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Chapter 1: Complex Numbers 

1.1  Introduction 

1.2 The general complex number 

1.3 The modulus and argument of a complex number 

1.4 The polar form of a complex number 

1.5 Addition, subtraction and multiplication of complex numbers of the form ix y  

1.6 The conjugate of a complex number and the division of complex numbers of the 
 form ix y  
 
1.7 Products and quotients of complex numbers in their polar form 

1.8 Equating real and imaginary parts 

1.9 Further consideration of 2 1z z  and 2 1arg( )z z  

1.10 Loci on Argand diagrams 

 
 
 
 
 
This chapter introduces the idea of a complex number.  When you have completed it, you 
will: 

 know what is meant by a complex number; 

 know what is meant by the modulus and argument of a complex number; 

 know how to add, subtract, multiply and divide complex numbers; 

 know how to solve equations using real and imaginary parts; 

 understand what an Argand diagram is; 

 know how to sketch loci on Argand diagrams. 
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1.1 Introduction 

You will have discovered by now that some problems cannot be solved in terms of real 

numbers.  For example, if you use a calculator to evaluate 64  you get an error message.  

This is because squaring every real number gives a positive value; both 2 2( 8)  and  ( 8)   are 
equal to 64. 
 

As 1  cannot be evaluated, a symbol is used to denote it – the symbol used is i. 
 
 
 
 
It follows that 

 64 64 1 64 1 8i.        
 
 
1.2 The general complex number 

The most general number that can be written down has the form i ,x y  where x and y are real 
numbers.  The term ix y  is a complex number with x being the real part and y the 
imaginary part.  So, both 2 3i  and 1 4i   are complex numbers. The set of real numbers, 
  (with which you are familiar), is really a subset of the set of complex numbers,  .  This is 
because real numbers are actually numbers of the form 0i.x   
 

 21 i i 1     
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1.3 The modulus and argument of a complex number 

Just as real numbers can be represented by points on a number line, complex numbers can be 
represented by points in a plane.  The point P(x, y) in the plane of coordinates with axes Ox 
and Oy represents the complex number ix y  and the number is uniquely represented by that 
point.  The diagram of points in Cartesian coordinates representing complex numbers is called 
an Argand diagram. 
 
 
 
 
 
 
 
 
 
 
 
If the complex number ix y  is denoted by z, and hence i ,z x y   z  (‘mod zed’) is defined 

as the distance from the origin O to the point P representing z.  Thus .z OP r   

 
 
 
 
 
The argument of z, arg z, is defined as the angle between the line OP and the positive x-axis – 
usually in the range (π, –π). 
 
 
 
 
 
You must be careful when x or y, or both, are negative. 
 
 

x 

 y 

O 

r 

θ 

P(x, y) 

The modulus of a complex number z 

is given by 2 2z x y   

The argument of a complex number z is given 

by arg ,z   where tan
y
x   
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Example 1.3.1 

Find the modulus and argument of the complex number 1 3i.   
 
Solution 
 
The point P representing this number, z, is 
shown on the diagram. 

 2
2( 1) 3 2z      and 3tan 3.

1
   


 

Therefore, 2πarg .
3

z   

Note that when tan 3,    θ could equal 2π πor .
3 3

    However, the sketch clearly shows 

that θ lies in the second quadrant.  This is why you need to be careful when evaluating the 
argument of a complex number. 
 
 
Exercise 1A 

1. Find the modulus and argument of each of the following complex numbers: 
 

 (a) 1 i,  (b) 3i, (c) 4 ,  (d) 3 i  . 
 
Give your answers for arg z in radians to two decimal places. 
 
 
2. Find the modulus and argument of each of the following complex numbers: 
 
 (a) 3 i  , (b) 3 4i , (c) 1 7 i  . 
 
Give your answers for arg z in radians to two decimal places. 
 
 

x 

 y 

O 

θ 

P  3,1  3  

 1  
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1.4 The polar form of a complex number 

In the diagram alongside, cosx r   and  
sin .y r   

If P is the point representing the complex 
number i ,z x y   it follows that z may be 
written in the form cos i sin .r r   This is 
called the polar, or modulus–argument, 
form of a complex number. 

 

 

 

For brevity, (cos i sin )r    can be written as (r, θ). 
 
 
Exercise 1B 

1. Write the complex numbers given in Exercise 1A in polar coordinate form. 
 
2. Find, in the form i ,x y  the complex numbers given in polar coordinate form by: 

 (a)  3π 3π2 cos isin ,
4 4

z          (b)  2π 2π4 cos i sin .33
   

 
 
 

x 

 y

O

r 

θ 

P(x, y) 

A complex number may be written in the form 
(cos isin ),z r     where   and argz r z    
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1.5  Addition, subtraction and multiplication of complex numbers of the 
form x + iy 

Complex numbers can be subjected to arithmetic operations.  Consider the example below. 
 
Example 1.5.1 

Given that 1 23 4i  and  1 2i,z z    find (a) 1 2 ,z z   (b) 1 2z z  and (c) 1 2.z z  

 
Solution 
 

 1 2 (3 4i) (1 2i)

4 2i.

z z    
 

 1 2 (3 4i) (1 2i)

2 6i.

z z    
 

 

 

 

1 2

2

2

(3 4i)(1 2i)

3 4i 6i 8i

3 2i 8     (since  i 1)

11 2i.

z z   

   

    
 

 

 

 

Exercise 1C 

1. Find 1 2 1 2  and  z z z z  when: 

 
 (a)  1 21 2i  and  2 i,z z     

 
 (b)  1 22 6i  and  1 2i.z z      

 
 
 

(a) 

In general, if  1 1 1 2 2 2i   and  i ,z a b z a b     

 
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 2 1 1 2

( ) i( )

( ) i( )

i( )

z z a a b b

z z a a b b

z z a a b b a b a b

    
    

   
 

(b)

(c) 
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1.6 The conjugate of a complex number and the division of complex 
numbers of the form x + iy 

The conjugate of a complex number iz x y   (usually denoted by * or  z )z  is the complex 

number * i .z x y   Thus, the conjugate of 3 2i   is 3 2i,   and that of 2 i  is 2 i.  On an 

Argand diagram, the point representing the complex number *z  is the reflection of the point 
representing z in the x-axis. 
 

The most important property of *z  is that the product *z z  is real since 

 2 2 2

2 2

* ( i )( i )

i i i

.

zz x y x y

x xy xy y

x y

  

   

 

 

 
 
 
 
Division of two complex numbers demands a little more care than their addition or 
multiplication – and usually requires the use of the complex conjugate. 
 
Example 1.6.1 

Simplify 1

2
,

z
z  where 1 23 4i  and  1 2i.z z     

 
Solution 
 

 
2

2

(3 4i)(1 2i)3 4i
1 2i (1 2i)(1 2i)

3 4i 6i 8i
1 2i 2i 4i

5 10i
5

1 2i.

  
  

  
  
 

  

 

 
 
Exercise 1D 

1. For the sets of complex numbers 1 2 and  ,z z  find 1

2

z
z  where 

 (a)  1 24 2i  and  2 i,z z     

 (b)  1 22 6i  and  1 2i.z z      

 
 

multiply the numerator and denominator of 1

2

z
z  by 2

* ,z  i.e. (1 2i)  

so that the product of the denominator becomes a real number 

 2*zz z  
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1.7 Products and quotients of complex numbers in their polar form 

If two complex numbers are given in polar form they can be multiplied and divided without 
having to rewrite them in the form i .x y  
 
Example 1.7.1 

Find 21zz  if  1
π π2 cos isin
3 3

z    and  2
π π3 cos isin .
6 6

z    

 
Solution 
 

   
 

 

   
 

1 2

2

π π ππ2 cos isin 3 cos i sin
3 3 6 6

π π π π π π π π6 cos cos i sin cos i sin cos i sin sin
3 6 3 6 3 636

π π π π π π π π6 cos cos sin sin i sin cos cos sin3 63 6 3 6 3 6

π π π π6 cos isin
3 6 3 6

π π6 cos isin .
6 6

z z    

   

      

      

 

 

 

Noting that 2arg z is π ,
6

  it follows that the modulus of 1 2z z  is the product of the modulus of 

1z  and the modulus of 2 ,z  and the argument of 1 2z z  is the sum of the arguments of 1 2 and .z z  

 
 
Exercise 1E 

1. (a)  Find 1

2

z
z

 if  1
π π2 cos isin
3 3

z    and  2
π π3 cos isin .
6 6

z    

 (b)  What can you say about the modulus and argument of 1

2
?

z
z  

 

Using the identities: 
cos( ) cos cos sin sin

sin( ) sin cos cos sin

A B A B A B

A B A B A B
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Example 1.7.2 

If    1 1 1 2 2 2,   and  , ,z r z r    show that  1 2 1 2 1 2 1 2cos( ) i sin( ) .z z r r         

 
Solution 
 

 
 

1 2 1 1 1 2 2 2

2
1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

(cos i sin ) (cos i sin )

cos cos i(sin cos cos sin ) i sin sin

(cos cos sin sin ) i(sin cos cos sin )

cos( ) i sin( ) .

z z r r

r r

r r

r r

   

       

       

   

  

     
   

   

 

 
 
 
 
 
 
 
There is a corresponding result for division – you could try to prove it for yourself. 
 
 
 
 
 
 
 
 
 
 

If 1 1 1 2 2 2( , )  and  ( , )z r z r    then 1 2 1 2 1 2( , )z z r r     – with the 

proviso that 2π  may have to be added to, or subtracted from, 1 2   if 

1 2   is outside the permitted range for   

If 1 1 1 2 2 2( , )  and  ( , )z r z r    then 1 1
1 2

2 2
,

z r
z r     

 
 – with the 

same proviso regarding the size of the angle 1 2   
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1.8 Equating real and imaginary parts 

Going back to Example 1.6.1, 1

2

z
z  can be simplified by another method. 

Suppose we let .
i21

i43
i




 ba  Then, 

           (1 2i)( i ) 3 4ia b     
 2 i( 2 ) 3 4i.a b b a       
Now, a and b are real and the complex number on the left hand side of the equation is equal to 
the complex number on the right hand side, so the real parts can be equated and the imaginary 
parts can also be equated: 
        2 3a b   
 and 2 4.b a   

Thus 2  and  1,b a    giving 1 2i   as the answer to ia b  as in Example 1.6.1. 
While this method is not as straightforward as the method used earlier, it is still a valid 
method.  It also illustrates the concept of equating real and imaginary parts. 
 
 
 
 
 
Example 1.8.1 

Find the complex number z satisfying the equation 

 *(3 4i) (1 i) 13 2i.z z      
 
Solution 
 

Let ( i ),z a b   then * ( i ).z a b   
Thus, (3 4i)( i ) (1 i)( i ) 13 2i.a b a b        

Multiplying out, 2 23 4i 3i 4i i i i 13 2i.a a b b a a b b          

Simplifying, 2 3 i( 5 4 ) 13 2i.a b a b       

Equating real and imaginary parts, 

 
2 3 13,

5 4 2.

a b

a b

 
  

 

So, 2  and  3.a b   Hence, 2 3i.z    
 
Exercise 1F 

1. If    1 2
2π π3,   and  2, ,
3 6

z z    find, in polar form, the complex numbers 

 (a)  1 2 ,z z      (b)  1

2
,

z
z      (c)  2

1 ,z      (d)  3
1 ,z      (e)  2

2
1

.
z

z
 

2. Find the complex number satisfying each of these equations: 

  (a) (1 i) 2 3i,z        (b)  ( i)(3 i) 7i 11,z          (c)  *i 2 1.z z    

If i i ,a b c d    where a, b, c and d are real, 
then   and  a c b d   
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1.9 Further consideration of 2 1z z  and 2 1arg( )z z  
 

Section 1.5 considered simple cases of the sums and differences of complex numbers.  
Consider now the complex number 2 1,z z z   where 1 1 1iz x y   and 2 2 2i .z x y    The 

points A and B represent 1 2 and ,z z  respectively, on an Argand diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
Then 2 1 2 1 2 1( ) i( )z z z x x y y       and is represented by the point C 2 1 2 1( , ).x x y y   

This makes OABC a parallelogram.  From this it follows that 

 
1
22 2

2 1 2 1 2 1( ) ( ) ,z z OC x x y y         

that is to say 2 1z z  is the length AB in the Argand diagram.  Similarly 2 1arg( )z z  is the 

angle between OC and the positive direction of the x-axis.  This in turn is the angle between 
AB and the positive x direction. 
 
 
 
 
 
 
 
 
Exercise 1G 

1. Find 2 1z z  and 2 1arg( )z z  in 

 (a)  1 22 3i,  7 5i,z z     

 (b)  1 21 3i,   4 i,z z     

 (c)  1 21 2i,  4 5i.z z       

 
 
 

x 

 y 

O 

A ),(
11

yx  B ),(
22 yx  

C 

If the complex number 1z  is represented by the point A, and the complex 

number 2z  is represented by the point B in an Argand diagram, then 

2 1 ,z z AB   and 2 1arg( )z z  is the angle between AB


 and the positive 

direction of the x-axis 
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1.10 Loci on Argand diagrams 

A locus is a path traced out by a point subjected to certain restrictions.  Paths can be traced 
out by points representing variable complex numbers on an Argand diagram just as they can 
in other coordinate systems. 
 
Consider the simplest case first, when the point P represents the complex number z such that 

.z k  This means that the distance of P from the origin O is constant and so P will trace out 

a circle. 
 
 
 
If instead 1 ,z z k   where 1z  is a fixed complex number represented by the point A on an 

Argand diagram, then (from Section 1.9) 1z z  represents the distance AP and is constant.  It 

follows that P must lie on a circle with centre A and radius k. 
 
 
 
 
Note that if 1 ,z z k   then the point P representing z can not only lie on the circumference 

of the circle, but also anywhere inside the circle.  The locus of P is therefore the region on and 
within the circle with centre A and radius k. 
 
Now consider the locus of a point P represented by the complex number z subject to the 
conditions 1 2 ,z z z z    where 1 2and z z  are fixed complex numbers represented by the 

points A and B on an Argand diagram.  Again, using the result of Section 1.9, it follows that 
AP BP  because 1z z  is the distance AP and 2z z  is the distance BP.  Hence, the locus 

of P is a straight line. 
 
 
 
 
 
 
Note also that if 1 2z z z z    the locus of z is not only the perpendicular bisector of AB, 

but also the whole half plane, in which A lies, bounded by this bisector. 
 
All the loci considered so far have been 
related to distances – there are also 
simple loci in Argand diagrams 
involving angles. 
 
The simplest case is the locus of P 
subject to the condition that arg ,z   
where   is a fixed angle. 
 
 

z k  represents a circle with centre O and radius k 

1z z k   represents a circle with centre 1z and radius k 

1 2z z z z    represents a straight line – the perpendicular 

bisector of the line joining the points 1 2and z z  

x 

 y

O α

P 
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This condition implies that the angle between OP and Ox is fixed ( )  so that the locus of P is 
a straight line. 
 
 
 
 
 
Note that the locus of P is only a half line – the other half line, shown dotted in the diagram 
above, would have the equation arg π ,z    possibly 2π  if π   falls outside the 
specified range for arg .z  
 
In exactly the same way as before, the locus of a point P satisfying 1arg( ) ,z z    where 1z  

is a fixed complex number represented by the point A, is a line through A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note again that this locus is only a half line – the other half line would have the equation 

1arg( ) π ,z z     possibly 2π.  

 
Finally, consider the locus of any point P satisfying 1arg( ) .z z     This indicates that 

the angle between AP and the positive x-axis lies between and ,   so that P can lie on or 
within the two half lines as shown shaded in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 

arg z   represents the half  line through O inclined 
at an angle   to the positive direction of Ox 

1arg( )z z    represents the half  line through the point 1z  

inclined at an angle   to the positive direction of Ox 

x 

 y 

O 

α

P

A

x 

 y 

O 

αA  β
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Exercise 1H 

1. Sketch on Argand diagrams the locus of points satisfying: 

 (a)  3,z       (b)  πarg( 1) ,
4

z        (c)  2 i 5.z     

 
2. Sketch on Argand diagrams the regions where: 

 (a)  3i 3,z        (b) π 5πarg( 4 2i) .
62

z     

 

3. Sketch on an Argand diagram the region satisfying both 1 i 3z     and π0 arg .
4

z   

 
4. Sketch on an Argand diagram the locus of points satisfying both i 1 2iz z     and 

3i 4.z    
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Miscellaneous exercises 1 

1. Find the complex number which satisfies the equation 

  *2 i 4 i,z z    

 where *z  denotes the complex conjugate of z. 
[AQA June 2001] 
 
 
2. The complex number z satisfies the equation 
     3 1 i 1 .z z    

 (a) Find z in the form i ,a b  where a and b are real. 

