaves the same equation. No extra centering or rotation is needed. 

The equation also shows that x2/a2 and y2/b2 cannot exceed one. (They add to 
one and can't be negative.) Therefore x2 < a2, and x stays between -a and a. Similarly 
y stays between b and -b. The ellipse is inside a rectangle. 

By solving for y we get a function (or two functions!) of x: 

The graphs are the top half (+) and bottom half (-) of the ellipse. To draw the ellipse, 
plot them together. They meet when y = 0, at x = a on the far right of Figure 3.17 
and at x = -a on the far left. The maximum y = b and minimum y = -b are at the 
top and bottom of the ellipse, where we bump into the enclosing rectangle. 

A circle is a special case of an ellipse, when a = b. The circle equation x2 + y2 = r2 
is the ellipse equation with a = b = r. This circle is centered at (0,O); other circles are 
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centered at x = h, y = k. The circle is determined by its radius r and its center (h, k): 
Equation of circle: (x - h)' + (y - k)2= r2. (4) 

In words, the distance from (x, y) on the circle to (h, k) at the center is r. The 
equation has linear terms -2hx and -2ky-they disappear when the center is (0,O). 

EXAMPLE 1 Find the circle that has a diameter from (1,7) to (5, 7). 

Solution The center is halfway at (3,7). So r = 2 and (x - 3)2+ (y - 7)2= 22. 

EXAMPLE2 Find the center and radius of the circle x2 - 6x + y2 - 14y = - 54. 

Solution Complete x2 - 6x to the square (x - 3)2 by adding 9. Complete y2 - 14y 
to (y - 7)2 by adding 49. Adding 9 and 49 to both sides of the equation leaves 
(x - 3)2+ (y - 7)2= 4-the same circle as in Example 1. 

Quicker Solution Match the given equation with (4). Then h = 3, k = 7, and r = 2: 
x2 - 6x + y2 - 14y = - 54 must agree with x2 - 2hx + h2 + y2 - 2ky + k2 = r2. 
The change to X = x - h and Y= y - k moves the center of the circle from (h, k) 

to (0,O). This is equally true for an ellipse: 

The ellipse -( ~ - h ) ~(y-k)l x2+ --- 1 becomes -+-=y 2  
1. a b2 a2 b2 

When we rescale by x = Xja and y = Ylb, we get the unit circle x2 + y2 = 1. 
The unit circle has area n. The ellipse has area nab (proved later in the book). The 

distance around the circle is 2n. The distance around an ellipse does not rescale-it 
has no simple formula. 

Fig. 3.17 Uncentered circle. Centered ellipse ~ ~ + y 2 / 2 23= 1 .~ The distance from center to1 
far right is also a = 3.  All rays from F 2  reflect to F ,  . 

Now we leave circles and concentrate on ellipses. They have two foci (pronounced 
fo-sigh). For a parabola, the second focus is at infinity. For a circle, both foci are at 
the center. The foci of an ellipse are on its longer axis (its major axis), one focus on 
each side of the center: 

~ , i s a t x = e = J a ~ - b ~  and F 2 i s a t x = - c .  
The right triangle in Figure 3.17 has sides a, b, c. From the top of the ellipse, the 
distance to each focus is a. From the endpoint at x = a, the distances to the foci are 
a + c and a - c. Adding (a + c) + (a - c) gives 2a. As you go around the ellipse, the 
distance to F ,  plus the distance to F2 is constant (always 2a). 
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3H At all points on the ellipse, the sum of distances from the foci is 2a. This
is another equation for the ellipse:

from F1 and F2 to (X, y): (X- )2 +y 2 + /(x 2 = 2a. (5)

To draw an ellipse, tie a string of length 2a to the foci. Keep the string taut and your
moving pencil will create the ellipse. This description uses a and c-the other form
uses a and b (remember b2 + c2 = a2). Problem 24 asks you to simplify equation (5)
until you reach x 2/a2 + y 2/b 2 = 1.

The "whispering gallery" of the United States Senate is an ellipse. If you stand at
one focus and speak quietly, you can be heard at the other focus (and nowhere else).
Your voice is reflected off the walls to the other focus-following the path of the
string. For a parabola the rays come in to the focus from infinity-where the second
focus is.

A hospital uses this reflection property to split up kidney stones. The patient sits
inside an ellipse with the kidney stone at one focus. At the other focus a lithotripter
sends out hundreds of small shocks. You get a spinal anesthetic (I mean the patient)
and the stones break into tiny pieces.

The most important focus is the Sun. The ellipse is the orbit of the Earth. See
Section 12.4 for a terrible printing mistake by the Royal Mint, on England's last
pound note. They put the Sun at the center.
Question 1 Why do the whispers (and shock waves) arrive together at the second
focus?
Answer Whichever way they go, the distance is 2a. Exception: straight path is 2c.
Question 2 Locate the ellipse with equation 4x 2 + 9y 2 = 36.
Answer Divide by 36 to change the constant to 1. Now identify a and b:

2 2
-+ - 1 so a= and b-= /. Foci at 9-4 = + .
9 4

Question 3 Shift the center of that ellipse across and down to x = 1, y = - 5.
Answer Change x to x - 1. Change y to y + 5. The equation becomes
(x - 1)2/9 + (y + 5)2/4 = 1. In practice we start with this uncentered ellipse and go the
other way to center it.

y2 X2

HYPERBOLAS - = I1
a2 b 2

Notice the minus sign for a hyperbola. That makes all the difference. Unlike an ellipse,
x and y can both be large. The curve goes out to infinity. It is still symmetric, since
x can change to - x and y to - y.

The center is at (0, 0). Solving for y again yields two functions (+ and -):

a - = 1 gives =+ or y = 2 . (6)

The hyperbola has two branches that never meet. The upper branch, with a plus sign,
has y > a. The vertex V1 is at x = 0, y = a-the lowest point on the branch. Much
further out, when x is large, the hyperbola climbs up beside its sloping asymptotes:

x2  2if - =1000 then - 1001. So - is close to or - .b 2 a b b
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reach curve light 
fixed waves 
time apart reflect 7 to F2 

Fig. 3.18 The hyperbola iy2 - &x2 = 1 has a = 2, b = 3, c = ,/-. The distances to F 1  and 
F ,  differ by 2a = 4. 

The asymptotes are the lines yla = x/b and yla = - x/b. Their slopes are a/b and - a/b. 
You can't miss them in Figure 3.18. 

For a hyperbola, the foci are inside the two branches. Their distance from the 
center is still called c. But now c = ,/=, which is larger than a and b. The vertex 
is a distance c - a from one focus and c + a from the other. The diflerence (not the 
sum) is (c + a) - (c - a) = 2a. 

All points on the hyperbola have this property: The diflerence between distances to 
the foci is constantly 2a. A ray coming in to one focus is reflected toward the other. 
The reflection is on the outside of the hyperbola, and the inside of the ellipse. 

Here is an application to navigation. Radio signals leave two fixed transmitters at 
the same time. A ship receives the signals a millisecond apart. Where is the ship? 
Answer: It is on a hyperbola with foci at the transmitters. Radio signals travel 
186 miles in a millisecond, so 186 = 2a. This determines the curve. In Long Range 
Navigation (LORAN) a third transmitter gives another hyperbola. Then the ship 
is located exactly. 

Question 4 How do hyperbolas differ from parabolas, far from the center? 
Answer Hyperbolas have asymptotes. Parabolas don't. 

The hyperbola has a natural rescaling. The appearance of x/b is a signal to change 
to X.  Similarly yla becomes Y. Then Y =  1 at the vertex, and we have a standard 
hyperbola: 

y2/a2 - x2/b2 = 1 becomes Y 2  - X 2  = 1. 

A 90" turn gives X 2  - y2  = l-the hyperbola opens to the sides. A 45" turn produces 
2X Y = 1. We show below how to recognize x2 + x y  + y2 = 1 as an ellipse and 
x2 + 3xy + y2 = 1 as a hyperbola. (They are not circles because of the xy term.) When 
the xy coefficient increases past 2, x2 + y2 no longer indicates an ellipse. 

Question 5 Locate the hyperbola with equation 9y2 - 4x2 = 36. 
Answer Divide by 36. Then y2/4 - x2/9 = 1. Recognize a = & and b = fi. 
Question 6 Locate the uncentered hyperbola 9y2 - 18y - 4x2 - 4x = 28. 
Answer Complete 9~~ - 18y to 9(y - 1)2 by adding 9. Complete 4x2 + 4x to 
4(x + $)2 by  adding 4(3)2 = 1. The equation is rewritten as 9(y - - 4(x + $)2 = 
28 + 9 - 1. This is the hyperbola in Question 5 - except its center is (- $,I). 
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To summarize: Find the center by completing squares. Then read off a and b. 

THE GENERAL EQUATION Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

This equation is of second degree, containing any and all of 1, x, y, x2, xy, y2. 
A plane is cutting through a cone. Is the curve a parabola or ellipse or hyperbola? 
Start with the most important case Ax2 + Bxy + Cy2 = 1. 

I I The equation Ax2 + Bxy + cyZ = 1 produces a hyperbola if B~ > 4AC and 
an ellipse if B2 < 4AC. A parabola has B2 = 4AC. I 

To recognize the curve, we remove Bxy by rotating the plane. This also changes A 
and C-but the combination B~ - 4AC is not changed (proof omitted). An example 
is 2xy = 1, with B~ = 4. It rotates to y2 - x2 = 1, with - 4AC = 4. That positive 
number 4 signals a hyperbola-since A = - 1 and C = 1 have opposite signs. 

Another example is x2 + y2 = 1. It is a circle (a special ellipse). However we rotate, 
the equation stays the same. The combination B~ - 4AC = 0 - 4 1 1 is negative, as 
predicted for ellipses. 

To rotate by an angle a, change x and y to new variables x' and y': 

x = X' cos a - y' sin a = x cos a + y sin a 
and 

y = x' sin a + y' cos a y' = - y sin a + x cos a. (7) 

Substituting for x and y changes  AX^ + Bxy + cy2  = 1 to A ' x ' ~  + B'xly' + Cryf2 = 1. 
The formulas for A', B', C' are painful so I go to the key point: 

B' is zero if the rotation angle a has tan 2a = B/(A - C). 

With B' = 0, the curve is easily recognized from A ' x ' ~  + C'yr2 = 1. It is a hyperbola 
if A' and C' have opposite signs. Then B ' ~  - 4A1C' is positive. The original B~ - 4AC 
was also positive, because this special combination stays constant during rotation. 

After the xy term is gone, we deal with x and y-by centering. To find the center, 
complete squares as in Questions 3 and 6. For total perfection, rescale to one of the 
model equations y = x2 or x2 + y2 = 1 or y2 - x2 = 1. 

The remaining question is about F = 0. What is the graph of AX? + Bxy + cy2 = O? 
The ellipse-hyperbola-parabola have disappeared. But if the Greeks were right, the 

cone is still cut by a plane. The degenerate case F = 0 occurs when the plane cuts 
right through the sharp point of the cone. 

A level cut hits only that one point (0,O). The equation shrinks to x2 + y2 = 0, a 
circle with radius zero. A steep cut gives two lines. The hyperbola becomes y2 -?. x2 = 0, 
leaving only its asymptotes y = + x. A cut at the exact angle of the cone gives only 
one line, as in x2 = 0. A single point, two lines, and one line are very extreme cases of 
an ellipse, hyperbola, and parabola. 

All these "conic sections" come from planes and cones. The beauty of the geometry, 
which Archimedes saw, is matched by the importance of the equations. Galileo dis- 
covered that projectiles go along parabolas (Chapter 12). Kepler discovered that the 
Earth travels on an ellipse (also Chapter 12). Finally Einstein discovered that light 
travels on hyperbolas. That is in four dimensions, and not in Chapter 12. 
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equation vertices foci 

P y = a x 2 + b x + c  1 
-above vertex, also infinity 

H - - - - = Iy2 x2 
(0, a) and (0, -a) (0, c) and (0, -c): c  = ,/=a2 b2 

3.5 EXERCISES 
Read-through questions 
The graph of y = x2 + 2x + 5 is a a . Its lowest point 
(the vertex) is (x, y) = ( b ). Centering by X = x + 1 and 
Y = c moves the vertex to (0,O). The equation becomes 
Y = d . The focus of this centered parabola is e . All 
rays coming straight down are f to the focus. 

The graph of x2 + 4~~= 16 is an a . Dividing by h 
leaves x2/a2 + y2/b2= 1 with a = i and b = i . The 
graph lies in the rectangle whose sides are k . The area is 
nab = I . The foci are at x = + c = m . The sum of 
distances from the foci to a point on this ellipse is always 

n . If we rescale to X = x/4 and Y = y/2 the equation 
becomes 0 and the graph becomes a p . 

The graph of y2 -x2 = 9 is a q . Dividing by 9 leaves 
y2/a2-x2/b2= 1 with a = r and b = s . On the 
upper branch y 3 t . The asymptotes are the lines . 
The foci are at y = + c = v . The w of distances from 
the foci to a point on this hyperbola is x . 

All these curves are conic sections-the intersection of a 
Y and a . A steep cutting angle yields a A . At 

the borderline angle we get a B . The general equation is 
AX^ + C + F = 0. If D = E = 0 the center of the graph is 
at D . The equation Ax2 + Bxy + Cy2= 1 gives an ellipse 
when E . The graph of 4x2 + 5xy + 6y2= 1 is a F . 
1 The vertex of y = ax2 + bx + c is at x y '-b/2a. What is 

special about this x? Show that it gives y = c - (b2/4a). 