 (b) Mark and label on an Argand diagram the points representing z and its conjugate, *.z  

 (c) Find the values of * and .z z z  

[NEAB March 1998] 
 
 
3. The complex number z satisfies the equation 

  * *3 2 2i,zz z z    

 where *z  denotes the complex conjugate of z.  Find the two possible values of z, giving 
your answers in the form i .a b  

[AQA March 2000] 
 
 
4. By putting i ,z x y   find the complex number z which satisfies the equation 

  * 1 i2 ,
2 i

z z  


 

 where *z  denotes the complex conjugate of z. 
[AQA Specimen] 
 
 
5. (a) Sketch on an Argand diagram the circle C whose equation is 

   3 i 1.z     

 (b) Mark the point P on C at which z  is a minimum.  Find this minimum value. 

 
 (c) Mark the point Q on C at which arg z  is a maximum.  Find this maximum value. 

[NEAB June 1998] 
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6. (a) Sketch on a common Argand diagram 

   (i)  the locus of points for which 2 3i 3,z     

  (ii)  the locus of points for which 1arg π.
4

z   

 
 (b) Indicate, by shading, the region for which  

   12 3i 3  and  arg π.
4

z z     

[AQA June 2001] 
 
 
7. The complex number z is defined by 

  1 3i .
1 2i

z 


 

 
 (a)  (i)  Express z in the form i .a b  
 
  (ii)  Find the modulus and argument of z, giving your answer for the argument in 
   the form πp  where 1 1.p    
 

 (b) The complex number 1z  has modulus 2 2  and argument 7π .
12

   The complex number 

2z  is defined by 2 1.z z z  

    (i)  Show that 2 2
π4  and arg .
6

z z   

 
   (ii)  Mark on an Argand diagram the points 1 2and P P  which represent 1 2 and ,z z  

         respectively. 
 
  (iii)  Find, in surd form, the distance between 1 2and .P P  

[AQA June 2000] 
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8. (a) Indicate on an Argand diagram the region of the complex plane in which 

    2π0 arg 1 .
3

z    

 
 (b) The complex number z is such that 

     2π0 arg 1
3

z    

  and  π arg 3 π.
6

z    

 
  (i)  Sketch another Argand diagram showing the region R in which z must lie. 
 
 (ii)  Mark on this diagram the point A belonging to R at which z  has its least possible 

value. 
 
 (c) At the point A defined in part (b)(ii), .Az z  

   (i)  Calculate the value of .Az  

 
  (ii)  Express Az  in the form i .a b  

[AQA March 1999] 
 
 
9. (a) The complex numbers z and w are such that 
     4 2i 3 iz     

  and  4 2i .
3 i

w 


 

  Express each of z and w in the form i ,a b  where a and b are real. 
 
 (b)  (i)  Write down the modulus and argument of each of the complex numbers 4 2i  

and 3 i.   Give each modulus in an exact surd form and each argument in radians 
between π and π.  

 
  (ii)  The points O, P and Q in the complex plane represent the complex numbers  

0 0i, 4 2i and 3 i,    respectively.  Find the exact length of PQ and hence, or 
otherwise, show that the triangle OPQ is right-angled. 

[AEB June 1997] 
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Chapter 2: Roots of Polynomial Equations 

2.1  Introduction 

2.2 Quadratic equations 

2.3 Cubic equations 

2.4 Relationship between the roots of a cubic equation and its coefficients 

2.5 Cubic equations with related roots 

2.6 An important result 

2.7 Polynomial equations of degree n 

2.8 Complex roots of polynomial equations with real coefficients 

 
 
 
This chapter revises work already covered on roots of equations and extends those ideas.  
When you have completed it, you will: 
 
 know how to solve any quadratic equation; 

 know that there is a relationship between the number of real roots and form of a 
polynomial equation, and be able to sketch graphs; 

 know the relationship between the roots of a cubic equation and its coefficients; 

 be able to form cubic equations with related roots; 

 know how to extend these results to polynomials of higher degree; 

 know that complex conjugates are roots of polynomials with real coefficients. 
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2.1 Introduction 
 
You should have already met the idea of a polynomial equation.  A polynomial equation of 
degree 2, one with 2x  as the highest power of x, is called a quadratic equation.  Similarly, a 
polynomial equation of degree 3 has 3x  as the highest power of x and is called a cubic 
equation; one with 4x  as the highest power of x is called a quartic equation.  In this chapter 
you are going to study the properties of the roots of these equations and investigate methods 
of solving them. 
 
 
 
2.2 Quadratic equations 

You should be familiar with quadratic equations and their properties from your earlier studies 
of pure mathematics.  However, even if this section is familiar to you it provides a suitable 
base from which to move on to equations of higher degree. 
 
You will know, for example, that quadratic equations of the type you have met have two roots 
(which may be coincident).  There are normally two ways of solving a quadratic equation – by 
factorizing and, in cases where this is impossible, by the quadratic formula. 
 
Graphically, the roots of the equation 2 0ax bx c    are the points of intersection of the 
curve 2y ax bx c    and the line 0y   (i.e.  the x-axis).  For example, a sketch of  part 

of 2 2 8y x x    is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The roots of this quadratic equation are those of ( 2)( 4) 0,x x    which are 2 and 4.x    
 

y 

x 
(–4, 0) 

(0, –8) 

(2, 0)
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A sketch of part of the curve 2 4 4y x x    is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, the curve touches the x-axis.  The equation 2 4 4 0x x    may be written as 

2( 2) 0x    and 2,x   a repeated root. 
 
Not all quadratic equations are as straightforward as the ones considered so far.  A sketch of 
part of the curve 2 4 5y x x    is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This curve does not touch the x-axis so the equation 2 4 5 0x x    cannot have real roots.  

Certainly, 2 4 5x x   will not factorize so the quadratic formula 
2 4

2
b b acx

a

    
 

 has to 

be used to solve this equation.  This leads to 4 16 20
2

x    and, using ideas from 

Chapter1, this becomes 4 2i  or 2 i.
2
    It follows that the equation 2 4 5 0x x    does have 

two roots, but they are both complex numbers.  In fact the two roots are complex conjugates.  
You may also have observed that whether a quadratic equation has real or complex roots 
depends on the value of the discriminant 2 4 .b ac  
 
 
 
 
 

The quadratic equation 2 0ax bx c   , where a, b 
and c are real, has complex roots if 2 4 0b ac   

y 

x 

 (2, 1) 

O 

 (0, 5) 

x 

(0, 4) 

(2, 0)

 y 

 O 
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Exercise 2A 

1. Solve the equations 

 (a)  2 6 10 0,x x           (b) 2 10 26 0.x x    

 
 
 
2.3 Cubic equations 

As mentioned in the introduction to this chapter, equations of the form 3 2 0ax bx cx d     
are called cubic equations.  All cubic equations have at least one real root – and this real root 
is not always easy to locate.  The reason for this is that cubic curves are continuous – they do 
not have asymptotes or any other form of discontinuity.  Also, as ,x   the term 3ax  

becomes the dominant part of the expression and 3ax   (if 0)a  , whilst 3ax   when 

.x    Hence the curve must cross the line 0y   at least once.  If 0,a   then 3ax   

as ,x   and 3ax   as x   and this does not affect the result. 
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A typical cubic equation, 3 2y ax bx cx d     with 0,a   can look like any of the sketches 
below. 
 

 
The equation of this curve has three 
real roots because the curve crosses 
the line 0y   at three points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In each of the two sketch graphs above, the curve crosses the line 0y   just once, indicating 
just one real root.  In both cases, the cubic equation will have two complex roots as well as the 
single real root. 
 
 
Example 2.3.1 

(a) Find the roots of the cubic equation 3 23 3 0.x x x     
(b) Sketch a graph of 3 23 3.y x x x     
 
Solution 
 
 

If 3 2f ( ) 3 3,x x x x      
then f (1) 1 3 1 3 0.      
Therefore 1x   is a factor of f(x). 

2f ( ) ( 1)( 4 3)

( 1)( 3)( 1).

x x x x

x x x

    
   

 

Hence the roots of f(x) = 0 are 1, –3 and –1. 

(a) 

50-5

4

2

0

-2

 y 

 x 

 y 

x  O 

 y 

 x O 

 y 

 x O 

(b)
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Example 2.3.2 

Find the roots of the cubic equation 3 24 26 0.x x x     
 
Solution 
 
Let 3 2f ( ) 4 26.x x x x     
Then f (2) 8 16 2 26 0.      

Therefore 2x   is a factor of f(x), and 2f ( ) ( 2)( 6 13).x x x x     
 
The quadratic in this expression has no simple roots, so using the quadratic formula on 

2 6 13 0,x x    

 

2 4
2

6 36 52
2

6 4i
2

3 2i.

b b acx
a

  

  

 

  

 

Hence the roots of f ( ) 0x   are 2 and 3 2i.   

 
Exercise 2B 

1. Solve the equations 
 (a) 3 2 5 3 0,x x x     

 (b) 3 23 4 2 0,x x x     

 (c) 3 22 3 10 0.x x x     
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2.4 Relationship between the roots of a cubic equation and its coefficients 

As a cubic equation has three roots, which may be real or complex, it follows that if the 
general cubic equation 3 2 0ax bx cx d      has roots ,  and ,    it may be written as 

( )( )( ) 0.a x x x        Note that the factor a is required to ensure that the coefficients of 
3x  are the same, so making the equations identical.  Thus, on expanding the right hand side of 

the identity, 

 
3 2

3 2

( )( )( )

( ) ( ) .

ax bx cx d a x x x

ax a x a x a

  

      

      

       
 

 
The two sides are identical so the coefficients of 2 and x x  can be compared, and also the 
number terms, 

 

( )

( )

.

b a

c a

d a

  
  


   
  
 

 

 
 
 
 
 
 
 
 
 
 
 
Note that   means the sum of all the roots, and that   means the sum of all the 
possible products of roots taken two at a time. 
 
 
Exercise 2C 

1. Find ,    and   for the following cubic equations: 

 (a) 3 27 12 5 0,x x x        (b) 3 23 4 7 2 0.x x x     
 

2. The roots of a cubic equation are ,  and .     If  3,   7
2

   and 5,    state 

the cubic equation. 
 
 

 If the cubic equation 3 2 0ax bx cx d     has 
roots ,  and ,    then 

,

,

b
a

c
a

d
a
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2.5 Cubic equations with related roots 
 
The example below shows how you can find equations whose roots are related to the roots of 
a given equation without having to find the actual roots.  Two methods are given. 
 
Example 2.5.1 

The cubic equation 3 23 4 0x x    has roots ,  and .    Find the cubic equations with: 

(a)  roots 2 , 2  and 2 ,        (b)  roots 2, 2 and 2,          (c)  roots 1 1 1,  and .    

 
 
From the given equation, 

 

3

0

4.







 


  

 
(a) Hence 2 2 6

2 2 4 0

2 2 2 8 32.

 
  

   

 
  

    

 
 

 

 From which the equation of the cubic must be 
  3 26 0 32 0x x x     
                  or  3 26 32 0.x x    
 
(b) 
  ( 2) 6 3 6 3

( 2)( 2) 2 2 (4 3)

4 12

0 12 12 0.

( 2)( 2)( 2) 2 4 8

4 0 12 8

0.

 

    
 

     

      

      
  
   

      
    


 
   

 

 

 

 Hence the equation of the cubic must be 3 23 0.x x   
 

Solution: method 1 
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(c) 

 

1 1 1 1

0 0.
4

1 1 1 1 1

3 3 .
4 4

1 1 1 1 1 .
4 4

   




    




  

  



 


   



  


    






  

 So that the cubic equation with roots 1 1 1,  and     is 

 3 2 3 10 0
4 4

x x x     

                   or  34 3 1 0.x x    
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The second method of finding the cubic equations in Example 2.5.1 is shown below. It is not 
always possible to use this second method, but when you can it is much quicker than the first. 
 
 
 
(a)  As the roots are to be 2 , 2  and 2 ,    it follows that, if 2 ,X x  then a cubic equation in 

X must have roots which are twice the roots of the cubic equation in x.  As the equation in 

x is 3 23 4 0,x x    if you substitute 
2
Xx   the equation in X becomes 

      3 2

3 4 0,
2 2
X X    

                               or  3 26 32 0X X    
 as before. 
 
(b) In this case, if you put 2X x   in 3 23 4 0,x x    then any root of an equation in X 

must be 2 less than the corresponding root of the cubic in x.  Now, 2X x   gives 
2x X   and substituting into 3 23 4 0x x    gives 

   3 2( 2) 3( 2) 4 0X X      

  which reduces to 3 23 0.X X   
 

(c) In this case you use the substitution 1 1or .X x
x X

    For 3 23 4 0x x    this gives 

     3 2
1 13 4 0.
X X

    

 On multiplying by 3,X  this gives 

  31 3 4 0X X    
                               or 34 3 1 0X X    
 as before. 
 
 
 
Exercise 2D 

1. The cubic equation 3 2 4 7 0x x x     has roots ,  and .     Using the first method 
described above, find the cubic equations whose roots are 

 (a) 3 , 3  and 3 ,        (b) 1, 1 and 1,          (c) 2 2 2,  and .    

 
2. Repeat Question 1 above using the second method described above. 
 
3. Repeat Questions 1 and 2 above for the cubic equation 3 22 3 6 0.x x    
 
 

Solution: method 2 
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2.6 An important result 

If you square      you get 

 

 

2

2 2 2

2 2 2

2 2

( ) ( )( )

2 2 2 .

So,   2 ,  or

        

        

     

  

      

        

     

   

 

 
 
 
 
This result is well worth remembering – it is frequently needed in questions involving the 
symmetric properties of roots of a cubic equation. 
 
 
Example 2.6.1 

The cubic equation 3 25 6 1 0x x x     has roots ,  and .     Find the cubic equations with 

(a)  roots ,  and ,        (b)  roots 2 2 2,  and .    
 
[Note that the direct approach illustrated below is the most straightforward way of solving this 
type of problem.] 
 
Solution 
 

 

5

6

1







 


  

 2 1 5 5.                    

 2 2( 1) 1.              

 Hence the cubic equation is 3 26 5 1 0.x x x     
 

    22 22 5 2 6 13.           

  22 2 2        .  using the same result but replacing  with    
 with ,   and  with .   

 Thus  
 

22 2 2

2

2

2 36 (2 1 5) 46.

    

  

 

      

  

 

 

  
2 2 2 2( 1) 1.       

 Hence the cubic equation is 3 213 46 1 0.x x x     
 

 22 2       for three numbers ,  and     

(a) 

(b) 



MFP2 Textbook– A-level Further Mathematics – 6360 

 
32 

2.7 Polynomial equations of degree n 

The ideas covered so far on quadratic and cubic equations can be extended to equations of any 
degree.  An equation of degree 2 has two roots, one of degree 3 has three roots – so an 
equation of degree n has n roots. 
 
Suppose the equation 1 2 3 0n n n nax bx cx dx k        has n roots , , ,     then 

 

,

,

,

b
a

c
a

d
a







 



 







 

until, finally, the product of the n roots 
( 1)

.
n k

a
   

Remember that   is the sum of the products of all possible pairs of roots,   is the 
sum of the products of all possible combinations of roots taken three at a time, and so on. 
 
In practice, you are unlikely to meet equations of degree higher than 4 so this section 
concludes with an example using a quartic equation. 
 
Example 2.7.1 

The quartic equation 4 3 22 4 6 1 0x x x x      has roots , ,  and .      Write down 

(a)  ,      (b) .  

(c)  Hence find 2.  
 
Solution 
 

 4 2.
2

             

 6 3.
2

                 

 Now  2

2 2 2 2

(

2(

2 .

    

         

 





    

          

 



 

 

 
This shows that the ‘important result’ in Section 2.6 can be extended to any number of letters. 

Hence  22

2

2

( 2) 2( 3)

10.

   

   


    

 

(a) 

(b) 

(c) 
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Exercise 2E 

1. The  quartic equation 4 22 3 5 8 0x x x     has roots , ,  and .     

 (a) Find the equation with roots , ,  and .
2 2 2 2

    

 (b) Find 2.  
 