Problems 15-20 are about parabolas, 21-34 are about ellipses, 
35-41 are about hyperbolas. 
15 Find the parabola y =  ax2 + hx + c that goes through 
(0,O) and (1, 1) and (2, 12). 

16 y = x2 -x has vertex at . To move the vertex to 
(0, 0) set X = and Y = . Then Y = X2. 

17 (a) In equation (2) change $ to p. Square and simplify. 
(b) Locate the focus and directrix of Y = 3x2. Which 
points are a distance 1 from the directrix and focus? 

18 The parabola y = 9 -x2 opens with vertex at 
. Centering by Y = y -9 yields Y = -x2. 

19 Find equations for all parabolas which 
(a) open to the right with vertex at (0,O) 
(b) open upwards with focus at (0,O) 
(c) open downwards and go through (0,O) and (1,O). 

20 A projectile is at x = t, y = t - t2 at time t. Find dxldt and 
dyldt at the start, the maximum height, and an xy equation 
for the path. 

21 Find the equation of the ellipse with extreme points at 
(+ 2,O) and (0, _+ 1). Then shift the center to (1, 1) and find the 
new equation. 

2 The parabola y = 3x2- 12x has xmin = . At this 22 On the,/=. =c 
ellipse x2/a2 + y2/b2= 1, solve for y when 

This height above the focus will be valuable minimum, 3x2 is as large as 12x. Introducing x = 
X = x -2 and Y = y + 12 centers the equation to . in proving Kepler's third law. 

23 Find equations for the ellipses with these properties: 
(a) through (5, 0) with foci at (+4, 0) 
(b) with sum of distances to (1, 1) and (5, 1) equal to 12 
(c) with both foci at (0, 0) and sum of distances= 

2a = 10. 
24 Move a square root to the right side of equation (5) and 
square both sides. Then isolate the remaining square root and 
square again. Simplify to reach the equation of an ellipse. 

Draw the curves 3-14 by hand or calculator or computer. 
Locate the vertices and foci. 
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25 Decide between circle-ellipse-parabola-hyperbola, based 
on the XY equation with X =x - 1 and Y =y + 3. 

(a) x2 -2x + Y2 + 6y = 6 
(b) ~ ~ - 2 x - ~ ~ - 6 ~ = 6  
(c) ~ ~ - 2 x + 2 ~ ~ +12y=6 
(d) x2-2x -y = 6. 

26 A tilted cylinder has equation (x -2y -2 ~ ) ~+ 
(y - 2x -2 ~ ) ~= 1. Show that the water surface at z = 0 is an 
ellipse. What is its equation and what is B~ -4AC? 

27 (4, 915) is above the focus on the ellipse x2/25 +y2/9= 1. 
Find dyldx at that point and the equation of the tangent line. 

28 (a) Check that the line xxo + yy, = r2 is tangent to the 
circle x2 + Y2 = r2 at (x,, yo). 
(b) For the ellipse x2/a2 + y2/b2= 1show that the tangent 
equation is xxo/a2 + yyo/b2= 1. (Check the slope.) 

29 The slope of the normal line in Figure A is s = - l/(slope 
of tangent) = . The slope of the line from F2 is 
S = . By the reflection property, 

Test your numbers s and S against this equation. 

30 Figure B proves the reflecting property of an ellipse. 
R is the mirror image of F ,  in the tangent line; Q is any other 
point on the line. Deduce steps 2, 3, 4 from 1, 2, 3: 

1. PF,  + PF2 < QF1 + QF2 (left side = 2a, Q is outside) 
2. PR + PF2 < QR + QF2 
3. P is on the straight line from F2  to R 
4. a = ,8: the reflecting property is proved. 

31 The ellipse (x - 3)2!4 + (y - 1)2/4= 1 is really a 
with center at and radius . Choose X and 
Y to produce X 2  + Y2 = 1. 

32 Compute the area of a square that just fits inside the 
ellipse x2/a2 + y2/b2= 1. 

33 Rotate the axes of x2 + xy + y2 = 1 by using equation (7) 
with sin a = cos a = l / f i .  The x'y' equation should show an 
ellipse. 

34 What are a, b, c for the Earth's orbit around the sun? 

35 Find an equation for the hyperbola with 
(a) vertices (0, & I), foci (0, & 2) 
(b) vertices (0, & 3), asymptotes y = + 2x 
(c) (2, 3) on the curve, asymptotes y = + x 

36 Find the slope of y2 -x2  = 1 at (xO, yo). Show that 
yy, -xx, = 1 goes through this point with the right slope (it 
has to be the tangent line). 

37 If the distances from (x, y) to (8, 0) and (-8, 0) differ by 
10, what hyperbola contains (x, y)? 

38 If a cannon was heard by Napoleon and one second later 
by the Duke of Wellington, the cannon was somewhere on a 

with foci at . 
39 y2 -4y is part of (y -2)2= and 2x2 + 12x 
is part of 2(x + 3)2= . Therefore y2 -4y -
2x2- 12x = 0 gives the hyperbola (y -2)2-2(x + 3)2= 

. Its center is and it opens to the . 

40 Following Problem 39 turn y2 + 2y =x2 + lox into 
y 2  =x2+ C with X, Y, and C equal to .' 

41 Draw the hyperbola x2 -4y2= 1 and find its foci and 
asymptotes. 

Problems 42-46 are about second-degree curves (conics). 

42 For which A, C, F does AX^ + cy2+ F = 0 have no solu- 
tion (empty graph)? 

43 Show that x2 + 2xy + y2 + 2x + 2y + 1 =0 is the equation 
(squared) of a single line. 

44 Given any points in the plane, a second-degree 
curve AX^ + ... + F = 0 goes through those points. 

45 (a) When the plane z = ax +by + c meets the cone 
z2 = x2 + y2, eliminate z by squaring the plane equation. 
Rewrite in the form Ax2 + Bxy + Cy2+ Dx + Ey + F = 0. 
(b) Compute B2 -4AC in terms of a and b. 
(c) Show that the plane meets the cone in an ellipse if 
a2 + b2 < 1 and a hyperbola if a2  + b2 > 1 (steeper). 

46 The roots of ax2 + bx + c =0 also involve the special com- 
bination b2 -4ac. This quadratic equation has two real roots 
if and no real roots if . The roots come 
together when b2 = 4ac, which is the borderline case like a 
parabola. 
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3.6 Iterations Xn+ 1 = F(xn)  

Iteration means repeating the same function. Suppose the function is F(x) = cos x. 
Choose any starting value, say x, = 1. Take its cosine: x, = cos x, = .54. Then take 
the cosine of x, . That produces x2 = cos .54 = .86. The iteration is x, + , = cos x,. I 
am in radian mode on a calculator, pressing "cos" each time. The early numbers are 
not important, what is important is the output after 12 or 30 or 100 steps: 

EXAMPLE 1 x12 = .75, x13 = .73, x14 = .74, ..., x29 = .7391, ~ 3 ,  = .7391. 
The goal is to explain why the x's approach x* = .739085 ..... Every starting value 
x, leads to this same number x*. What is special about .7391? 

Note on iterations Do x1 = cos x, and x2 = cos x, mean that x, = cos2 x,? Abso- 
lutely not! Iteration creates a new and different function cos (cos x). It uses the cos 
button, not the squaring button. The third step creates F(F(F(x))). As soon as you 
can, iterate with x,+, = 4 cos x,. What limit do the x's approach? Is it 3(.7931)? 

Let me slow down to understand these questions. The central idea is expressed by 
the equation x,+, = F(x,). Substituting xo into F gives x,. This output x, is the input 
that leads to x,. In its turn, x2 is the input and out comes x, = F(x2). This is iteration, 
and it produces the sequence x,, x,, x2, .... 

The x's may approach a limit x*, depending on the function F. Sometimes x* also 
depends on the starting value x,. Sometimes there is no limit. Look at a second 
example, which does not need a calculator. 

EXAMPLE 2 x,+ , = F(x,) = ix ,  + 4. Starting from x, = 0 the sequence is 
x , = 4 * 0 + 4 = 4 ,  x 2 = i * 4 + 4 = 6 ,  x 3 = L . 6 + 4 = 7  2 9 4 2 x = 1 . 7 + 4 = 7 L  2, . . . .  

Those numbers 0, 4, 6, 7, 73, . . . seem to be approaching x* = 8. A computer would 
convince us. So will mathematics, when we see what is special about 8: 

When the x's approach x*, the limit of x, +, = ix ,  + 4 
is X* = I  ,x * + 4. This limiting equation yields x* = 8. 

8 is the "steady state" where input equals output: 8 = F(8). It is thefixedpoint. 
If we start at x, = 8, the sequence is 8, 8, 8, ... . When we start at x, = 12, the 

sequence goes back toward 8: 

Equation for limit: If the iterations x, + , = F(x,) converge to x*, then x* = F(x*). 
To repeat: 8 is special because it equals 4 8 + 4. The number .7391.. . is special because 
it equals cos .7391.. . . The graphs of y = x and y = F(x) intersect at x*. To explain why 
the x's converge (or why they don't) is the job of calculus. 

EXAMPLE 3 xn+ ,  = xi  has two fixed points: 0 = 0' and 1 = 12. Here F(x) = x2. 
Starting from x, = 3 the sequence a, A, &, . . . goes quickly to x* = 0. The only 
approaches to x* = 1 are from x, = 1 (of course) and from x, = - 1. Starting from 
x, = 2 we get 4, 16, 256, . . . and the sequence diverges to + m. 

Each limit x* has a "basin of attraction." The basin contains all starting points x, 
that lead to x*. For Examples 1 and 2, every x, led to .7391 and 8. The basins were 
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the whole line (that is still to be proved). Example 3 had three basins-the interval 
-1 < x, < 1, the two points xo = + 1, and all the rest. The outer basin Ixo( > 1 led 
to + co.I challenge you to find the limits and the basins of attraction (by calculator) 
for F(x) = x - tan x. 

In Example 3, x* = 0 is attracting. Points near x* move toward x*. The fixed point 
x* = 1 is repelling. Points near 1 move away. We now find the rule that decides 
whether x* is attracting or repelling. The key is the slope dF/dx at x*. 

3J Start from any x, near a fixed point x* = F(x*): 
x* is attracting if IdF/dxf is below 1 at x* 
x* is repelling if IdFldxl is above 1 at x* .  

First I will give a calculus proof. Then comes a picture of convergence, by "cobwebs." 
Both methods throw light on this crucial test for attraction: IdF/dxl< 1. 

First proof: Subtract x* = F(x*) from x,,, = F(x,). The difference x,,, - x* is 
the same as F(x,) - F(x*). This is AF. The basic idea of calculus is that AF is close 
to F'Ax: 

x,+ - x* = F(x,) - F(x*) z F1(x*)(xn- x*). (1) 
The "error" x, - x* is multiplied by the slope dF/dx. The next error x,+ ,- x* is 
smaller or larger, based on I F'I < 1 or I F'I > 1 at x*. Every step multiplies approxi- 
mately by F1(x*). Its size controls the speed of convergence. 

In Example 1, F(x) is cos x and F1(x) is -sin x. There is attraction to .7391 
because lsin x* I < 1. In Example 2, F is fx + 4 and F' is i.There is attraction to 8. 
In Example 3, F is x2 and F' is 2x. There is superattraction to x* = 0 (where F' = 0). 
There is repulsion from x* = 1 (where F' = 2). 

I admit one major difficulty. The approximation in equation (1) only holds near 
x*. If x, is far away, does the sequence still approach x*? When there are several 
attracting points, which x* do we reach? This section starts with good iterations, 
which solve the equation x* = F(x*) or f(x) = 0. At the end we discover Newton's 
method. The next section produces crazy but wonderful iterations, not converging 
and not blowing up. They lead to "fractals" and "Cantor sets" and "chaos." 

The mathematics of iterations is not finished. It may never be finished, but we are 
converging on the answers. Please choose a function and join in. 

THE GRAPH OF AN ITERATION: COBWEBS 

The iteration x,, ,= F(x,) involves two graphs at the same time. One is the graph 
of y = F(x). The other is the graph of y = x (the 45" line). The iteration jumps back 
and forth between these graphs. It is a very convenient way to see the whole process. 

Example 1 was x,,, = cos x,. Figure 3.19 shows the graph of cos x and the "cob-
web." Starting at (x,, x,) on the 45" line, the rule is based on x, = F(x,): 

From (x,, x,) go up or down to (x,, x,) on the curve. 
From (x,, x,) go across to (x,, x,) on the 45" line. 

These steps are repeated forever. From x, go up to the curve at F(x,). That height 
is x, . Now cross to the 45" line at (x,, x,). The iterations are aiming for (x*, x*) = 
(.7391, .7391). This is the crossing point of the two graphs y = F(x) and y = x. 
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Fig. 3-49 Cobwebs go from (xo, xo) to (xo, xl) to ( x l  ,xl)-line to curve to line. 

Example 2 was xn+, = f xn+ 4. Both graphs are straight lines. The cobweb is one- 
sided, from (0,O) to (0,4) to (4,4) to (4,6) to (6,6). Notice how y changes (vertical 
line) and then x changes (horizontal line). The slope of F(x) is 4,so the distance to 8 
is multiplied by f at every step. 

Example 3 was xn+, = xz. The graph of y = x2 crosses the 45" line at two fixed 
points: O2 = 0 and l 2  = 1. Figure 3.20a starts the iteration close to 1, but it quickly 
goes away. This fixed point is repelling because F'(1) = 2. Distance from x* = 1 is 
doubled (at the start). One path moves down to x* = 0-which is superattractive 
because F' = 0. The path from x, > 1 diverges to infinity. 

EXAMPLE 4 F(x) has two attracting points x* (a repelling x* is always between). 