 
2.8 Complex roots of polynomial equations with real coefficients 

Consider the polynomial equation 1 2f ( ) .n n nx ax bx cx k       Using the ideas from 
Chapter 1, if p and q are real, 

 
1f ( i ) ( i ) ( i )

i ,                where  and  are real.

n np q a p q b p q k

u v u v

      
 


 

Now,   1f ( i ) ( i ) ( i )

i

n np q a p q b p q k

u v

      
 

  

since i  raised to an even power is real and is the same as i  raised to an even power, 
making the real part of f ( i )p q  the same as the real part of f ( i ).p q   But i  raised to an 
odd power is the same as i  raised to an odd power multiplied by 1 , and odd powers of i 
comprise the imaginary part of f ( i ).p q  Thus, the imaginary part of f ( i )p q  is 1  times 
the imaginary part of f ( i ).p q  
 
Now if ip q  is a root of f ( ) 0,x   it follows that i 0u v   and so 0 and 0.u v    Hence, 

i 0u v   making f ( i ) 0p q   and ip q  a root of f ( ) 0.x   
 
 
 
 
 
 
It is very important to note that the coefficients in f ( ) 0x   must be real.  If f ( ) 0x   has 
complex coefficients, this result does not apply. 
 
 

If a polynomial equation has real coefficients and if i ,p q  
where p and q are real, is a root of the polynomial, then its 
complex conjugate, i ,p q  is also a root of the equation 
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Example 2.8.1 

The cubic equation 3 23 0,x x x k     where k is real, has one root equal to 2 i.   Find the 
other two roots and the value of k. 
 
Solution 
 
As the coefficients of the cubic equation are real, it follows that 2 i  is also a root. 

Considering the sum of the roots of the equation, if  is the third root, 

 
3(2 i) (2 i) 3,

1
1.





      

 
 

To find k, 

 
(2 )(2 )( 1) 5,

5.

k i i

k

       


 

 
Example 2.8.2 

The quartic equation 4 32 14 15 0x x x     has one root equal to 1 2i.   Find the other three 
roots. 
 
Solution 
 
As the coefficients of the quartic are real, it follows that 1 2i  is also a root.  
Hence   (1 2i) (1 2i)x x     is a quadratic factor of the quartic.  Now, 

 
   2

2

(1 2i) (1 2i) (1 2i) (1 2i) (1 2i)(1 2i)

2 5.

x x x x x

x x

           

  
 

Hence 2 2 5x x   is a factor of 4 32 14 15.x x x    
Therefore 4 3 2 22 14 15 ( 2 5)( ).x x x x x x ax b         
Comparing the coefficients of x3, 

 
2 2

4.

a

a

 


 

Considering the number terms, 

 
15 5

3.

b

b




 

Hence the quartic equation may be written as 

 
2 2

2

( 2 5)( 4 3) 0

( 2 5)( 3)( 1) 0,

x x x x

x x x x

    

    
 

and the four roots are 1 2i,1 2i, 3 and 1.     
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Exercise 2F 

1. A cubic equation has real coefficients.  One root is 2 and another is 1 i.   Find the cubic 
equation in the form 3 2 0.x ax bx c      

 
2. The cubic equation 3 22 9 18 0x x x     has one root equal to 3i.  Find the other two 

roots. 
  
3. The quartic equation 4 3 24 8 9 2 2 0x x x x      has one root equal to 1 i.   Find the other 

three roots. 
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Miscellaneous exercises 2 

1. The equation 
   3 23 4 0,x x px     

 where p is a constant, has roots ,  and ,   where 0.         

 (a)  Find the values of  and .   

 (b)  Find the value of p. 
[NEAB June 1998] 
 
 
2. The numbers ,  and     satisfy the equations 

 and  

2 2 2 22

11.

  
  

  
     

 
 (a) Show that  0.      
 
 (b) The numbers ,  and     are also the roots of the equation 

   3 2 0,x px qx r     

  where p, q and r are real. 

    (i)  Given that 3 4i    and that   is real, obtain and .   

   (ii)  Calculate the product of the three roots. 

  (iii)  Write down, or determine, the values of p, q and r. 
[AQA June 2000] 
 
 
3. The roots of the cubic equation 
   32 3 4 0x x    
 are ,  and .    

 (a) Write down the values of ,  and .           
 
 (b) Find the cubic equation, with integer coefficients, having roots ,   and  .    

[AQA March 2000] 
 
 
4.  The roots of the equation 
   3 27 8 23 30 0x x x     
 are ,  and .    
 
 (a) Write down the value of .     
 
 (b) Given that 1 2i  is a root of the equation, find the other two roots. 
[AQA Specimen] 
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5. The roots of the cubic equation 

   3 2 0,x px qx r     

 where p, q and r are real, are ,  and .    
 
 (a) Given that 3,      write down the value of p. 
 
 (b) Given also that 
   2 2 2 5,       

   (i)  find the value of q, 

  (ii)  explain why the equation must have two non-real roots and one real root. 
 
 (c) One of the two non-real roots of the cubic equation is 3 4i.  

   (i)  Find the real root. 

  (ii)  Find the value of r. 
[AQA March 1999] 
 
 
6. (a) Prove that when a polynomial  f x  is divided by ,x a  the remainder is  f .a  

 
 (b) The polynomial  g x  is defined by 

     5 3 2g 16 12 1,x x px qx x      

  where p and q are real constants. When  g x  is divided by i,x   where i 1,   the 

remainder is 3. 

   (i)  Find the values of p and q. 

  (ii)  Show that when  g x  is divided by 2 i,x   the remainder is 6i.  

[AQA June 1999] 
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Chapter 3: Summation of Finite Series 

3.1  Introduction 

3.2 Summation of series by the method of differences 

3.3 Summation of series by the method of induction 

3.4 Proof by induction extended to other areas of mathematics 

 
 
 
 
 
 
This chapter extends the idea of summation of simple series, with which you are familiar from 
earlier studies, to other kinds of series.  When you have completed it, you will: 
 
 know new methods of summing series; 

 know which method is appropriate for the summation of a particular series; 

 understand an important method known as the method of induction; 

 be able to apply the method of induction in circumstances other than in the summation of 
series. 
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3.1 Introduction 

You should already be familiar with the idea of a series – a series is the sum of the terms of a 
sequence.  That is, the sum of a number of terms where the terms follow a definite pattern. 
 
For instance, the sum of an arithmetic progression is a series.  In this case each term is bigger 
than the preceeding term by a constant number – this constant number is usually called the 
common difference.  Thus, 

 2 5 8 11 14     

is a series of 5 terms, in arithmetic progression, with common difference 3. 
 
The sum of a geometric progression is also a series.  Instead of adding a fixed number to find 
the next consecutive number in the series, you multiply by a fixed number (called the 
common ratio).  Thus, 

 2 6 18 54 162 486      

is a series of 6 terms, in geometric progression, with common ratio 3. 
 
A finite series is a series with a finite number of terms.  The two series above are examples of 
finite series. 
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3.2 Summation of series by the method of differences 
 
Some problems require you to find the sum of a given series, for example 

 sum the series   
1 1 1 1 .

1 2 2 3 3 4 1n n
   

   
  

In others you have to show that the sum of a series is a specific number or a given expression.  
An example of this kind of problem is 

 show that  
1 1 1 1 11 .

1 2 2 3 3 4 11 nn n
     

   
  

 
The method of differences is usually used when the sum of the series is not given.  Suppose 

you want to find the sum, 
1

,
n

r
r

u

  of a series 

 1 2 3 nu u u u     

where the terms follow a certain pattern.  The aim in the method of differences is to express 

the thr  term, which will be a function of r (just as  
1

1r r 
 is the thr  term of the first series 

above), as the difference of two expressions in r of the same form.  In other words, ru  is 

expressed as    f f 1r r  , or possibly    f 1 f ,r r   where  f r  is some function of r.  If 

you can express ru  in this way, it can be seen that setting 1r   and then 2r   gives 

 
       
   

1 2 f 1 f 2 f 2 f 3

f 1 f 3 .

u u    

 
 

If this idea is extended to the whole series, then 
        11 f 1 f 2r u    

 

   
   

   
   

2

3

1

2 f 2 f 3

3 f 3 f 4

1 f 1 f

f f 1

n

n

r u

r u

r n u n n

r n u n n



  

  

    

   

 
 

Now, adding these terms gives 

 
             

       
1 2 3 1 f 1 f 2 +f 2 f 3 +f 3 f 4 +f 4

f 1 f +f f 1 .

n nu u u u u

n n n n

        

    




 

The left hand side of this expression is the required sum of the series, 
1

.
n

r
r

u

   On the right 

hand side, nearly all the terms cancel out:        f 2 , f 3 , f 4 , , f n  all cancel leaving just 

   f 1 f 1n   as the sum of the series. 
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Example 3.2.1 

Find the sum of the series  
1 1 1 1 .

1 2 2 3 3 4 1n n
   

   
  

 

Solution 
 
Clearly, this is not a familiar standard series, such as an arithmetic or geometric series.  Nor is 
the answer given.  So it seems that the method of differences can be applied. 

As above, the thr  term, ,ru  is given by  
1 .

1r r 
  We need to try to split up .ru   The only 

sensible way to do this is to express  
1

1r r 
 in partial fractions.  Suppose 

  
1 .

11
A B
r rr r

 


 

Then, 1 ( 1) .A r Br    Comparing the coefficients of r, 0.A B    Comparing the constant 
terms, 1.A    Hence 1B    and 

  
1 1 1 .

11ru
r rr r

  


 

Hence, in this case the  f r  mentioned previously would be 1 ,
r

 with   1f 1 ,
1

r
r

 


 and so 

on.  Now, writing down the series term by term, 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Adding the columns, the left hand side becomes 
1

1 .
( 1)

n

r r r    Because the 1 1, ,  etc.
2 3

 terms 

cancel, the right hand side becomes 
1

1 ,
1n




 namely the first left hand side term and the last 

right hand side term.  Hence, 

 

1

1 11
( 1) 1

( 1) 1
1

.
1

n

r r r n

n
n

n
n


 

 

 







 

1 1 1 1 11
1 2 1 1 1 1 2

1 1 1 1 12
2 3 2 2 1 2 3

1 1 1 1 13
3 4 3 3 1 3 4

1 1 1 1 11
( 1) 1 ( 1) 1 1

1 1 1
( 1) 1

r

r

r

r n
n n n n n n

r n
n n n n
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Example 3.2.2 

Show that    2 22 2 31 1 4 .r r r r r      Hence find 3

1

.
n

r

r

  

 

Solution 
 
The left hand side of the identity has a common factor, 2.r  

 

       

   

 

2 2 2 22 2 2

2 2 2

2 2 2

2

3

1 1 1 1

2 1 2 1

2 1 2 1

4

4 .

r r r r r r r

r r r r r

r r r r r

r r

r

        
       
       





 

Now, if  2 2f ( ) 1 ,r r r   then 

 
   
 

2 2

22

f ( 1) 1 1 1

1 ,

r r r

r r

    

 
 

so that 34r is of the form  f 1 f ( ).r r    Listing the terms in columns, as in Example 3.2.1, 

 
 
 
 
 
 
 
 
 
 
 
 
 
Adding the columns, it can be seen that the left hand side is 

      3 3 3 3 3

1

4 1 4 2 4 3 4 4 .
n

r

n n


          

Summing the right hand side, all the terms cancel out except those shaded in the scheme 

above, so the sum is    22 2 21 0 1 .n n      Hence, 

 
   
 

23 2 2 2

1

22

4 1 0 1

1 .

n

r

r n n

n n


   

 


 

Hence,  23 2

1

1 1 , as required.
4

n

r

r n n


   

   
   
   

         
   

3 2 2 2 2

3 2 2 2 2

3 2 2 2 2

3 2 2 22

2 23 2 2

1 4 1 1 2 0 1

2 4 2 2 3 1 2

3 4 3 3 4 2 3

1 4 1 1 2 1

4 1 1 .

r

r

r

r n n n n n n

r n n n n n n
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In both Examples 3.2.1 and 3.2.2, one term on each line cancelled out with a term on the next 
line when the addition was done.  Some series may be such that a term in one line cancels 
with a term on a line two rows below it. 
 
Example 3.2.3 

Sum the series   
1 1 1 1 .

1 5 3 7 5 9 2 1 2 3n n
   

    
  

 
Solution 
 

As in Example 3.2.1, the way forward is to express   
1

2 1 2 3n n 
 in partial fractions. 

Let    
1 .

2 1 2 32 1 2 3
A B

r rr r
 

  
 

Multiplying both sides by   2 1 2 3 ,r r   

    1 2 3 2 1 .A r B r     

Comparing the coefficients of r, 2 2 0,A B   so .A B    Comparing the constant terms, 

1 3 .A B    Hence 1 1 and .
4 4

A B     Thus, 

       1 1 1 1 1 .
4 2 1 4 2 32 1 2 3 r rr r

 
  

 

Now substitute 1, 2, 3,r    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
   

   
 

   

    

1 1 1 1 11
1 5 4 1 4 5

1 1 1 1 12
3 7 4 3 4 7

[note that nothing will cancel at this stage]

1 1 1 1 13
5 9 4 5 4 9

1 1[note that  will cancel on the first row and the third row]
4 5

1 1 1 1 14
7 11 4 7 4 11

1 1 12
4 22 5 2 1

r

r

r

r

r n
n n

  


  


  


  


  
 

  

   
        

      

1 1
5 4 2 1

1 1 1 1 11
4 2 3 4 2 12 3 2 1

1 1 1 1 1 .
4 2 1 4 2 32 1 2 3

n n

r n
n nn n

r n
n nn n
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There will be two terms left at the beginning of the series when the columns are added, 

   1 1 1 1 and .
4 1 4 3

  Likewise, there will be two terms left at the end of the series – the right 

hand part of the 1 and  r n r n    rows. 
Therefore, addition gives

 
      1 1 1 1 1 1 1 1

1 5 3 7 5 9 4 1 4 32 1 2 3n n
      

    
    1 1 1 1

4 2 1 4 2 3n n


 

 

 

 
  

 
  

  

1 1 1 11
4 3 2 1 2 3

1 4 2 3 2 1
4 3 2 1 2 3

4 11 4
4 3 2 1 2 3

1 1 .
3 2 1 2 3

n n

n n
n n

n

n n

n
n n

       
           
  

       
     

 

 

Exercise 3A 

1. (a) Simplify    1 1 .r r r r    

 (b) Use your result to obtain 
1

.
n

r

r

  

 
 

2. (a) Show that 1 1 3 .
( 1)( 2) ( 1)( 2)( 3) ( 1)( 2)( 3)r r r r r r r r r r

 
       

 

 (b) Hence sum the series 
1

1
.

( 1)( 2)( 3)

n

r r r r r     

 
 

3. (a) Show that    3 3 21 1 6 2.r r r      

 (b) Deduce 2

1

.
n

r

r
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3.3 Summation of a series by the method of induction 

The method of induction is a method of summing a series of, say, n terms when the sum is 
given in terms of n.  Suppose you have to show that the sum of n terms of a series is S(n).  If 
you assume that the summation is true for one particular integer, say k, where ,k n  then you 
are assuming that the sum of the first k terms is S(k).  You may think that this rather begs the 
question but it must be understood that the result is assumed to be true for only one value of 
n, namely .n k   You then use this assumption to prove that the sum of the series to 1k   
terms is  1S k   – that is to say that by adding one extra term, the next term in the series, the 

sum has exactly the same form as S(n) but with n replaced by 1.k    Finally, it is 
demonstrated that the result is true for 1.n    To summarise: 
 
 
 
 
 
 
Statement 1 shows that, by putting 1k   (which is known to be true from Statement 2), the 
result must be true for 2;n   and Statement 1 shows that by putting 2k   the result must be 
true for 3;n   and so on.  By building up the result, it can be said that the summation result is 
true for all positive integers n. 
 
There is a formal way of writing out the method of induction which is shown in the examples 
below.  For convenience, and comparison, the examples worked in Section 3.2 are used again 
here. 
 
Example 3.3.1 

Show that  1

1 .
11

n

r

n
nr r


  

 
Solution 
 
Assume that the result is true for ;n k  that is to say 

  
1 1 1 1 .

1 2 2 3 3 4 11
k

kk k
    

   
  

Adding the next term to both sides, 

        
1 1 1 1 1 1 .

1 2 2 3 3 4 11 1 2 1 2
k

kk k k k k k
      

       
  

Then 

     
 

  

  

1

1

2

1 1
11 1 2

2 1

1 2

2 1
1 2

k

r

k
kr r k k

k k

k k

k k
k k




 

  

 


 

 
 

  

1 Assume that the result of the summation is true for n k  
and prove that it is true for 1n k   

2 Prove that the result is true for 1n   
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1 1

1 2

1
2

1 ,
1 1

k k

k k

k
k

k
k

 


 





 

 

which is of the same form but with 1k   replacing k.  Hence, if the result is true for ,n k  it 

is true for 1.n k    But it is true for 1n   because the left hand side is 1 1 ,
1 2 2




 and the 

right hand side is 1 1 .
1 1 2




  Therefore the result is true for all positive integers by induction. 

 
 
 
Example 3.3.2 

Show that  23 2

1

1 1 .
4

n

r

r n n


   

 
Solution 
 
Assume that the result is true for ,n k  that is to say 

  3 2 2

1

1 1 .
4

k

r

r k k


   

Then, adding the next term to both sides 

 

   

   

 

   

   

1 2 33 2

1

2 2

2 2

2 2

22

1 1 1
4

1 1 4 1
4
1 1 4 4
4
1 1 2
4
1 1 1 1 ,
4

k

r

r k k k

k k k

k k k

k k

k k




   

     

     

  

     



 

which is of the same form but with 1k   replacing k.  Hence, if the result is true for ,n k  it 

is true for 1.n k    But it is true for 1k   because the left hand side is 31 1,  and the right 

hand side is 2 21 1 2 1.
4
     Therefore the result is true for all positive integers by induction. 
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Exercise 3B 

1. Prove the following results by the method of induction: 

 (a)           11 2 2 3 3 4 1 1 2 .
3

n n n n n            

 (b)   2 2 2 2 11 2 3 1 2 1 .
6

n n n n        

 (c)     
1

12 1 2 7 .
6

n

r

r r n n n


     

 (d)  
1

! 1 ! 1.
n

r

r r n
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3.4 Proof by induction extended to other areas of mathematics 

The method of induction is certainly useful in the summation of series but it is not confined to 
this area of mathematics.  This chapter concludes with a look at its use in three other 
connections – sequences, divisibility and de Moivre’s theorem for positive integers. 
 
Example 3.4.1 – application to sequences 

A sequence 1 2 3, , ,u u u   is defined by  1 1
23 3 1 .n
n

u u n
u     

Prove by induction that for all 
12 11, .

2 1

n

n n
n u

  


 

 
Solution 
 
Assume that the result is true for ,n k  that is to say 

 
12 1.

2 1

k

k k
u

 


 

Then, using the relationship given, 

 
 

   

1

1

1

1

1

23

23
2 1
2 1

2 2 1
3

2 1

3 2 1 2 2 1

2 1

k
k

k

k

k

k

k k

k

u
u









 

 




 



  




 

 

 

 

 

1 1

1

1

1

2

1

1 1

1

3 2 3 2 2

2 1

2 2 1

2 1

2 1
2 1

2 1.
2 1

k k

k

k

k

k

k

k

k

 











 



   




 









 

which is of the same form as ku but with 1k   replacing k.  Hence, if the result is true for 

,n k  it is true for 1.n k    But when 
1 1

1 1
2 11, 3
2 1

k u
   


 as given.  Therefore the 

result is true for all positive integers 1n   by induction. 
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Example 3.4.2 – application to divisibility 

Prove by induction that if n is a positive integer, 23 7n   is divisible by 8. 
 
Solution 
 
The best approach is a little different to that used so far. 
 
Assume that the result is true for ,n k  in other words that 

 23 7k   is divisible by 8. 

When 1n k   the expression is  2 13 7.k    Consider    2 1 23 7 3 7 ,k k     the difference 

between the values when  and 1.n k n k     This expression is equal to 2( 1) 23 3k k   

 
 

 

2 2 2

2 2 2

2 2

2

3 3

3 3 3

3 3 1

8 3 .

k k

k k

k

k

 

  

 

 

 

Thus, if  23 7k   is divisible by 8, and clearly 28 3 k  is divisible by 8, it follows that 
 2 13 7k   is also divisible by 8.  In other words, if the result is true for ,n k  it is true for 

1.n k    But for 21, 3 7 16n     and is divisible by 8.  Hence, 23 7n   is divisible by 8 
for all positive integers n by induction. 
 
 

Example 3.4.3 – application to de Moivre’s theorem for positive integers. 

Prove by induction that for integers 1,n    cos i sin cos i sin .
n

n n       

 
Solution 
 
Assume that the result is true for ,n k  that is to say 

  cos i sin cos i sin .
k

k k       

Multiplying both sides by cos i sin ,   

      
 

   
   

1 2

2

cos i sin cos i sin cos i sin cos i sin

cos i sin cos cos i sin cos i sin cos i sin sin

cos cos sin sin i sin cos cos sin i 1

cos 1 isin 1 ,

k

k

k k

k k k k

k k k k

k k

       

         

       

 



    

    

       
   

which is of the same form but with 1k   replacing k.  Hence, if the result is true for n k  it is 

true for 1.n k    But when  11, cos i sin cos i sin .k          Therefore the result is 

true for all positive integers n by induction. 
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Exercise 3C 

 
1. Prove the following results by the method of induction – in all examples n is a positive 

integer: 

 (a) 3n n  is divisible by 6. 

 (b) 112 2 5n n   is divisible by 7. [Hint: consider    f 1 5fn n   where 

  1f 12 2 5 ]n nn     

 (c)   1d .
d

n nx nx
x

    [Hint: use the formula for differentiating a product] 

 (d) 1nx   is divisible by 1.x   
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Miscellaneous exercises 3 

1. Use the identity  
1 1 1

11 r rr r
 


 

 to show that   
1

1 .
11

n

r

n
nr r




  

[AQA June 1999] 
 
 

2. (a) Use the identity    2 23 2 24 1 1r r r r r     

  to show that  23 2

1

4 1 .
n

r

r n n


   

 

 (b) Hence find  2

1

2 2 1 ,
n

r

r r


  

  giving your answer as a product of three factors in terms of n. 
[AQA June 2000] 
 
 
3. Prove by induction that 

    1

1

1 33 2 1 .
4 4

n n
r

r

r n



     

[AQA March 1999] 
 
 
4. Prove by induction, or otherwise, that 

      
1

! 1 ! 1.
n

r

r r n


     

[NEAB June 1998] 
 
 

5. Prove by induction that for all integers 0, 7 2nn      is divisible by 3. 

[AQA Specimen] 
 
 
6. Use mathematical induction to prove that 

       2

1

1 3 2 1
n

r

r r n n


     

 for all positive integers n. 
[AEB June 1997] 
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7. A sequence 1 2 3, , ,u u u   is defined by 

   
1

1

2,

12 , 1.n
n

u

u n
u



  
 

 Prove by induction that for all 1,n   

   1.n
nu

n
  

[AQA June 1999] 
 
 
 

8. Verify the identity       
2 1 2 1 2 .

1 1 1 1
r r

r r r r r r
  
   

 

  
 Hence, using the method of differences, prove that 

       
2

2 3 2 1 .
21 1 1

n

r

n
r r n n



 
    

[AEB January 1998] 
 
 
9. The function f is defined for all non-negative integers r by 

     2f 1.r r r    

 (a) Verify that    f f 1r r Ar    for some integer A, stating the value of A. 

  
 (b)  Hence, using the method of differences, prove that 

    2

1

1 .
2

n

r

r n n


   

[AEB January 2000] 
 
 
10. For some value of the constant A, 

        
1

3 2 3 2 .
1 2 1 2

n

r

r nA
r r r n n



  
     

  
 (a) By setting 1,n   or otherwise, determine the value of A. 
  
 (b) Use mathematical induction to prove the result for all positive integers n. 
  
 (c) Deduce the sum of the infinite series 

     
1 4 7 3 2 .

1 2 3 2 3 4 3 4 5 1 2
n

n n n
    

       
   

[AEB June 2000] 
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Chapter 4: De Moivre’s Theorem and its Applications 

 

4.1  De Moivre’s theorem 

4.2 Using de Moivre’s theorem to evaluate powers of complex numbers 

4.3 Application of de Moivre’s theorem in establishing trigonometric identities 

4.4 Exponential form of a complex number 

4.5 The cube roots of unity 

4.6 The nth roots of unity 

4.7 The roots of ,nz   where   is a non-real number 

 
This chapter introduces de Moivre’s theorem and many of its applications.  When you have 
completed it, you will: 
 
 know the basic theorem; 

 be able to find shorter ways of working out powers of complex numbers; 

 discover alternative methods for establishing some trigonometric identities; 

 know a new way of expressing complex numbers; 

 know how to work out the nth roots of unity and, in particular, the cube roots; 

 be able to solve certain types of polynomial equations. 
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4.1 De Moivre’s theorem 

In Chapter 3 (section 3.4), you saw a very important result known as de Moivre’s theorem.  It 
was proved by induction that, if n is a positive integer, then 

  cos i sin cos i sin .
n

n n       

De Moivre’s theorem holds not only when n is a positive integer, but also when it is negative 
and even when it is fractional. 
 
Let n be a negative integer and suppose .n k   Then k is a positive integer and 

 

   

 

cos i sin cos i sin

1

cos i sin

1 .
cos i sin

n k

k

k k

   

 

 

  







 

 
Some of the results obtained in Chapter 1 can now be put to use.  In order to remove i from 
the denominator of the expression above, the numerator and denominator are multiplied by 
the complex conjugate of the denominator, in this case cos i sin .k k   Thus, 

 

   

2 2 2

2 2

1 1 cos i sin
cos i sin cos i sin cos i sin

cos i sin
cos i sin cos i sin cos i sin
cos i sin

cos sin
cos i sin

cos i sin

cos i sin ,                   as require

k k
k k k k k k

k k
k k k k k k
k k
k k

k k

k k

n n

 
     

 
     
 
 

 
 

 

 
  


  



 

   

  d.  
 

If n is a fraction, say 
p
q

 where p and q are integers, then 

 
[  is an integer]cos i sin cos i sin

cos i sin .

    
 

 

q

q
p p pθ pθ
θ θ q q

q q q q

pθ pθ

 

But p is also an integer and so 

  cos i sin cos i sin .
p

p p       

Taking the thq  root of both sides, 

  cos i sin cos i sin .
p
qp p

q q
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It is important to point out at this stage that cos i sin
p p
q q
   is just one value of  

 cos i sin .
p
q    A simple example will illustrate this.  If π, 1 and 2,p q     then 

  
1
2 1 1

2 2cos π i sin π cos π i sin π

i.

  


 

But    
1
2cos π i sin π 1 cos π 1 and sin π 0       and 1 i.    So i is only one value 

of  
1
2cos π i sin π .   There are, in fact, q different values of  cos π i sin π

p
q  and this will be 

shown in section 4.6. 
 
 
 
 
 
 
 
 

  cos i sin cos i sin
n

n n       

for positive and negative integers, and fractional values of n 
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4.2 Using de Moivre’s theorem to evaluate powers of complex numbers 

One very important application of de Moivre’s theorem is in the addition of complex numbers 

of the form  i .
n

a b   The method for doing this will be illustrated through examples. 

Example 4.2.1 

Simplify  3π πcos i sin .
6 6
  

 
Solution 
 

It would, of course, be possible to multiply π πcos i sin
6 6
  by itself three times, but this would 

be laborious and time consuming – even more so had the power been greater than 3.  Instead, 

 

 3π π 3π 3πcos i sin cos i sin
6 6 6 6

π πcos i sin
2 2

0 i

i.
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Example 4.2.2 

Find  10
3 i  in the form i .a b  

 
Solution 
 

Clearly it would not be practical to multiply  3 i  by itself ten times.  De Moivre’s 

theorem could provide an alternative method but it can be used only for complex numbers in 

the form cos isin ,   and 3 i  is not in this form.  A technique introduced in Chapter 1 
(section 1.4) can be used to express it in polar form. 
 

On an Argand diagram, 3 i  is represented by the 

point whose Cartesian coordinates are  3,1 . 

Now,  2 23 1 2r     and 1tan
3

   so that π .
6

   

Thus,   π π3 i 2 cos i sin
6 6

    

and      

 

 

1010 10
note that 2 is raised to the power 10 as well

10

π π3 i 2 cos i sin            
6 6

10π 10π2 cos i sin
6 6

1 i 31024
2 2

512 1 i 3 .

  

 

 
  

 

 

 

x 

 y

O

r 

θ 

3 i

3  

1 
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Example 4.2.3 

Simplify  3π πcos i sin .
6 6
  

 
Solution 
 
De Moivre’s theorem applies only to expressions in the form cos i sin   and not 
cos i sin ,   so the expression to be simplified must be written in the form 

   π πcos i sin .
6 6

    

 

     
   
   

33
π π π πcos i sin cos i sin
6 6 6 6

3π 3πcos i sin
6 6

π πcos i sin
2 2

π πcos i sin
2 2

i.

       

   

   

 

 

 

 

Note that it is apparent from this example that  cos i sin cos i sin .
n

n n        It is very 

important to realise that this is a deduction from de Moivre’s theorem and it must not be 
quoted as the theorem. 
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Example 4.2.4 

Find 
 3

1

2 2 3 i 
 in the form i .a b  

 
Solution 
 

The complex number 2 2 3 i   is represented 
by the point whose Cartesian coordinates are 

 2,2 3  on the Argand diagram shown here. 

 

Hence,    22
2 2 3 16 4,r       and 2 3tan tan

2
      so that 2π .

3
    Thus 

 

 
 

 
   
   

 

3

3

3

3

1 2 2 3 i
2 2 3 i

2π 2π4 cos i sin
3 3

2π 2π4 cos 3 isin 3
3 3

1 cos 2π i sin 2π
64
1 1 0
64
1 .
64







  
 

    
        

     

 



 

 
 
Exercise 4A 

1. Prove that  cos i sin cos i sin .
n

n n       

 
2. Express each of the following in the form i :a b  

 (a)   5cos3 isin 3   (b)   10
π πcos i sin
5 5
  (c)  2

π πcos i sin
4 4
  

 (d)   61 i  (e)   4
2 2i  (f)  

 5
1

1 3 i
 

 (g)   93 3i  

 

α 

x 

 y 

O 

r 
θ 

 2, 2 3
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4.3 Application of de Moivre’s theorem in establishing trigonometric 
identities 

 
One way of showing how these identities can be derived is to use examples.  The same 
principles are used whichever identity is required. 
 
Example 4.3.1 

Show that 3cos3 4cos 3cos .     
 
Solution 
 
There are several ways of establishing this result.  The expansion of  cos A B  can be used 

to express cos 2  in terms of cos  setting and .A B     Similarly, the expansion of 

 cos 2   can be used to give cos3  in terms of cos .   Using de Moivre’s theorem gives 

a straightforward alternative method. 

 

 
     

 3

2

3

2 33 2

3 2 2 3

using the binomial expansion of 

using i 1

cos3 isin 3 cos i sin

cos 3cos i sin 3cos i sin i sin

cos 3i cos sin 3cos sin i sin

.

p q

   

     

     



 

  

   

  

   

  

 

 
Now cos3  is the real part of the left-hand side of the equation, and the real parts of both 
sides can be equated, 

   2 2

3 2

3 2 since cos sin 1

cos3 cos 3cos sin

cos 3cos 1 cos             

34cos 3cos .

 

   

  

 

 

 

     

 

 

 
Note that this equation will also give sin 3  by equating the imaginary parts of both sides of 
the equation. 
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Example 4.3.2 

Express tan 4  in terms of tan .  
 
Solution 
 

sin 4tan 4
cos 4

   so expressions for sin 4  and cos 4   in terms of sin  and cos   must be 

established to start with.  Using de Moivre’s theorem, 

 
       

 

2

4

2 3 44 3 2

4 3 2 2 3 4

using the binomial expansion

using i 1

cos 4  i sin 4 cos i sin

cos 4cos i sin 6cos i sin 4cos i sin i sin

cos 4i cos sin 6cos sin 4i cos sin sin

   

       

       

 

  

    

   

  

 

 
Equating the real parts on both sides of the equation, 

 4 2 2 4cos 4 cos 6cos sin sin ,        
and equating the imaginary parts, 

 3 3sin 4 4cos sin 4cos sin .       
 

Now, 

3 3

4 2 2 4

sin 4tan 4
cos 4

4cos sin 4cos sin .
cos 6cos sin sin

 
   

   




 

 

 

Dividing every term by 4cos   gives 

 

3

3

2 4

2 4

sin sin4 4
cos costan 4 .

sin sin1 6
cos cos

 
 
 
 




 
 

But sintan
cos

   so 

 
3

2 4
4 tan 4 tantan 4 .