Figure 3.20b shows two crossings with slope zero. The iterations and cobwebs con- 
verge quickly. In between, the graph of F(x) must cross the 45" line from below. That 
requires a slope greater than one. Cobwebs diverge from this unstable point, which 
separates the basins of attraction. The fixed point x = n: is in a basin by itself! 

Note 1 To draw cobwebs on a calculator, graph y = F(x) on top of y = x. On a 
Casio, one way is to plot (x,, x,) and give the command L I N E : P L 0T X ,Y 
followed by E X E.  Now move the cursor vertically to y = F(x) and press E X E.  Then 
move horizontally to y = x and press E X E.  Continue. Each step draws a line. 

.n 2.n 
Fig. 3.20 Converging and diverging cobwebs: F(x) = x2 and F(x) = x -sin x. 
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For the TI-81 (and also the Casio) a short program produces a cobweb. Store F(x) 
in the Y = function slot Y 1 . Set the range (square window or autoscaling). Run the 
program and answer the prompt with x,: 

Note 2 The x's approach x* from one side when 0 < dF/dx < 1. 

Note 3 A basin of attraction can include faraway x,'s (basins can come in infinitely 
many pieces). This makes the problem interesting. If no fixed points are attracting, 
see Section 3.7 for "cycles" and "chaos." 

THE ITERATION xn+,=X, - c~(x,,) 

At this point we offer the reader a choice. One possibility is to jump ahead to the 
next section on "Newton's Method." That method is an iteration to solve f (x) = 0. 
The function F(x) combines x, and f (x,) and f '(x,) into an optimal formula for x,+ ,. 
We will see how quickly Newton's method works (when it works). It is the outstanding 
algorithm to solve equations, and it is totally built on tangent approximations. 

The other possibility is to understand (through calculus) a whole family of itera- 
tions. This family depends on a number c, which is at our disposal. The best choice 
of c produces Newton's method. I emphasize that iteration is by no means a new 
and peculiar idea. I t  is a fundamental technique in scientiJic computing. 

We start by recognizing that there are many ways to reach f (x*) = 0. (I write x* 
for the solution.) A good algorithm may switch to Newton as it gets close. The 
iterations use f (x,) to decide on the next point x,,, : 

Notice how F(x) is constructed from f (x)-they are different! We move f to the right 
side and multiply by a "preconditioner" c. The choice of c (or c,, if it changes from 
step to step) is absolutely critical. The starting guess xo is also important-but its 
accuracy is not always under our control. 

Suppose the x, converge to x*. Then the limit of equation (2) is 
x* = x* - cf (x*). (3) 

That gives f (x*)= 0. If the x,'s have a limit, it solves the right equation. It is a fixed 
point of F (we can assume cn +c # 0 and f (x,) +f (x*)). There are two key questions, 
and both of them are answered by the slope Ft(x*): 

1. How quickly does x, approach x* (or do the x, diverge)? 
2. What is a good choice of c (or c,)? 

D W P L E  5 f (x)= ax - b is zero at x* = bla. The iteration xn+ , = xn- c(ax, - b) 
intends to find bla without actually dividing. (Early computers could not divide; they 
used iteration.) Subtracting x* from both sides leaves an equation for the error: 

x , + ~ - x * = x , - x * - c(ax, - b). 
Replace b by ax*. The right side is (1 - ca)(x, - x*). This "error equation" is 

(error),+ ,= (1 - ca)(error),. (4) 
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At every step the error is multiplied by ( 1  - ca), which is F'. The error goes to zero if 
IF' I is less than 1. The absolute value ( 1 - cal decides everything: 

x, converges to x* if and only if - 1 < 1 - ca < 1. ( 5 )  
The perfect choice (if we knew it) is c = l /a ,  which turns the multiplier 1 - ca into 
zero. Then one iteration gives the exact answer: x ,  = xo - (l/a)(axo- b)= bla. That 
is the horizontal line in Figure 3.21a, converging in one step. But look at the other 
lines. 

This example did not need calculus. Linear equations never do. The key idea is 
that close to x* the nonlinear equation f ( x )  = 0 is nearly linear. We apply the tangent 
approximation. You are seeing how calculus is used, in a problem that doesn't start 
by asking for a derivative. 

THE BEST CHOICE OF c 

The immediate goal is to study the errors x, - x*. They go quickly to zero, if 
the multiplier is small. To understand x,,, = x, - cf (x,), subtract the equation 
x* = x* - cf (x*): 

x,+ ,- x* = x, - x* - c( f (x,) -f (x*)).  (6) 
Now calculus enters. When you see a &Terence off's think of dfldx. Replace 
.f(x,) -f (x*)  by A(x, - x*), where A stands for the slope df /dx at x*: 

x,+ - x* z ( 1  - cA)(x,- x*). (7) 

This is the error equation. The new error at step n + 1 is approximately the old error 
multiplied by m = 1 - cA. This corresponds to m = 1 - ca in the linear example. We 
keep returning to the basic test Iml= I Ff(x*)l< 1: 

There is only one difficulty: We don't know x*. Therefore we don't know the perfect 
c. It depends on the slope A =f ' ( x*)  at the unknown solution. However we can come 
close, by using the slope at x,: 

Choose c, = l /  f '(x,). Then x,+ = x, -f ( x J  f '(x,) = F(x,) .  
This is Newton's method. The multiplier m = 1 - cA is as near to zero as we can make 
it. By building dfldx into F(x),Newton speeded up the convergence of the iteration. 

F ( x )  F ( x )  F ' (x*  ) 
.Y - c ( a s  - h )  : good 

1 x --(ax -b) :best 

2 
.Y - - ( a x  - h )  : fail 

xo 

Fig. 3.21 The error multiplier is m = 1 -cf '(x*). Newton has c = l /f '(x,) and m -+ 0. 
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EXAMPLE 6 Solve f (x) = 2x - cos x = 0 with different iterations (different c's). 
The line y = 2x crosses the cosine curve somewhere near x = f. The intersection 
point where 2x* = cos x* has no simple formula. We start from xo = f and iterate 
x,+ = X, - c(2xn - cos x,) with three diflerent choices of c. 

Take c = 1 or c = l/f '(x,) or update c by Newton's rule c, = l /  f '(x,): 

x0 = S O  c = 1 c = l /  f '(x,) c, = l/ f '(x,) 
X I  = .38 .45063 .45062669 

The column with c = 1 is diverging (repelled from x*). The second column shows 
convergence (attracted to x*). The third column (Newton's method) approaches x* 
so quickly that .4501836 and seven more digits are exact for x3. 

How does this convergence match the prediction? Note that f '(x) = 2 + sin x so 
A = 2.435. Look to see whether the actual errors x, - x*, going down each column, 
are multiplied by the predicted m below that column: 

c =  1 c = 1/(2 + sin 4) c, = 1/(2 + sin x,) 
x0 - x* = 0.05 4.98 10- 4.98 

multiplier m = -  1.4 m = .018 m + 0 (Newton) 

The first column shows a multiplier below - 1. The errors grow at every step. Because 
m is negative the errors change sign-the cobweb goes outward. 