1 6 tan tan
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Exercise 4B 

1. Express sin 3  in terms of sin .  
 
2. Express tan 3  in terms of tan .  
 
3. Express sin 5  in terms of sin .  
 

4.  Show that  6 4 2cos 6 32cos 48cos 18cos 1       . 
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So far sin , cos  and tann n n    have been expressed in terms of sin , cos  and tan .     De 
Moivre’s theorem can be used to express powers of sin , cos  and tan    in terms of sines, 
cosines and tangents of multiple angles.  First some important results must be established. 
 
Suppose cos i sinz    .  Then 

  
   

11 1 cos isin

cos i sin

z
z

 

 

   

   
 

    cos i sin .    

So,                                         cos i sinz     

  1 cos i sin .
z

    

Adding, 1 2cos ,z
z

   

and subtracting, 1 2isin .z
z

   

 
 
 
 
 
 
 

Also,  
 

   

cos isin cos isin

1 cos isin

cos isin

cos isin .

nn

nn
n

z n n

z
z

n n

n n

   

 

 
 



   

  

   

 

 

Combining 1 and n
n

z
z

 as before, 

 1 2cos ,n
n

z n
z

   

 1 2i sin .n
n

z n
z

   

 
 
 
 
 
 
 
A common mistake is to omit the i in 2i sin ,n  so make a point of remembering this result 
carefully. 

If cos i sinz     
1 2cosz
z

   

1 2isinz
z

   

If cos isin ,z     
1 2cosn
n

z n
z

   

1 2i sinn
n

z n
z
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Example 4.3.3 

Show that  5 1cos cos5 5cos3 10cos .
16

       

 
Solution 
 
Suppose cos i sin .z     

Then 1 2cosz
z

   

and    
         

     

5
5

2 3 4 5
5 4 3 2

3 5
5 3

12cos

1 1 1 1 15 10 10 5

1 1 15 10 10 5 .

z z

z z z z zz z z z z

z z z z z z

  

     

     

 

So 
     
     

5 3
5 5 3

5 3
5 3

1 1 1
32cos 5 5 10 10

1 1 1
5 10 .

z z z
z z z

z z z
z z z


                    
                    

 

 
Using the results established earlier, 

 

5
5

3
3

1 2cos5 ,

1 2cos3 ,

1 2cos .

z
z

z
z

z
z







 

 

 

 

Hence 532cos     2cos5 5 2cos3 10 2cos    

 
 5 1cos cos5 5cos3 10cos ,     as required.

16
     

 
 

One very useful application of the example above would be in integrating 5cos .  

  

 
5 1cos cos5 5cos3 10cos

16

1 sin 5 5sin 3 10sin , where  is an arbitrary constant.
16 5 3

c c

   

  

  

      

   

 
 
Example 4.3.4 

(a)  Show that  3 3 1cos sin 3sin 2 sin 6
32

      

(b)  Evaluate 
π

3 32

0
cos sin d .    
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Solution 
 

 
   
   

3
3

3
3

12cos

12sin .

z
z

z
z





 

 

 

Multiplying these, 

 

   
  

     

3 3
3 3 3

3
3 3

3
2

2

2 33 22 2 2
2 2 2

6 2
2 6

6 2
6 2

1 18cos 8i sin

1 164i cos sin

1

1 1 13 3

1 13 3

1 13 .

z z
z z

z z
z z

z
z

z z z
z z z

z z
z z

z z
z z

 

 

  

      

   
 

             
     

     
 

         
   

 

Now 6 2
6 2

1 12isin 6   and  2i sin 2 .z z
z z

      

Thus,  3 364i cos sin 2i sin 6 3 2isin 2

2i sin 6 6isin 2 .

   
 

  

 

 

Dividing both sides by 64i,  

 
 

3 3 1 3cos sin sin 6 sin 2
32 32

1 3sin 2 sin 6 , as required.
32

   

 

  

 
 

 

 

 

 

π π
3 32 2

00
π
2

0

1cos sin 3sin 2 sin 6 d
32

1 3cos 2 cos 6
32 2 6

1 3 1 3 1
32 2 6 2 6

1 8 1 .
32 3 12

    

 

 

     

       

  

 

 

 
This section concludes with an example which uses the ideas introduced here and extends into 
other areas of mathematics. 
 

(a) 

(b) 
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Example 4.3.5 

(a)  Show that  4 2cos5 cos 16cos 20cos 5 .       

(b)  Show that the roots of the equation 4 216 20 5 0x x    are πcos
10
r  for r = 1, 3, 7 and 9. 

(c)  Deduce that 2 2π 3π 5cos cos .
10 10 16

  

 
Solution 
 

 
  Using the ideas introduced at the beginning of this section, 

  5cos5 isin 5 cos i sin .       

Using the binomial theorem for expansion, the right-hand side of this equation becomes 

         2 3 4 55 4 3 2cos 5cos i sin 10cos i sin 10cos i sin 5cos i sin i sin .               

Not every term of this expression has to be simplified.  As cos5  is the real part of the 
left-hand side of the equation, it equates to the real part of the right-hand side.  The real 
part of the right-hand side of the equation comprises those terms with even powers if i in 
them, since 2i 1   and is real. 

Thus,    
 
    2 2

2 45 3

5 3 2 4

25 3 2 2 using cos sin 1

cos5 cos 10cos i sin 5cos i sin

cos 10cos sin 5cos sin

cos 10cos 1 cos 5cos 1 cos  

     

    

      

  

   

     

 

 

 

5 3 5 3 5

5 3

4 2

cos 10cos 10cos 5cos 10cos 5cos

16cos 20cos 5cos

cos 16cos 20cos 5 .

     

  

  

     

  

  

 

(a) 
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Now when cos5 0,   either cos 0   or 4 216cos 20cos 5 0.      So, putting 

cos ,x   the roots of 4 216 20 5 0x x    are the values of cos  for which cos5 0,   
provided cos 0.   

But if cos5 0,   π 3π 5π 7π 9π 11π 13π, , , , , , ,5
2 2 2 2 2 2 2

    

so that π 3π 5π 7π 9π 11π 13π, , , , , , , .
10 10 10 10 10 10 10

    

Also, 11πcos
10

 is the same as 9πcos ,
10

 and 13πcos
10

 is the same as 7πcos ,
10

  so that, 

although there is an infinite number of values of ,  there are only five distinct values of 

cos  and these are π 3π 5π 7π 9π, , ,cos cos cos cos  and cos .
10 10 10 10 10

 

 

Now 5π πcos cos 0
10 2

   and π
2

 is, of course, a root of cos 0,   so that the roots of the 

equation 416 20 5 0x x    are π 3π 7π 9πcos ,cos ,cos and cos .
10 10 10 10

 

 
The roots may be written in a slightly different way as 

 
 7π 3πcos cos π

10 10

3π ,cos
10

 

 
 

and  9π 9πcos cos π
10 10

π .cos
10

 

 

 

Thus the four roots of the quartic equation 4 216 20 5 0x x    can be written as πcos
10

  

and 3πcos .
10

  

 
From the ideas set out in Chapter 2 (section 2.7), the product of the roots of the quartic 

equation 4 216 20 5 0x x    is 5
16

 so that 

    π π 3π 3π 5cos cos cos cos .
10 10 10 10 16

    

And hence, 2 2π 3π 5cos cos .
10 10 16

  

 
 
 

(b) 

(c) 
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Exercise 4C 

1. If cos i sinz     write, in terms of z: 
 (a)  cos 4  (b)  cos 7  (c)  sin 6  (d)  sin 3  
 
2. Prove the following results: 

 (a)  4 2cos 4 8cos 8cos 1      

 (b)  5 3sin 5 16sin 20sin 5sin       

 (c)   5 3sin 6 sin 32cos 32cos 6cos        

 (d)  
3

2
3 tan tantan 3

1 3tan
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4.4 Exponential form of a complex number 

Both cos  and sin  can be expressed as an infinite series in powers of ,  provided that   is 
measured in radians.  These are given by 
 

 
2 4 6 2 2

1cos 1 ...( 1) ...
2! 4! 6! 2 2 !

n
n

n


      


     

 

 
3 5 7 2 1

1sin ...( 1) ...
3! 5! 7! 2 1 !

n
n

n
    


      


 

 

There is also a series for ex  given by 
 

 
2 3 4 1

e 1 ... ...
2! 3! 4! 1 !

n
x x x x xx

n


       


 

 

If i  is substituted for x in the series for e ,x  
 

       
 

2 3 4 1
i i i i i

e 1 i ... ...
2! 3! 4! 1 !

n

n
    




       


 

 
2 3 4i1 i ...

2! 3! 4!
         . 

 

2 4 3
ie 1 i ,

2! 4! 3!
           

 
   

 
and, using the previous results for sin  and cos ,  
 

ie cos i sin .     
 

It is also important to note that if cos isin ,z     then 

 

 

i

cos i sin

cos i sin

e ,

nn

n

z

n n


 

 

 

 



 

 

and if  cos i sin ,z r     then iez r   and ie .n n nz r   

 

 
If  cos i sin ,z r     

then iez r   

and ien n nz r   

and 

Regrouping, 
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The form ier   is known as the exponential form of a complex number and is clearly linked to 
the polar form very closely. 
 
Another result can be derived from the exponential form of a complex number: 

 ie cos i sin .     

So,    ie cos isin

cos isin .

  

 

    

 

 

 
Adding these 

    i ie e cos isin cos isin

2cos ,

     



    



 

or 
i ie ecos .

2

 


  

 

Subtracting gives    i ie e cos isin cos isin

2isin ,

     



    



 

or 
i ie esin .

2

 


  

 
 
 
 
 
 
 
Example 4.4.1 

Express 2 2i  in the form ie .r   
 
Solution 
 
The complex number 2 2i  is represented by the point with 
the coordinates  2, 2  on an Argand diagram. 

Hence,  222 2 8,r      

and 1 2 πtan ,
2 4

      

so that 
πi
42 2i= 8 e .


  

 
 

Exercise 4D 

1.  Express the following in the form ie :r   

 (a)  1 i  b)  3 i  (c)  3 3i  (d)  2 3 2i   

x 

 y 

O 

r 

θ 

 2, 2

 2 

 2

i i

i i

e ecos
2

e esin
2

 

 












 

i 

i 
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4.5 The cube roots of unity 
 

The cube roots of 1 are numbers such that when they are cubed their value is 1.  They must, 

therefore, satisfy the equation 3 1 0.z     Clearly, one root of 3 1z   is 1z   so that 1z   must 

be a factor of 3 1.z    Factorising, 

   3 21 1 1 0.z z z z       

Now 3 1 0z    is a cubic equation and so has three roots, one of which is 1.z    The other 

two come from the quadratic equation 2 1 0.z z     If one of these is denoted by w, then w 

satisfies 2 1 0z z    so that 2 1 0.w w    It can also be shown that if w is a root of 3 1,z   

then 2w  is also a root – in fact, the other root.  Substituting 2w  into the left-hand side of 
3 1z   gives    3 22 6 3 21 1,w w w     as 3 1w   since w is a solution of 3 1.z   

 

Thus the three cube roots of 1 are 1, w and 2 ,w  where w and 2w  are non-real.  Of course, w 

can be expressed in the form ia b  by solving 2 1 0z z    using the quadratic formula: 

 

 21 1 4 1 1

2

1 3
2

1 i 3 .
2

z
    



  

 

 

It doesn’t matter whether w is labelled as 1 i 3
2

   or as 1 i 3
2

   because each is the square 

of the other.  In other words, if  1 i 3
2

w    then 

 

 

2
2

2

1 i 3
2

1 2i 3 i 3

4

1 2i 3 3
4

2 2i 3
4

1 i 3 .
2

w
    
 

 


 

 

 
 

If 1 i 3 ,
2

w    then 2 1 i 3 .
2

w    

 
 
 
 
 
 

The cube roots of unity are 1, w and 2 ,w  where

  
3

2

1

1 0

w

w w



  
 

and the non-real roots are 1 i 3
2
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Both w and 2w  can be expressed in exponential 

form.  Take 1 i 3 ;
2 2

w     w can be represented 

by the point whose Cartesian coordinates are 

1 3,
2 2

 
 
 

 on an Argand diagram. 

 
 
 

From the diagram,  2
3 1 1,

2 2
r


 

   
 

 and π ,    where 
3

2
1

2
tan 3.     Thus, 

π ,
3

   2π
3

   and 
2πi
3e .w    The other root is 

22πi 4πi
2 3 3e ew

 
  
 

 and can also be written as 

2πi
3e .


  

 
 
Plotting the three cube roots of unity on an 
Argand diagram shows three points equally 
spaced (at intervals of 2π

3
) round a circle of 

radius 1 as shown in the diagram alongside. 
 
 
 
 
 
 
Example 4.5.1 

Simplify 7 8,w w  where w is a complex cube root of 1. 
 
Solution 
 

 

   

 
 

3
27 6 3 2

28 6 2 3 2 2 2 2

7 8 2 2

because 1 ,

because 1 0

1

1 .

1 .

w

w w

w w w w w w w

w w w w w w w

w w w w



  

      

      

     

 

 

α 

x 

 y 

O 

r 

θ 

 1 3,
2 2



3
2

1
2



2π
3

x 

 y 

 1,0

2π
3
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Example 4.5.2 

Show that 
2 2

1 1 1 0.
1 1w w w w

  
  

 

 
Solution 
 

21 0w w    so 21 ,w w    and so on.  So the denominators of the left-hand side of the 

equation can be replaced to simplify to 
2

1 1 1 .
1ww

 
 

 

Multiplying the first term of this expression by w in the numerator and denominator, and the 

second term by 2w  similarly gives 

   
 

3

2

2

3 3

2
as 1

as 1 0

1

1

0 .

w

w w

w w
w w

w w 

  

 
 
   



 

 
 
Exercise 4E 

1.  If w is a complex cube root of 1, find the value of 

 (a)  10 11w w  (b)    21 3 1 3w w   (c)   321 3w w   
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4.6 The nth roots of unity 

The equation 1nz   clearly has at least one root, namely 1,z   but it actually has many more, 
most of which (if not all) are complex.  In fact, if n is odd 1z   is the only real root, but if n is 
even 1z    is also a real root because 1  raised to an even power is 1.  
 

To find the remaining roots, the right-hand side of the equation 1nz   has to be examined.  In 

exponential form, 01 e  because 0e cos 0 isin 0 1 i0 1.       But also, 2πi1 e  because 
2πie cos 2π i sin 2π 1 i0 1.       Indeed 2 πi1 e k  where k is any integer.  Substituting the 

right-hand side of the equation 1nz   by this term gives 2 πi .n kz e   Taking the nth root of 

both sides gives 
2 πi

.
k
nz e   Different integer values of k will give rise to different roots, as 

shown below. 

 

0

2πi

4πi

0  gives  e 1,

2π 2π1  gives  e cos i sin ,

4π 4π2  gives  e cos i sin ,

n

n

k

k
n n

k
n n

 

  

  

 

and so on until 

 
     2 1 πi 2 1 π 2 1 π

1  gives  e cos i sin .
n

n
n n

k n
n n

  
     

Thus, 
2 πi

e 0,1, 2, , 1
k
nz n n    gives the n distinct roots of the equation 1.nz   

There are no more roots because if  k is set equal to n, 
2 πi

2πie e cos 2π i sin 2π 1,
n
n      

which is the same root as that given by 0.k   

Similarly, if k is set equal to 1,n   
 2 1 πi 2 πi 2πi 2πi 2πi 2πi

2πie e e e e 1 e e
n n

n n n n n n


        which is 
the same root as that given by 1,k   and so on. 
 

The n roots of 1nz   can be illustrated on an 
Argand diagram.  All the roots lie on the circle 

1z   because the modulus of every root is 1.  

Also, the amplitudes of the complex numbers 
representing the roots are 

 2 1 π2π 4π 6π, , , , .
n

n n n n


   In other words, the 

roots are represented by n points equally spaced 

around the unit circle at angles of 2π
n

 starting at 

 1,0  – the point representing the real root 1.z   

 
 
 
 
 

The equation 1nz   has roots 

 
2 πi

e 0,1, 2, , 1
k
nz k n    

2π
n

 

2π
n

 
2π
n

 
2π
n

 
0e

 2 1 πi

e
n

n



 

2πi

e n

4πi

e n

6πi

e n  
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Example 4.6.1 

Find, in the form i ,a b  the roots of the equation 6 1z   and illustrate these roots on an 
Argand diagram. 
 