The second column shows convergence with m = .018. It takes one genuine Newton 
step, then c is fixed. After n steps the error is closely proportional to mn = (.018)"- 
that is "linear convergence'' with a good multiplier. 

The third column shows the "quadratic convergence" of Newton's method. 
Multiplying the error by m is more attractive than ever, because m + 0. In fact m 
itself is proportional to the error, so at each step the error is squared. Problem 3.8.31 
will show that (error),. , <  error):. This squaring carries us from to to 
lo-' to "machine E" in three steps. The number of correct digits is doubled at every 
step as Newton converges. 

Note 1 The choice c = 1 produces x,+, = x, - f (x,). This is "successive substitu- 
tion." The equation f (x) = 0 is rewritten as x = x - f (x), and each x, is substituted 
back to produce x,, , . Iteration with c = 1 does not always fail! 

Note 2 Newton's method is successive substitution for f / f ', not f .  Then m x 0. 

Note 3 Edwards and Penney happened to choose the same example 2x = cos x. But 
they cleverly wrote it as x, + , = 4 cos x,, which has IF' I = 14 sin XI< 1. This iteration 
fits into our family with c = i ,  and it succeeds. We asked earlier if its limit is $(.7391). 
No, it is x* = .45O. .. . 
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Note 4 The choice c = l /f  ' ( xo )  is "modified Newton." After one step of Newton's 
method, c is fixed. The steps are quicker, because they don't require a new ff(x,). 
But we need more steps. Millions of dollars are spent on Newton's method, so speed 
is important. In all its forms, f  (x )  = 0 is the central problem of computing. 

3.6 EXERCISES 
Read-through questions 
x,+ , = X: describes, an a . After one step xl = b . 
After two steps x2 = F(xl)= c . If it happens that input = 
output, or x* = d , then x* is a e point. F = x3 has 

f fixed points, at x* = 9 . Starting near a fixed point, 
the x, will converge to it if h < 1. That is because 
x,+, -x* = F(x,) -F(x*) z I . The point is called 

. The x, are repelled if k . For F = x3 the fixed 
points have F '=  I . The cobweb goes from (x,, xo) to 
( , ) to ( , ) and converges to (x*, x*) = m . This 
is an intersection of y = x3 and y = n , and it is super- 
attracting because 0 . 
f (x)= 0 can be solved iteratively by x,+ = x, -cf (x,), in 

which case F'(x*) = P . Subtracting x* = x* -cf(x*), the 
error equation is x,+ , -x* x m( q ). The multiplier is 
m = r . The errors approach zero if s . The choice 
c, = t produces Newton's method. The choice c = 1 is 
"successive u "and c = v is modified Newton. Con- 
vergence to x* is w certain. 

We have three ways to study iterations x,+, = F(x,): 
(1) compute xl  , x2,.. . from different x, (2) find the fixed 
points x* and test IdF/dxl< 1 (3)draw cobwebs. 

In Problems 1-8 start from xo = .6 and xo = 2. Compute 
X, ,x, ,... to test convergence: 

1 X n + l  = x i  -3 2 x,+ 1 = 2xn(1-x,) 

3 & + I  =& 4 xn+l= l / f i  

5 x , + ~= 3xn(1 -x,) 6 x,+, =x;+x,-2 

7 x , + ~=4xn- 1 8 .%,+I = Ixnl 
9 Check dFldx at all fixed points in Problems 1-6. Are they 

attracting or repelling? 

10 From xo = - 1 compute the sequence x,+ = -x:. Draw 
the cobweb with its "cycle." Two steps produce x,,, = x:, 
which has the fixed points 

11 Draw the cobwebs for x,,, =;x,- 1 and x,,, = 1 -)x, 
starting from xo = 2. Rule: Cobwebs are two-sided when 
dF/dx is . 
12 Draw the cobweb for x,+ ,= x i  - 1 starting from the 
periodic point xo = 0. Another periodic point is . 
Start nearby at xo= . l  to see if the iterations are 
attracted too, -1,0, -1, . . . . 

Solve equations 13-16 within 1% by iteration. 

17 For which numbers a does x,, ,= a(x, -x:) converge to 
x* = O?-

18 For which numbers a does x,, ,= a(x, -xi)  converge to 
x* = (a - l)/a? 

19 Iterate x, + ,= 4(xn-xi  ) to see chaos. Why don't the x, 
approach x* =$? 

20 One fixed point of F(x) = x2 -3 is attracting, the other is 
repelling. By experiment or cobwebs, find the basin of xo's 
that go to the attractor. 

21 (important) Find the fixed point for F(x) = ax + s. When 
is it attracting? 

22 What happens in the linear case x,+ ,= ax, + 4 when 
a =  1 and when a = -  l? 

23 Starting with $1000, you spend half your money each year 
and a rich but foolish aunt gives you a new $1000. What is 
your steady state balance x*? What is x* if you start with a 
million dollars? 

24 The US national debt was once $1 trillion. Inflation 
reduces its real value by 5% each year (so multiply by 
a = .95), but overspending adds another $100 billion. What 
is the steady state debt x*? 

25 xn+ = b/xn has the fixed point x* = fi. Show that 
IdF/dx(= 1 at that point-what is the sequence starting 
from xo? 

26 Show that both fixed points of x,+, = xi  + x, -3 are 
repelling. What do the iterations do? 

27 A $5 calculator takes square roots but not cube roots. 
Explain why xn+ ,= converges to $. 
28 Start the cobwebs for x, + ,= sin x, and x, + ,= tan x,. In 
both cases dF/dx = 1 at x* = 0. (a) Do the iterations converge? 
(b) Propose a theory based on F" for cases when F' = 1. 

Solve f (x)= 0 in 29-32 by the iteration x, + ,= x, -cf (x,), to 
find a c that succeeds and a c that fails. 
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33 Newton's method computes a new c = l/f '(x,) at each 
step. Write out the iteration formulas for f (x)=x3-2 =0 
and f(x)=sinx-+=O. 

34 Apply Problem 33 to find the first six decimals of @ 
and n/6. 
35 By experiment find each x* and its basin of attraction, 
when Newton's method is applied to f (x)=x2-5x +4. 
36 Test Newton's method on x2 - 1 =0, starting far out at 
xo = lo6. At first the error is reduced by about m =3. Near 
x* = 1 the multiplier approaches m =0. 
37 Find the multiplier m at each fixed point of x , + ~= 
x, -C(X:-x,). Predict the convergence for different c (to 
which x*?). 
38 Make a table of iterations for c = 1 and c = l /f '(xo) and 
c = l/f'(x,), when f(x) =x2-4  and xo = 1. 
39 In the iteration for x2 -2 =0, find dF/dx at x*: 

(b) Newton's iteration has F(x) =x -f (x)/f '(x). Show 
that F' =0 when f (x)=0. The multiplier for Newton is 
m =0. 