Solution 
 

 6 2 πi1 e kz    

Therefore 
2 πi

6

πi
3

e

e

k

k

z 

 0, 1, 2, 3, 4, 5.k 

 

Hence the roots are 

 

πi
3

2πi
3

πi

4πi
3

5πi
3

0, 1

π π 1 i 31, cos i sin
3 3 2 2

2π 2π 1 i 32, cos i sin
3 3 2 2

3, cos π i sin π 1

4π 4π 1 i 34, cos i sin
3 3 2 2

5π 5π 1 i 35, cos i sin
3 3 2 2

k z

k z e

k z e

k z e

k z e

k z e

 

     

      

     

      

     

 

 
To summarise, the six roots are 

1 i 31,
2 2

z z      and these are illustrated on 

the Argand diagram alongside. 
 
 
 
 
 
Two further points are worth noting.  Firstly, you may need to give the arguments of the roots 
between π and π   instead of between 0 and 2π.   In example 4.6.1, the roots would be 

given as 
πi
3e

k

z   for 0, 1, 2, 3.k      Secondly, a given equation may not involve unity – for 

example, if example 4.6.1 had concerned 6 64,z   the solution would have been written 

 

6

6 6 2 πi

2 πi
6

64

2 e

2e 0,1, 2, 3, 4, 5

k

k

z

z

z k





 

 

and the only difference would be that the modulus of each root would be 2 instead of 1, with 

the consequence that the six roots of 6 64z   would lie on the circle 2z   instead of 1.z   

 

πi
3e

x 

 y 

1

2πi
3e

4πi
3e

5πi
3e

–1
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Of course, there are variations on the above results.  For example, you may need to find the 

roots of the equation 2 3 4 51 0z z z z z      .  This looks daunting but if you can 
recognise the left-hand side as a geometric progression with common ratio z, it becomes more 
straightforward.  Summing the left-hand side of the equation, 

 
6

2 3 4 5 1
1 0,

1

z
z z z z z

z


      


 

so that the five roots of  2 3 4 51 0z z z z z       are five of the roots of 6 1 0.z     The 

root to be excluded is the root 1z   because 
6 1

1
z
z



 is indeterminate when 1.z    So the roots 

of 2 3 4 51 0z z z z z       are 1 i 3 and 1,
2 2

z      when written in the form i .a b  

 
 
Exercise 4F 

1. Write, in the form i ,a b  the roots of: 

 (a)  4 1z   (b)   5 32z   (c)  10 1.z   

 In each case, show the roots on an Argand diagram. 
 

2. Solve the equation 4 3 2 1 0.z z z z      
 

3. Solve the equation 2 31 2 4 8 0.z z z     
 

4. By considering the roots of 5 1,z   show that 2π 4π 6π 8πcos cos cos cos 1.
5 5 5 5
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4.7 The roots of zn=α  where α is a non-real number 

Every complex number of the form ia b  can be written in the form ie ,r   where r is real and 
  lies in an interval of  2π  (usually from 0 to 2π  or from π  to π).    Suppose that 

ie .r    

Now  
 

i 2πi i 2πi

i 2πi

e e e using 

e because e 1 .

p q p qe e e 



    

 

 

Similarly i 2 πi i 2 πi

i

e e e

e   also.

k k 



  



 

So, i 2 πien kz r     
and, taking the nth root of both sides, 

 
 

 

 

2 πi

2 π

1

1

e

e 0,1, 2, 3, , 1 .

i k

i k

n n

n n

z r

r k n











  

 

 
These roots can be illustrated on an Argand 

diagram as before.  All lie on the circle 
1
nz r  

and are equally spaced around the circle at 

intervals of 2π .
n

  When 0,k   
1 i

en nz r


  and this 

could be taken as the starting point for the 

intervals of 2π .
n

 

 
 
 
 
 
 
 
 

2π
n

 
2π
n

 

 2π1
n nr e

 

1 iπ
n nr e

 

The equation ,nz   where ie ,r    

has roots 
 

 
i 2 π1

e 0,1, 2, , 1
k

n nz r k n
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Example 4.7.1 

Find the three roots of the equation 3 2 2i.z    
 
Solution 
 
First, 2 2i  must be expressed in exponential 
form. 
 
From the diagram alongside, 

 2 22 2 8,r     πtan 1,  and .
4

    

So, 
πi
42 2i 8 e .   

Hence, 
 πi 2 πi3 48e

k
z


 . 

 
Taking the cube root of each side, 

  

 

 

πi 2 πi4
3

1 8 πi
12

2 e

2 e 0,1, 2.

k

k

z

k







 

 

So the roots are 

 

πi
12

9πi
12

17πi 7πi
12 12

0, 2 e

1, 2 e

2, 2 e or 2 e .

k z

k z

k z


 

 

 
   

 

 

The roots can also be written  π π2 cos isin  when 0,
12 12

k   and so on. 

 
This chapter closes with one further example of the use of the principles discussed. 
 
 
Example 4.7.2 

Solve the equation  5 51z z   giving your answers in the form i .a b  

 
Solution 
 

At first sight, it is tempting to use the binomial expansion on  51z   but this generates a 

quartic equation (the terms in 5z  cancel) which would be difficult to solve.  Instead, because 
2 πie 1,k   the equation can be written as 

  5 2 πi 51 e .kz z   

 x 

 y 

 r 

 2, 2

 θ 
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Taking the fifth root of each side, 

 
2 πi

51 e 1, 2, 3, 4.
k

z z k    
Note that 0k   is excluded because this would give 1 ,z z   and in any case as the equation 
is really a quartic equation it will have only four roots. 
 
Solving the equation for z, 

 
2 πi

51 e 1 1, 2, 3, 4
k

z k    
 

 

or 2 πi
5

1 .
e 1

kz 


 

The next step is new to this section and is well worth remembering.  The term 
2 πi

5e
k

 can be 

written as 2 π 2 πcos i sin
5 5
k k  making the denominator have the form i .p q   The numerator 

and denominator of the right-hand side of the equation can then be multiplied by ip q  to 

remove i from the denominator.  As p would then equal 2 πcos 1
5
k   and q would equal 

2 πsin ,
5
k  this would be a rather cumbersome method.  Instead, the numerator and 

denominator of the right-hand side of the equation are multiplied by 
πi
5e

k
 (for reasons which 

will be apparent later). 

Thus,       2 πi
5

1 ,
e 1

kz 


 

So     
 

πi
5

2 πi πi πi
5 5 5

πi
5

πi πi
5 5

e

e e e

e
.

e e

k

k k k

k

k k

z


 











 

But 
i ie e sin

2

 


   so that 
πi πi
5 5 πe e 2isin

5

k k k
   and so, 

πi
5e
π2isin
5

k

z
k



  

   π πcos i sin
5 5

π2isin
5

k k

k

  
  

 1 π 1cot
2i 5 2

k   

 1 1 πi cot
2 2 5

k     

i 

1, 2,3,4k   as required 
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Exercise 4G 

1. Solve the following equations: 

 (a)  4 16iz   (b)  3 1 iz    (c)  8 1 3 iz    

 (d)  2 1z    (e)   31 8iz    (f)   5 51z z   
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Miscellaneous exercises 4 

1. (a) Write down the modulus and argument of the complex number 64.  
 

 (b) Hence solve the equation 4 64 0z    giving your answers in the form 

 cos i sin ,r    where 0 and π π.r      

 
 (c) Express each of these four roots in the form ia b  and show, with the aid of a 

diagram, that the points in the complex plane which represent them form the vertices 
of a square. 

[AEB June 1996] 
 
 
2. (a) Express each of the complex numbers 

   1 i     and     3 i   

  in the form  cos i sin ,r    where 0 and π π.r      

 
 (b) Using your answers to part (a), 

   (i)  show that 
 
 

5

10

3 i 1 3 i,
2 21 i


  


 

  (ii)  solve the equation   3 1 i 3 iz     

        giving your answers in the form i ,a b  where a and b are real numbers to be 
determined 

        to two decimal places. 
[AQA June 2001] 
 
 
3. (a) By considering cos i sinz     and using de Moivre’s theorem, show that 

    4 2sin 5 sin 16sin 20sin 5 .       

 
 (b) Find the exact values of the solutions of the equation 

   4 216 20 5 0.x x    
 

 (c) Deduce the exact values of π 2πsin   and  sin ,
5 5

 explaining clearly the reasons for your 

answers. 
[AQA January 2002] 
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4. (a) Show that the non-real cube roots of unity satisfy the equation 

   2 1 0.z z    
 
 (b) The real number a satisfies the equation 

   
2 2

1 1 1 ,
2a a   

 
   

 

  where   is one of the non-real cube roots of unity.  Find the possible values of a. 
[AQA June 2000] 
 
 

5. (a) Verify that 
πi
5

1 1 ez    

  is a root of the equation  51 1.z     

 
 (b) Find the other four roots of the equation. 
 
 (c) Mark on an Argand diagram the points corresponding to the five roots of the equation.  

Show that these roots lie on a circle, and state the centre and radius of the circle. 
 
 (d) By considering the Argand diagram, find 

   (i)  1arg z  in terms of π,  

  (ii)  1z  in the form πcos ,a
b

 where a and b are integers to be determined. 

[AQA Specimen] 
 
 

6. (a)  (i)  Show that 
2πi
5ew   is one of the fifth roots of unity. 

  (ii)  Show that the other fifth roots of unity are 1, 2 3 4,  and .w w w  
 

 (b) Let 
2πi

4 2 3 5and ,  where e .p w w q w w w      

    (i)  Show that 1   and   1.p q pq      

   (ii)  Write down the quadratic equation, with integer coefficients, whose roots are p 
and q. 

  (iii)  Express p and q as integer multiples of 2π 4πcos  and cos ,
5 5

 respectively, 

   (iv)  Hence obtain the values of 2π 4πcos  and cos
5 5

 in surd form. 

[NEAB June 1998] 
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7. (a)  (i)  Use de Moivre’s theorem to show that if cos i sin ,z     then 

   1 2cos .n
n

z n
z

   

  (ii)  Write down the corresponding result for 1 .n
n

z
z

  

 
 (b)  (i)  Show that 

      3 3
6 2

6 2
1 1 1 1 ,z z A z B z
z z z z

           
   

 

      where A and B are numbers to be determined. 
 
  (ii)  By substituting cos i sinz     in the above identity, deduce that 

    3 3 1cos sin 3sin 2 sin 6 .
32

      

[AQA June 2000] 
 
 

8. (a)  (i)  Express 
i i
2 2e e
 
  in terms of sin .

2
  

  (ii)  Hence, or otherwise, show that 

    i
i
1 1 i cot , e 1 .

2 2 2e 1



   


 

 

 (b) Derive expressions, in the form ie   where π π,    for the four non-real roots of 

the equation 6 1.z   
 
 

 (c) The equation    
6

1 1 *w
w
   

  has one real root and four non-real roots. 

    (i)  Explain why the equation has only five roots in all. 

   (ii)  Find the real root. 

  (iii)  Show that the non-real roots are 

   
1 2 3 4

1 1 1 1, , , ,
1 1 1 1z z z z   

 

          where 1 2 3 4, ,  and z z z z  are the non-real roots of the equation 6 1.z   

   (iv)  Deduce that the points in an Argand diagram that represents the roots of 
           equation (*) lie on a straight line. 
[AQA March 2000] 
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9. (a) Express the complex number 2 2i  in the form ie ,r   where 0 and π π.r      
 
 (b) Show that one of the roots of the equation 

   3 2 2iz    

  is 
πi
122 e ,  and find the other two roots giving your answers in the form ie ,r   where r 

is a surd and π π.    
 
 (c) Indicate on an Argand diagram points A, B and C corresponding to the three roots 

found in part (b). 
 
 (d) Find the area of the triangle ABC, giving your answer in surd form. 
 
 (e) The point P lies on the circle through A, B and C.  Denoting by , ,  and w     the 

complex numbers represented by P, A, B and C, respectively, show that 

        2 2 2
6.w w w         

[AQA June 1999] 
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Chapter 5: Inverse Trigonometrical Functions 

 

5.1  Introduction and revision 

5.2 The derivatives of standard inverse trigonometrical functions 

5.3 Applications to more complex differentiation 

5.4 Standard integrals integrating to inverse trigonometrical functions 

5.5 Applications to more complex integrals 

 
 
 
 
This chapter revises and extends work on inverse trigonometrical functions.  When you have 
studied it, you will: 
 
 be able to recognise the derivatives of standard inverse trigonometrical functions; 

 be able to extend techniques already familiar to you to differentiate more complicated 
expressions; 

 be able to recognise algebraic expressions which integrate to standard integrals; 

 be able to rewrite more complicated expressions in a form that can be reduced to standard 
integrals. 
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5.1 Introduction and revision 

You should have already met the inverse trigonometrical functions when you were studying 
the A2 specification module Core 3.  However, in order to present a clear picture, and for the 
sake of completeness some revision is included in this section. 
 

If siny x , we write 1sinx y  (or arcsin )y .  Note that 1sin y  is not cosec y which would 

normally be written as 1(sin )y   when expressed in terms of sine. 
 
The use of the superscript -1 is merely the convention we use to denote an inverse in the same 

way as we say that 1f   is the inverse of the function f .  The sketch of siny x  will be 
familiar to you and is shown below. 
 

 
 
For any given value of x  there is only one corresponding value of y , but for any given value 

of y  there are infinitely many values of x .  The graph of 1siny x  being the inverse, is the 
reflection of siny x  in the line y x  and a sketch of it is as shown. 
 

 
 

As it stands, for a given value of x , 1siny x  has infinitely many values, but if we wish to 

describe 1sin x  as a function, we must make sure that the function has precisely one value.  

In order to overcome this obstacle, we restrict the range of y  to π π
2 2

y    so that the 

sketch of 1siny x  becomes the sketch shown. 
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By doing this, we ensure that for any given value of x  there is a unique value of y  for which 

1siny x .  This value is usually called the principal value. 
 
 

1sin x is the angle between 1 π
2

  and 1 π
2

 inclusive whose sine is .x  

 
 

Notice that the gradient of 1siny x  is always greater than zero. 
 

We can define 1cos x  in a similar way but with an important difference.  The sketches of 

cosy x  and 1cosy x  are shown below. 
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In this case, it would not be sensible to restrict y  to values between π
2

  and π
2

 since for 

every value of 0x   there would be two values of y  and for values of 0x   there would be 
no value of .y   Instead we choose the range 0 πx   and the sketch is as shown. 
 

 
 
 

1cos x is the angle between 0 and π  inclusive whose cosine is .x  
 
 

When it comes to 1tan x  we can restrict the range to π
2

  and π
2

. 

 
 

1tan x  is the angle between π
2

  and π
2

  exclusive whose tangent is .x  

 
 

The sketch of 1tany x  is shown below. 
 

 
 
Exercise 5A 
 
1. Express in terms of π  the values of: 
 

(a) 1tan 1   (b) 1 3cos
2

   (c)  1 1sin
2

   

(d) 1cos 0   (e) 1 1tan
3

   
 

  (f) 1cos ( 1)   

π
2

π
2
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5.2 The derivatives of standard inverse trigonometrical functions 
 
Suppose          1siny x  
then             sin y x  
 
and, differentiating implicitly, 
 

           
d

cos 1
d
y

y
x
  

 
thus     
 

2

2

d 1
d cos

1

1 sin
1

1

y
x y

y

x









 

 
Note that we choose the positive square root.  This is due to the fact that the gradient of the 

graph of 1siny x  is always greater than zero as was shown earlier. 
 

 
1

2

sin
d 1
d 1

y x
y
x x






 

 
 

For 1cosy x  using similar working we would arrive at 
2

d 1
d 1

y
x x
 


, this time choosing 

the negative sign of the square root as the graph of 1cosy x  always has a gradient less than 
zero. 
 
 

1

2

cos
d 1
d 1

y x
y
x x



 


 

 
 

using 2 2cos sin 1y y   

If 

If 
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If                       1tany x  
 
then we write           tan y x , 
 
and, differentiating implicitly, 
 

                     2 d
sec 1

d
y

y
x
  

or          
2

d 1
d sec

y
x y
  

2
1

1 tan y



 

2

d 1
d 1

y
x x



 

 
 

If 1tany x  

2

d 1
d 1

y
x x



 

 
 
Exercise 5B 
 

1.  Prove that if 1cosy x  then 
2

d 1
d 1

y
x x
 


. 

using 2 2sec 1 tany y   
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5.3 Applications to more complex differentiation 
 
Some methods of differentiation you should already be familiar with.  These would include 
the function of a function rule, and the product and quotient rules.  We will complete this 
section by using the rules with functions involving inverse trigonometrical functions. 
 
Example 5.3.1 
 

If 1sin (2 1)y x  , find 
d
d
y
x

. 