40 What are the solutions of f (x)=x2+2 =0 and why is 
Newton's method sure to fail? But carry out the iteration to 
see whether x, + a. 

41 Computer project F(x) =x -tan x has fixed points where 
tan x* =0. So x* is any multiple of n. From xo =2.0 and 1.8 
and 1.9, which multiple do you reach? Test points in 
1.7 <xo < 1.9 to find basins of attraction to n, 2n, 37r, 4n. 

Between any two basins there are basins for every multiple 
of n. And more basins between these (afractal).Mark them 
on the line from 0 to n. Magnify the picture around xo = 1.9 
(in color?). 

42 Graph cos x and cos(cos x) and cos(cos(cos x)). Also 
( ~ 0 s ) ~ ~ .What are these graphs approaching? 

43 Graph sin x and sin(sin x) and (sin)%. What are these 
graphs approaching? Why so slow? 

3.7 Newton's Method (and Chaos) 

The equation to be solved is f (x) =0. Its solution x* is the point where the graph 
crosses the x axis. Figure 3.22 shows x* and a starting guess x,. Our goal is to come 
as close as possible to x*, based on the information f (x,) and f '(xo). 

Section 3.6 reached Newton's formula for x, (the next guess). We now do that directly. 
What do we see at x,? The graph has height f (xo) and slope ft(x0). We know 

where we are, and which direction the curve is going. We don't know if the curve 
bends (we don't have f "). The best plan is to follow the tangent line, which uses all 
the information we have. 

Newton replaces f (x) by its linear approximation (= tangent approximation): 

We want the left side to be zero. The best we can do is to make the right side zero! 
The tangent line crosses the axis at x,, while the curve crosses at x*. The new guess 
x, comes from f(x,) +f '(xo)(xl -x,) = 0.Dividing by f '(xo) and solving for x, ,this 
is step 1 of Newton's method: 

At this new point, compute f(x, ) and f'(x, )-the height and slope at x, . They 
give a new tangent line, which crosses at x2. At every step we want f (x, + ,) = 0 and 
we settle for f (x,) +f '(x,)(x,+ ,- x,) =0.After dividing by f '(x,), the formula for 
x, + ,is Newton's method. 
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-1.5 -. 5

tangent
line

=.5

.21

Fig. 3.22 Newton's method along tangent lines from xo to x, to x 2.

Linear approximation involves three numbers. They are Ax (across) and Af (up)
and the slope f'(x). If we know two of those numbers, we can estimate the third. It
is remarkable to realize that calculus has now used all three calculations--they are
the key to this subject:

1. Estimate the slope f'(x) from Af/Ax
2. Estimate the change Af from f'(x) Ax
3. Estimate the change Ax from Af/f'(x)

(Section 2.1)
(Section 3.1)
(Newton's method)

The desired Af is -f(x,). Formula (3) is exactly Ax = -f(x,)/f'(x,).

EXAMPLE 1 (Square roots) f(x)= x2 - b is zero at x* = b and also at - b.
Newton's method is a quick way to find square roots-probably built into your
calculator. The slope is f'(x,) = 2x,, and formula (3) for the new guess becomes

x2 -b 1 b
Xn + 1 = Xn -- - X, +-. (4)

2x, 2 2x,

This simplifies to x, +1 = ½(x, + b/x,). Guess the square root, divide into b, and average
the two numbers. The ancient Babylonians had this same idea, without knowing
functions or slopes. They iterated xn. = F(x,):

F(x) = x + -2 x
17and F'(x) = 12

The Babylonians did exactly the right thing. The slope F' is zero at the solution, when
x 2 = b. That makes Newton's method converge at high speed. The convergence test
is IF'(x*)I < 1. Newton achieves F'(x*)= 0-which is superconvergence.
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31. The tangent line from x, crosses the axis at xn+ 1 :

Newton's method xn+ x - (X.) (3)

Usually this iteration x,, = F(x,) converges quickly to x*.
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To find a,start the iteration xn+ ,= f(xn+ 4/xn) at xo = 1. Then x, = f(1 + 4): 

The wrong decimal is twice as far out at each step. The error is squared. Subtracting 
x* = 2 from both sides of x , + ~= F(xn) gives an error equation which displays that 
square: 

This is (error)., ,E $(error):. It explains the speed of Newton's method. 

Remark 1 You can't start this iteration at xo = 0. The first step computes 410 and 
blows up. Figure 3.22a shows why-the tangent line at zero is horizontal. It will 
never cross the axis. 

Remark 2 Starting at x, = - 1, Newton converges to -f i  instead of + f i  That 
is the other x*. Often it is difficult to predict which x* Newton's method will choose. 
Around every solution is a "basin of attraction," but other parts of the basin may be 
far away. Numerical experiments are needed, with many starts x,. Finding basins of 
attraction was one of the problems that led to fractals. 

1 1EXAMPLE 2 Solve -- a = 0 to find x* = - without dividing by a. x a 

Here f (x)= (llx) - a. Newton uses f '(x) = - 1/x2. Surprisingly, we don't divide: 

Do these iterations converge? I will take a = 2 and aim for x* = f.Subtracting 4from 
both sides of (7) changes the iteration into the error equation: 

X ~ + ~ = ~ X . - ~ X ~becomes ~ ~ + , - i = - 2 ( x . - i ) ~ .  (8) 

At each step the error is squared. This is terrific if (and only if) you are close to 
x* = ). Otherwise squaring a large error and multiplying by -2 is not good: 

The algebra in Problem 18 confirrhs those experiments. There is fast convergence if 
0 < xo < 1. There is divergence if x, is negative or xo > 1. The tangent line goes to a 
negative x, . After that Figure 3.22 shows a long trip backwards. 

In the previous section we drew F(x). The iteration xn+, = F(xn) converged to the 
45" line, where x* = F(x*). In this section we are drawing f (x). Now x* is the point 
on the axis where f (x*) = 0. 

To repeat: It is f(x*) = 0 that we aim for. But it is the slope Ff(x*) that decides 
whether we get there. Example 2 has F(x) = 2x - 2x2. The fixed points are x* = f 
(our solution) and x* = 0 (not attractive). The slopes F' (x*) are zero (typical Newton) 
and 2 (typical repeller). The key to Newton's method is Ff= 0 at the solution: 

f '(x) 
"(x). Then Ff(x) = 0 when f (x)= 0.The slope of F(x)= x -- is (f'w2 
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The examples x2 = b and l/x = a show fast convergence or failure. In Chapter 13, 
and in reality, Newton's method solves much harder equations. Here I am going to 
choose a third example that came from pure curiosity about what might happen. The 
results are absolutely amazing. The equation is x2 = - 1. 

EXAMPLE 3 What happens to Newton's method ifyou ask it to solve f (x) = x2 + 1 = O? 

The only solutions are the imaginary numbers x* = i and x* = - i. There is no real 
square root of -1. Newton's method might as well give up. But it has no way to 
know that! The tangent line still crosses the axis at a new point x,,, , even if the 
curve y = x2 + 1 never crosses. Equation (5) still gives the iteration for b = - 1: 

The x's cannot approach i or - i (nothing is imaginary). So what do they do? 
The starting guess xo = 1 is interesting. It is followed by x, = 0. Then x2 divides 

by zero and blows up. I expected other sequences to go to infinity. But the experiments 
showed something different (and mystifying). When x, is large, x,,, is less than half 
as large. After x, = 10 comes x,, ,= i(10 -&)= 4.95. After much indecision and a 
long wait, a number near zero eventually appears. Then the next guess divides by 
that small number and goes far out again. This reminded me of "chaos." 

It is tempting to retreat to ordinary examples, where Newton's method is a big 
success. By trying exercises from the book or equations of your own, you will see 
that the fast convergence to $ is very typical. The function can be much more 
complicated than x2 - 4 (in practice it certainly is). The iteration for 2x = cos x was 
in the previous section, and the error was squared at every step. If Newton's method 
starts close to x*, its convergence is overwhelming. That has to be the main point of 
this section: Follow the tangent line. 

Instead of those good functions, may I stay with this strange example x2 + 1 = O? 
It is not so predictable, and maybe not so important, but somehow it is more interest- 
ing. There is no real solution x*, and Newton's method x,,, = +(x, - llx,) bounces 
around. We will now discover x,. 

A FORMULA FOR x, 

The key is an exercise from trigonometry books. Most of those problems just give 
practice with sines and cosines, but this one exactly fits +(x, - llx,): 

In the left equation, the common denominator is 2 sin 8 cos 8 (which is sin 28). The 
numerator is cos2 0 - sin2 8 (which is cos 28). Replace cosinelsine by cotangent, 
and the identity says this: 

If xo = cot 8 then x, = cot 28. Then x2 = cot 48. Then x, = cot 2" 8. 

This is the formula. Our points are on the cotangent curve. Figure 3.23 starts from 
xo = 2 = cot 8, and every iteration doubles the angle. 

Example A The sequence xo = 1, x, = 0, x2 = m matches the cotangents of ;n/4,;n/2, 
and n. This sequence blows up because x, has a division by xl = 0. 
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X 2  X ,  X 3  x 0 = 2  

Fig. 3.23 Newton's method for x2 + 1 =0.Iteration gives x, =cot 2"O. 

Example B The sequence I/&, -1/fi,I/& matches the cotangents of n/3,2n/3, 
and 4~13. This sequence cycles forever because xo = x2 = x, = . . . . 

Example C Start with a large xo (a small 8). Then x, is about half as large (at 20). 
Eventually one of the angles 4 8,8 8, ... hits on a large cotangent, and the x's go far 
out again. This is typical. Examples A and B were special, when 8/n was or 3. 

What we have here is chaos. The x's can't converge. They are strongly repelled by 
all points. They are also extremely sensitive to the value of 8.After ten steps 0 is 
multiplied by 2'' = 1024. The starting angles 60" and 61" look close, but now they 
are different by 1024". If that were a multiple of 18W, the cotangents would still be 
close. In fact the xlo's are 0.6 and 14. 

This chaos in mathematics is also seen in nature. The most familiar example is the 
weather, which is much more delicate than you might think. The headline "Fore- 
casting Pushed Too Far" appeared in Science (1989). The article said that the snow- 
balling of small errors destroys the forecast after six days. We can't follow the weather 
equations for a month-the flight of a plane can change everything. This is a revolu- 
tionary idea, that a simple rule can lead to answers that are too sensitive to compute. 

We are accustomed to complicated formulas (or no formulas). We are not 
accustomed to innocent-looking formulas like cot 2" 8, which are absolutely hopeless 
after 100 steps. 

CHAOS FROM A PARABOLA 

Now I get to tell you about new mathematics. First I will change the iteration x,+ ,= 
4(xn- llx,) into one that is even simpler. By switching from x to z = l/(l  + x2), each 
new z turns out to involve only the old z and z2: 

This is the most famous quadratic iteration in the world. There are books about it, 
and Problem 28 shows where it comes from. Our formula for x, leads to z,: 

1 - 1 
zn= -- 1 +(cot 2n8)2 = (sin 2n0)2. (11)1 + x,2 
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The sine is just as unpredictable as the cotangent, when 2"8gets large. The new thing 
is to locate this quadratic as the last member (when a = 4) of the family 

Example 2 happened to be the middle member a = 2, converging to ). I would like 
to give a brief and very optional report on this iteration, for different a's. 

.The general principle is to start with a number zo between 0 and 1, and compute 
z, ,z2, z3, . .. . It is fascinating to watch the behavior change as a increases. You can 
see it on your own computer. Here we describe some things to look for. All numbers 
stay between 0 and 1 and they may approach a limit. That happens when a is small: 

for 0 < a < 1 the z, approach z* = 0 
for 1 < a < 3 the z, approach z* = (a - l)/a 

Those limit points are the solutions of z = F(z). They are the fixed points where 
z* = az* - a(z*)'. But remember the test for approaching a limit: The slope at z* 
cannot be larger than one. Here F = az - az2 has F' = a - 2az. It is easy to check 
IF'I < 1 at the limits predicted above. The hard problem-sometimes impossible-
is to predict what happens above a = 3. Our case is a = 4. 

The z's cannot approach a limit when IFt(z*)l> 1. Something has to happen, and 
there are at least three possibilities: 

The z,'s can cycle or Jill the whole interval (0,l) or approach a Cantor set. 

I start with a random number zo, take 100 steps, and write down steps 101 to 105: 

The first column is converging to a "2-cycle." It alternates between x = 342 and 
y = .452. Those satisfy y = F(x) and x = F(y) = F(F(x)). If we look at a double step 
when a = 3.4, x and y are fixed points of the double iteration z , + ~= F(F(z,)). When 
a increases past 3.45, this cycle becomes unstable. 

At that point the period doublesfrom 2 to 4. With a = 3.5 you see a "4-cycle" in 
the table-it repeats after four steps. The sequence bounces from 375 to .383 to 327 
to SO1 and back to 375. This cycle must be attractive or we would not see it. But it 
also becomes unstable as a increases. Next comes an 8-cycle, which is stable in a little 
window (you could compute it) around a = 3.55. The cycles are stable for shorter and 
shorter intervals of a's. Those stability windows are reduced by the Feigenbaum shrink- 
ing factor 4.6692.. .. Cycles of length 16 and 32 and 64 can be seen in physical 
experiments, but they are all unstable before a = 3.57. What happens then? 

The new and unexpected behavior is between 3.57 and 4. Down each line of 
Figure 3.24, the computer has plotted the values of zlool to z2000-omitting the first 
thousand points to let a stable period (or chaos) become established. No points 
appeared in the big white wedge. I don't know why. In the window for period 3, you 