 
Solution 
 

Set 2 1u x   then 1siny u  
 
d 2
d
u
x
  and 

2

d 1
du 1

y

u



 

 

2

2

2

2

2

d d d 2
d d d 1

2

1 (2 1)
2

4 4
2

2
1

y y u
x u x u

x

x x

x x

x x

  



 










 

 
Example 5.3.2 
 

Differentiate 1sin xe . 
 

Set xu e  and let 1sin xy e  

so that 1siny u  

d
d

xu e
x
    

2

d 1
d 1

y
u u



 

 
and using the function of a function rule, 
 

2

d d d 1
d d d 1

xy y u e
x u x u
   


 

21

x

x

e

e



 

(using the function of a function rule). 

Thus,  
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Example 5.3.3 
 

If 2 1tan 2y x x , find 
d
d
y
x

. 

 
This time we need to use the product rule and the function of a function rule. 
 

2 1tan 2y x x  

 1 2 1d d2 tan 2 tan 2
d d
y

x x x x
x x

    

 

For  1d tan 2
d

x
x

 , set 2u x  then    1 1d d dtan 2 tan
d d d

ux u
x u x

    

 

2
1 2

1 u
 


 

2
2

1 4x



 

 

Thus 
2

1
2

d 22 tan 2
d 1 4

y xx x
x x

 


. 

 
Example 5.3.4 
 

Differentiate 
1

2

cos

1

x

x




 

 

If 
1

2

cos

1

xy
x





 

 
Then, using the quotient rule, 
 

   

 

1
2 1 2 2

2

2

1 11 cos 1 2
2d 1

d 1

x x x x
y x
x x

 
         


 

 

 
1

2 3
2 2

1 cos
1

1

x x
x

x

 



 . 
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Exercise 5C 
 
Differentiate the following: 
 

1.  (a)  1tan 3x   (b)   1cos 3 1x    (c)  1sin 2x  

 

2.  (a)  1tanx x   (b)  1cos 2xe x   (c)   2 1sin 2 3x x   

 

3.  (a)  
1

3
sin 3x

x


  (b)  

 1 2

2

tan 3 1

1

x

x

 


 

 

4.  (a)   1sin ax b    (b)   1tan ax b   where a and b are positive numbers. 
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5.4  Standard integrals integrating to inverse trigonometrical functions 
 
Generally speaking, as you have been taught, formulae from the Formulae and Statistical 
Tables Booklet supplied for each AS and A2 module apart from MPC1 can be quoted without 
proof.  However, this does not preclude a question requiring a proof of a result from this 
booklet being set.  There are two standard results, the proofs of which are given here and the 
methods for these proofs should be committed to memory. 
 

The first one is 
2 2
d

a
x
x  

 
This integral requires a substitution. 
 

    Let tanx a   so that 2d sec dx a    
 

    Then 
2

2 2 2 2 2
d sec d

tan
x a

a x a a
 




    

       

2

2 2

1

sec d
sec

1 d

1

1 tan

a
a

a

c
a

x c
a a

 












 

 



  

 
 

  1
2 2

1 tandx x c
a aa x

 
  

 
 

The second integral is 
2 2

dx

a x
  

 
This interval also requires a substitution 
 

Let sinx a    d cos dx a    

Then 
2 2

dx

a x
    =      

2 2 2

cos d

sin

a

a a

 


  

cos d
cos

a
a

    
 

c   

 1sin x c
a

   

 
 

 1

2 2

d sinx x c
aa x
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We now give two examples of definite integrals. 
 
Example 5.4.1 
 

Evaluate 
2

20

d
4

x
x  

 

We have 
22 1

20 0

d 1 tan
2 24

x x
x

      

1 11 1tan 1 tan 0
2 2

    

1 π 0
2 4

    

π
8

  

 
Example 5.4.2 
 

Evaluate 
3
2

0 2

d

9

x

x
  

 

We have  
3

3 212
0 2 0

d sin
39

x x

x

    
  

1 1

3
2sin sin 0
3

 
 
    
 

 

1 11sin sin 0
2

    

π 0
6

   

π
6

  

 
Exercise 5D 
 
Integrate the following, leaving your answers in terms of π . 
 

1.  
3

21

2d
1

x
x     2.  

1

1 2
2

3d

1

x

x
     3.  

4

3 2

d

25

x

x 
  

 

4.  
1

20

d
1

x
x     5.  

3

1 2
3

d
1

x
x   
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5.5 Applications to more complex integrals 
 
In this section we will show you by means of examples how unfamiliar integrals can often be 
reduced to one or perhaps two, standard integrals.  Most will involve completing the square of 
a quadratic expression, a method you will no doubt have used many times before in other 
contexts.  We will begin by using examples of integrals which in whole or part reduce to 

2 2
dx

a x . 

 
Example 5.5.1 
 

Find 
2

d
4 8
x

x x  . 

 

Now  22 4 8 2 4x x x      on completing the square so that 

 

 2 2
d d
4 8 2 4

x x
x x x


      

 

The substitution 2u x   gives d du x  and becomes 
2
d

4
u

u   a standard form.  The result is 

therefore 11 tan
2 2

u c   or expressing it in terms of x , 
 1 21 tan

2 2
x

c 
 . 

 
Example 5.5.2 
 

Find 
2

d
4 4 2

x
x x   

 

We write  224 4 2 2 1 1x x x      so that we have 
 2

d

2 1 1

x

x   .  The substitution 

2 1u x   gives d 2du x  and the integral becomes 

2

1 d
2

1

u

u   

11 tan
2

u c   

or substituting back    11 tan 2 1
2

x c    
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Example 5.5.3 
 

Find 
4
d

9
x x

x   

 

Here the substitution 2u x  transforms the given integral into standard form for if 2u x  

d 2 du x x  and we have 
2

1 d
2

u 9

u

  

 
11 1 tan

2 3 3
u c    

2
11 tan

6 3
x c   

 
 
 

Finally we give a slightly harder example of an integral which uses 
2 2
dx

a x  in its solution. 

 
Example 5.5.4 
 

Find 
2

5 d
6 12

x x
x x


  . 

 

Integrals of this type where the numerator is a linear expression in x and the denominator is a 

quadratic in x usually integrate to 1ln ( ) tan ( )p x q x  where ( )p x  and ( )q x  are functions of 

x.  In order to tackle this integral you need to remember that integrals of the form 
 
 

'f d

f

x x

x  

integrate to  ln f x c .  You should have been taught this result when studying the module 

Core 3. 
 

So to start evaluating this integral we have to note that the derivative of 2 6 12x x  is 2 6x   

and we rewrite the numerator of the integral as  1 2 6 2
2

x    so that the integral becomes 

 
2

1 2 6 2
2 d

6 12

x
x

x x

 

   

and separating it into two halves we write it again as 

 
2 2

1 2 6 d 2d2
6 12 6 12

x x x
x x x x
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The first integral integrates to  21 ln 6 12
2

x x   whilst in the second we complete the square 

in the denominator and write it as 
 

 2
2d

3 3

x

x    

 

The substitution 3u x   leads to 
 

2
2d

3
u

u   

12 tan
3 3

u  

12 3tan
3 3

x    
 

 

 
So that 
 

 2 1
2

5 1 2 3d ln 6 12 tan
26 12 3 3

x xx x x c
x x

             

 
The final part of this section will show you how integrals can sometimes be reduced to 

2 2

dx

a x
 .  This will be done by means of examples. 

 
Example 5.5.5 
 

Find 
2

d

4

x

x x
 . 

 

As in previous examples, we need to complete the square on 24x x , and we write 
 

 224 4 2x x x     

 
So that the interval becomes 
 

 2

d

4 2

x

x 
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The substitution 2u x   simplifies the result to the standard form 
 

2

d

4

u

u
  

 
1sin

2
u c   

 
 1 2

sin
2

x
c 

   

 

Example 5.5.6 
 

Find 
2

d

1 6 3

x

x x 
 . 

 
In order to complete the square in the denominator, we write 
 

 2 21 6 3 1 3 2x x x x      

   2
1 3 1 1x     

  2
4 3 1x    

Thus, 

 2 2

d d

1 6 3 4 3 1

x x

x x x


   
   

 

The substitution of  3 1u x   reduces the integral to 

 

2

d

3 4

u

u
  

11 sin
23
u c   

 1 3 11 sin
23

x
c 

   

 
One final example shows how more complicated expressions may be integrated using 
methods shown here and other results which you should have met studying earlier modules.  
In this particular context the result you will need is that 
 

 
 

 
'f

d 2 f
f

x
x x c

x
   

[This result can be easily verified using the substitution  fu x , since then,  'd f du x x  

and the integral becomes du
u ].
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Example 5.5.7 
 

Find 
2

d

7 6

x x

x x 
 . 

 

Now the derivative of 27 6x x   is 6 2x   so we write x as  1 6 2 3
2

x    and the integral 

becomes 
 

 
2

1 6 2 3
2 d
7 6

x
x

x x

  


 
  

 
or separating the integral into two parts 
 

 
2 2

1 6 2 3d2

7 6 7 6

x x

x x x x

 
 

   
   

 

The first integral is of the form 
 
 

'f
d

f

x
x

x
  apart from a scaler multiplier, and so integrates to 

27 6x x  , whilst completing the square on the denominator of the second integral, we 

obtain
 2

3d

16 3

x

x 
  which integrates to 1 33sin

4
x   using the substitution 3u x  .  

Hence, 
 

 2 1

2

d 37 6 3sin
47 6

x x xx x c
x x
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Exercise 5E 
 
1.  Integrate 
 

(a) 
2

1
4 5x x 

  (b) 
2

1
2 4 5x x 

  (c) 
2

1
2x x 

 

 
2.  Integrate 
 

(a) 
2

2
2 3
x

x x 
  (b) 

2 1
x

x x 
 

 
3.  Find 
 

(a) 
2

d

7 6

x

x x 
  (b) 

2

d

3 2

x

x x 
  (c) 

 
d

1 2

x

x x  

 
4.  Find 
 

(a) 
2

1 d
1

x x
x




   (b) 
2

3 2 d
3 2

x x
x x


 

  (c) 
 

2

1
d

1

x
x

x x
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Chapter 6: Hyperbolic Functions 
 

6.1  Definitions of hyperbolic functions 

6.2 Numerical values of hyperbolic functions 

6.3 Graphs of hyperbolic functions 

6.4 Hyperbolic identities 

6.5 Osborne’s rule 

6.6 Differentiation of hyperbolic functions 

6.7 Integration of hyperbolic functions 

6.8 Inverse hyperbolic functions 

6.9 Logarithmic form of inverse hyperbolic functions 

6.10 Derivatives of inverse hyperbolic functions 

6.11 Integrals which integrate to inverse hyperbolic functions 

6.12 Solving equations 

 
 
 
 
This chapter introduces you to a wholly new concept.  When you have completed it, you will: 
 
 know what hyperbolic functions are; 

 be able to sketch them; 

 be able to differentiate and integrate them; 

 have learned some hyperbolic identities; 

 understand what inverse hyperbolic functions are and how they can be expressed in 
alternative forms; 

 be able to sketch inverse hyperbolic functions; 

 be able to differentiate inverse hyperbolic functions and recognise integrals which 
integrate to them; 

 be able to solve equations involving hyperbolic functions. 
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6.1 Definitions of hyperbolic functions 

It was shown in Chapter 4 that  i i1sin e e
2i

x xx    and  i i1cos e +e .
2

x xx    Hyperbolic 

functions are defined in a very similar way.  The definitions of sinh x  and cosh x  (often 
called hyperbolic sine and hyperbolic cosine – pronounced ‘shine x’ and 
‘cosh x’) are: 
 
 
 
 
 
 
There are four other hyperbolic functions derived from these, just as there are four 
trigonometric functions. They are: 
 
 
 
 
 
 
 
 
 
 
 
In terms of exponential functions, 

 
 
 

1
2

1
2

sinhtanh
cosh

e e

e e

e e ,
e e

x x

x x

x x

x x

xx
x



















 

or, on multiplying the numerator and denominator by e ,x  

 
2

2
e 1tanh .
e 1

x

x
x 


 

 

Again, 

 1
2

1cosech
sinh

1

e e

2 .
e e

x x

x x

x
x













 

 
Exponential forms for sech x and coth x can be found in a similar way. 
 

sinhtanh
cosh

1cosech
sinh

1hsec
cosh

1coth
tanh

xx
x

x
x

x
x

x
x









 

‘than x’ 
 
‘cosheck x’ 
 
‘sheck x’ 
 
‘coth x’ 

 
 

1sinh e e
2
1cosh e e
2

x x

x x

x

x
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Exercise 6A 

1. Express, in terms of exponentials: 

 (a) sech x, (b)  coth x, (c)  1
2

tanh ,x  (d) cosech 3x. 

 
 
 
 
6.2 Numerical values of hyperbolic functions 

When finding the value of trigonometric functions, for example sin ,x  the angle x must be 
given in degrees (or radians).  There is no unit for x when evaluating, for example, sinh .x  
It is quite in order to speak about sinh 2 or cosh1.3 : 

 

2 2

1.3 1.3

e esinh 2 3.63   (to two decimal places);
2

e ecosh1.3 1.97   (to two decimal places).
2





 

 
 

You can work out these values on a calculator using the ex  button.  However, for 
convenience most scientific calculators have a ‘hyp’ button and sinh 2  can be obtained 
directly by pressing the ‘2’, ‘hyp’ and ‘sin’ buttons in the appropriate order. 
 
It is worth remembering that 

 

0 0

0 0

e e 1 1sinh 0 0;
2 2

e e 1 1cosh 0 1.
2 2





   

   
 

 
 
 
Exercise 6B 

1. Use a calculator to evaluate, to two decimal places: 

 (a)  sinh 0.6, (b)  tanh 1.3, (c)  sech 2.1,  

 (d)  tanh (– 0.6), (e)  cosh (– 0.3), (f)  coth 4 
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6.3 Graphs of hyperbolic functions 

The graphs of hyperbolic functions can be sketched easily by plotting points.  Some sketches 
are given below but it would be a good exercise to make a table of values and confirm the 
general shapes for yourself.  It would also be worthwhile committing the general shapes of 

sinh ,y x  coshy x  and tanhy x  to memory. 
 
 
 
 
 
 
 
 
 
 
 
 
The sketch of tanhy x  requires a little more consideration.  In Section 5.1, it was shown 
that tanh x  could be written as  

 

2

2

2

2

e 1tanh
e 1

1 e .
1 e

x

x

x

x

x 


    

 

Now, as 2e 0x   for all values of x, it follows that the numerator in the bracketed expression 

above is less than its denominator, so that tanh 1.x    Also, as ,x   2e 0x   and 

 1tanh 1.
1

x      So the graph of tanhy x  has an asymptote at 1.y    

Now, if  the numerator and denominator of tanh x  are divided by 2e ,x  

 
2

2
1 etanh .
1 e

x

x
x







 

As 2e 0x   for all values of x, it follows that the numerator of this fraction is less than its 
denominator, from which it can be deduced that tanh 1.x    It can also be deduced that as 

2e 0x   as ,x   so tanh 1x   as .x   So the graph of tanhy x  has an asymptote at 
1.x    Hence the curve tanhy x  lies between 1y    and 1,y    and has 1y    as 

asymptotes. 
 
 
 
 
 
 
 
 
 
 

sinhy x

 y 

 x 
0 

coshy x

 y

 x 0

1

x 

 y

0

1

–1

tanhy x
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Exercise 6C 

1. Sketch the graphs of 

 (a) sech ,y x      (b)  cosech ,y x      (c) coth .y x  
 
 
 
 
6.4 Hyperbolic identities 

Just as there are trigonometric identities such as 2 2cos sin 1    and 2cos 2 2cos 1,    
there are similar hyperbolic identities.  For example, 

  
2

2 2 2e e 1cosh e 2 e ,
2 4

x x
x xx


     

 
 

and  
2

2 2 2e e 1sinh e 2 e
2 4

x x
x xx


     

 
 

from which, by subtraction, 

    2 2 2 2 2 21 1cosh sinh e 2 e e 2 e
4 4
1.

x x x xx x        


 

 
 
 
 

Dividing both sides of this equation by 2cosh ,x  it follows that 

 

2 2

2 2 2

2 2

cosh sinh 1
cosh cosh cosh

1 tanh sech .

x x
x x x

x x

 

 
 

 
 
 
 

Or again, dividing both sides by 2sinh x  instead, 

 

2 2

2 2 2

2 2

cosh sinh 1
sinh sinh sinh

coth 1 cosech .

x x
x x x

x x

 

 
 

 
 
 

2 2cosh sinh 1x x   

2 2sech 1 tanhx x   

2 2cosech coth 1x x   



MFP2 Textbook– A-level Further Mathematics – 6360 

 
107 

Now consider sinh cosh cosh sinhx y x y  
        1 1 1 1

2 2 2 2
e e e e e e e ex x y y x x y y          

 

1 e e e e
4

x y x y  e ex y e e e e e ex y x y x y     e ex y 
 
 

  
 

[using the laws of indices]

e e

1 2e e 2e e
4
1 e e e e
2
1 e e
2

sinh .

x y

x y x y

x y x y

x yx y

x y

 

 

 

 



 

 

 

 

 

 
In exactly the same way, expressions for      sinh ,  cosh  and coshx y x y x y    can be 

worked out. 
 
 
 
 
 
 
Exercise 6D 

1. Show that 
 (a)  sinh sinh cosh cosh sinh ,x y x y x y    

 (b)  cosh cosh cosh sinh sinh .x y x y x y    

 
 
You will probably remember that the basic trigonometric formulae for  sin x y  and 

 cos x y  can be used to find expressions for sin 2 ,x  cos 2 ,x  and so on.  The hyperbolic 

formulae given above help to find corresponding results for hyperbolic functions. 
 

 
 

sinh sinh cosh cosh sinh

cosh cosh cosh sinh sinh

x y x y x y

x y x y x y
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For example,  
because  sinh sinh cosh cosh sinh ,x y x y x y    

putting ,y x  

  sinh sinh cosh cosh sinh ,x x x x x x    

or sinh 2 2sinh cosh .x x x  
 
Using 
  cosh cosh cosh sinh sinh ,x y x y x y    

putting ,y x  

  cosh cosh cosh sinh sinh ,x x x x x x    

or 2 2cosh 2 cosh sinh .x x x   
 

Using 2 2cosh sinh 1,x x   

 
2 2

2

cosh 2 1 sinh sinh

1 2sinh

x x x

x

  

 
 

or 2cosh 2 2cosh 1.x x   
 
 
 
 
 
 
 
 
 
Some examples will illustrate extensions of these results. 
 
 

2 2

2

2

sinh 2 2sinh cosh

cosh 2 cosh sinh

2cosh 1

1 2sinh

x x x

x x x

x

x
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Example 6.4.1 

Show that 
2

2 tanhtanh 2 .
1 tanh

xx
x




 

 
Solution 
 

 

2 2

sinh 2tanh 2
cosh 2

2sinh cosh .
cosh sinh

xx
x
x x

x x






 

 

Dividing the numerator and denominator by 2cosh ,x  

 

2

2 2

2

2

2

2

2sinh cosh
coshtanh 2

cosh sinh
cosh

2sinh
cosh
sinh1
cosh

2 tanh .
1 tanh

x x
xx

x x
x

x
x

x
x

x
x










 

 
Example 6.4.2 

Show that 3cosh 3 4cosh 3cosh .x x x   
 
Solution 
 

 

 

 
  2 2

2

3 2

3 3

3

[using cosh sinh 1]

cosh 3 cosh 2

cosh 2 cosh sinh 2 sinh

2cosh 1 cosh 2sinh cosh sinh

2cosh cosh 2 cosh 1 cosh

2cosh cosh 2cosh 2cosh

4cosh 3cosh .

x x

x x x

x x x x

x x x x x

x x x x

x x x x

x x

 

 

 

  

   

   

 

 

 
 
Exercise 6E 

1. Using the expansion of  sinh 2 ,x x  show that 3sinh 3 3sinh 4sinh .x x x   

 
2. Express cosh 4x  in terms of cosh .x  
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6.5 Osborne’s rule 
 
It should be clear that the results and identities for hyperbolic functions bear a remarkable 
similarity to the corresponding ones for trigonometric functions.  In fact the only differences 

are those of sign – for example, whereas 2 2cos sin 1,x x   the corresponding hyperbolic 

identity is 2 2cosh sinh 1.x x    There is a rule for obtaining the identities of hyperbolic 
functions from those for trigonometric functions – it is called Osborne’s rule. 
 
 
 
 
 
 
For example, 
because   cos cos cos sin sinx y x y x y    

then  cosh cosh cosh sinh sinh .x y x y x y    

 
Note also that 

because  2cos 2 1 2sinx x   

then 2cosh 2 1 2sinh ,x x   

because 2sin x  is a product of two sines. 
 
However, care must be exercised in using this rule, as the next example shows. 

It is known that 2 2sec 1 tanx x   

but 2 2sech 1 tanhx x   

The reason that the sign has to be changed here is that a product of sines is implied because 

 
2

2
2

sintan .
cos

xx
x

  

 
It should be noted that Osborne’s rule is only an aid to memory.  It must not be used in a 

proof – for example, that 2 2cosh sinh 1.x x   The method shown in Section 6.4 must be 
used for that. 
 
 
 
 

To change a trigonometric function into its corresponding 
hyperbolic function, where a product of two sines appears 
change the sign of the corresponding hyperbolic term 
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6.6 Differentiation of hyperbolic functions 
 

You will already have met the derivative of e .kx   Just to remind you, 

  d e e .
d

kx kxk
x

  

 
As hyperbolic functions can be expressed in terms of e, it follows that their differentiation is 
straightforward.  For example,  

  
sinh

1 e e .
2

x x

y x





 
 

Therefore,  d 1 e +e
d 2

cosh .

x xy
x

x





 

 
And if 

 
sinh

1 e e ,
2

kx kx

y kx





 

 

then  
 

d 1 e + e
d 2

1 e +e
2
cosh .

kx kx

kx kx

y
k k

x

k

k kx
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You can differentiate cosh  and coshx kx  in exactly the same way; tanh x  can be 

differentiated by treating it as the derivative of the quotient sinh .
cosh

x
x

  The following results 

should be committed to memory: 
 
 
 
 
 
 
 
 
 
 
Generally: 
 
 
 
 
 
 
 
 
 
Note that the derivatives are very similar to the derivatives of trigonometric functions, except 

that whereas  d cos sin ,
d

x x
x

    d cosh sinh .
d

x x
x

   

 

 
Example 6.6.1 

Differentiate 1sinh .
2

x  

 
Solution 
 

 

 
1sinh
2

d 1 1cosh
d 2 2

1 1cosh .
2 2

y x

y
x

x

x



 



 

 
 
 

2

d
sinh , cosh

d
d

cosh , sinh
d
d

tanh , sech
d

y
y x x

x
y

y x x
x
y

y x x
x

 

 

 

 

2

d
sinh , cosh

d
d

cosh , sinh
d
d

tanh , sech
d

y
y kx k kx

x
y

y kx k kx
x
y

y kx k kx
x
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Example 6.6.2 

Differentiate 4cosh 2 cosh 3 .x x x  
 
Solution 
 

 

 

4

4

cosh 2 cosh 3

cosh 2 cosh 3 .

y x x x

x x x

 

 

 

Using the product and chain rules for differentiation, 

       3

3

d
1 cosh 2 sinh 2 2 4 cosh 3 sinh 3 3

d

cosh 2 2 sinh 2 12sinh 3 cosh 3 .

y
x x x x x

x

x x x x x

      

  

 

 
 
 
 
Exercise 6F 

1. Differentiate the following expressions: 

 (a)  cosh 3 ,x  (b)  2cosh 3 ,x  (c)  2 cosh ,x x  

 (d)  cosh 2 ,x
x

 (e)  tanh ,x x  (f)  sech x   [hint: write   1
sech  as cosh ]x x


, 

 (g)  cosech .x  
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6.7 Integration of hyperbolic functions 

You will already have met the integral of e .kx   Just to remind you, 

 1e d e .kx kxx
k

 + c 

As hyperbolic functions can be expressed in terms of e, and as it is the reverse of 
differentiation, it follows that their integration is straightforward. 
  
 
 
 
 
 
 

Of course, generally 1sinh cosh .kx kx c
k

   

 
For the integration of tanh ,x  a substitution is needed as follows: 

 sinhtanh d d .
cosh

xx x x
x

   

Putting cosh ,u x     d sinh d .u x x  

So that dtanh d

ln

ln cosh .

ux x
u
u c

x c



 
 

   

  
 
 
 
 
 
 
 
Exercise 6G 

1. Evaluate the following integrals: 

 (a)  cosh 3 d ,x x  (b) 2cosh d ,x x  

 (c) sinh 2 d ,x x x  (d) 2tanh d .x x  

 
 
 
 

2

sinh d cosh

cosh d sinh

sech d tanh

x x x c

x x x c

x x x c

 

 

 





 

tanh d ln cosh

coth d ln sinh

x x x c

x x x c
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6.8 Inverse hyperbolic functions 

Just as there are inverse trigonometric functions  1 1sin ,  cos ,  etc. ,x x   so there are inverse 

hyperbolic functions.  They are defined in a similar way to inverse trigonometric functions – 

so, if sinh ,x y  then 1sinh ;y x  and likewise for the other five hyperbolic functions. 
 

To find the value of, say, 1sinh 2  using a calculator, you use it in the same way as you would 
if it was a trigonometric function (pressing the appropriate buttons for hyperbolic functions). 
 

The sketches of 1sinhy x  and 1tanhy x  are the reflections of sinhy x  and 
tanh ,y x  respectively, in the line .y x  These sketches are shown below.  Note that the 

curve 1tanhy x  has asymptotes at 1.x    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note also that coshy x  does not have an inverse.  This is because the mapping 
f : coshx x  is not a one-to-one mapping.  If you look at the graph of coshy x  (in Section 
6.3) you will see that for every value of 1y   there are two values of x.  However, if the 
domain of coshy x  is restricted to 0x   there will be a one-to-one mapping, and hence an 
inverse, and the range for the inverse will be 0.y   
 
 
 

1
sinhy x




 y 

x
0

x

 y 

0 
1 –1

1
tanhy x
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6.9 Logarithmic form of inverse hyperbolic functions 

The inverse hyperbolic functions 1cosh ,x  1sinh x  and 1tanh x  can be expressed as 
logarithms.  For example, if 

 1cosh ,y x  
then cosh

e e
2

2 e e .

y y

y y

x y

x

x









 

 

Multiplying by e ,y  2

2

2 e e 1

0 e 2 e 1.

y y

y y

x

x

 

  

 

This is a quadratic equation in e y  and can be solved using the quadratic formula: 

 
2

2

2 4 4e
2

1.

y x x

x x

 

  

 

Taking the logarithm of each side, 

  2ln 1 .y x x    

Now,     2
2 2 2 2

2 2

1 1 1

1

1.

x x x x x x

x x

      

  


 

Thus 

 
2

2

11 ,
1

x x
x x

  
 

 

and    
 

2

2

2

1ln 1 ln
1

ln 1 ,

x x
x x

x x

 
     

  
 

   

 

so that  2ln 1 .y x x     
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However, from Section 6.8, if 0y   then 

  1 2cosh ln 1 .y x x x      

 

A similar result for 1sinhy x  can be obtained by writing sinhx y  and then expressing 

sinh y  in terms of e .y   This gives  2ln 1 ,y x x    but as 2 1 0x x    the negative 

sign has to be rejected because the logarithm of a negative number is non-real.  Thus 

  1 2sinh ln 1 .x x x     

It is straightforward to obtain the logarithmic form of 1tanhy x  if, after writing 

tanh ,y x  tanh y  is written as 
sinh

.
cosh

y
y

 

 
 
 
 
 
 
 

 
 
 

1 2

1 2

1

cosh ln 1

sinh ln 1

1 1tanh ln
2 1

x x x

x x x

xx
x
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Example 6.9.1 

Find, in logarithmic form, 1 1tanh .
2

  

 
Solution 
 

 

1
1 2

1
2

3
2
1
2

11 1tanh ln
2 2 1

1 ln
2

1 ln 3
2

ln 3.

  
    

 
   

 





 

 
Example 6.9.2 

Find, in logarithmic form, 1 3sinh .
4

  

 
Solution 
 

 

 

 

2
1 3 3 3sinh ln 1

4 4 4

3 9ln 1
4 16

3 25ln
4 16

3 5ln
4 4

ln 2.


 
   
 
 
 

   
 
 

  
 

 



 

 
 

Exercise 6H 

1. Show that  1 2sinh ln 1 .x x x     

 

2. Show that  1 1 1tanh ln .
2 1

xx
x

 


 

 
3. Express the following in logarithmic form: 

 (a)  1 3cosh ,
2

  (b)  1 1tanh ,
3

  (c)  1 5sinh .
12
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6.10 Derivatives of inverse hyperbolic functions 

As already seen, if 1sinhy x , then sinh .y x   Differentiating with respect to x, 

 
d

cosh 1.
d
y

y
x
  

So that 

2 2

2
using cosh sinh 1

d 1
d cosh

1

1
y y

y
x y

x
 



   

 

Again, if 1sinh ,xy
a

  

 sinh ,xy
a

  

and 
d 1cosh .
d
y

y
x a
  

Thus 

2

2

2 2

d 1
d cosh

1

1

1 .

y
x a y

xa
a

a x









 

 

The derivatives of  1cosh x  and  1cosh ,x
a

  and also 1tanh x  and  1tanh x
a

  are obtained 

in exactly the same way. 
 
 

Example 6.10.1 

Find the derivative  of  1d tanh .
d

x
x

  

 
Solution 
 

 

1

2

2

2 2
2

using sech tanh 1 .

tanh

tanh

d
sech 1

d
d 1
d sech

1
1

y y

y x

y x

y
y

x
y
x y

x
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It is suggested that you work through the remaining results yourself. 
 
 
 
 
 
 
 
 
 
 
Generally, 
 
 
 
 
 
 
 
 
 
 
Example 6.10.2 

Differentiate 1cosh .
3
x  

 
Solution 
 

 

1

2 2

2

cosh
3

d 1
d 3

1 .
9

xy

y
x x

x









 

 

1

2

1

2

1
2

d 1sinh :
d 1
d 1cosh :
d 1
d 1tanh :
d 1

y
y x

x x
y

y x
x x
y

y x
x x







 


 


 


 

1

2 2

1

2 2

1
2 2

d 1
sinh :

d

d 1
cosh :

d

d
tanh :

d

x y
y

a x a x
x y

y
a x x a
x y a

y
a x a x
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Example 6.10.3 

If 2 1sinh ,
2
xy x   find 

d
d
y
x

 when 2,x   giving your answer in the form ln .a b c  

 
Solution 
 

Differentiate 2 1sinh
2
xx   as a product . 

 2 1

1 2

2 2

sinh
2

d 12 sinh .
d 2 2

xy x

y xx x
x x







 


 

So, when 2x   

 

 

 

 
 
 

1

2 2

d 14sinh 1 4
d 2 2

44ln 1 1 1
8

4 84ln 1 2
8 8

4 84ln 1 2
8

84ln 1 2
2

4ln 1 2 2.

y
x

 


   

  


  

  

  

 

 
Exercise 6I 

1. Differentiate the following: 

 (a)  1tanh ,
3
x  (b)  1sinh ,

3
x  (c) 1cosh ,

4
x  

 (d)  1e sinh ,x x  (e) 1 21 cosh .x
x

  

 

2. If 1cosh ,y x x  find 
d
d
y
x

 when 2,x   giving your answer in the form ln ,a b  where a 

and b are irrational numbers. 
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6.11 Integrals which integrate to inverse hyperbolic functions 

Integration can be regarded as the reverse of differentiation so it follows, from the results in 
Section 6.10, that: 
 
 
 
 
 
 
 
 
 
 

The integrals of 
2 2

1

a x
 and 

2 2

1 ,
x a

 in particular, help to widen the ability to integrate.  

In fact, these results can be used to integrate any expression of the form 
2

1 ,
px qx r 

 or 

even 
2

,sx t

px qx r


 

 where 0.p    The examples which follow show how this can be done. 

 
 
 
Example 6.11.1 

Find 
2

d .
16

x

x
  

 
Solution 
 

 

 
2 2 2

1

d d

16 4

sinh .
4

x x

x x

x c


 

 

 
 

 

1

2 2

1

2 2

1
2 2

d
sinh

d
cosh

d 1
tanh

x x
c

aa x
x x

c
ax a

x x
c

a x a a
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Example 6.11.2 

Find 
2

d .
6 2

x

x
  

 
Solution 
 

 

 2 2

2

1

d d

6 2 2 3

1 d
2 3

1 sinh .
2 3

x x

x x

x

x

x c


 



 

  
 

 

  

 
Example 6.11.3 

Find 
2

d .
2 3

x

x x 
  

 
Solution 
 
In order to evaluate this integral, you must complete the square in the denominator. 

 
 
 

2 2

2

2 3 2 1 4

1 4.

x x x x

x

     

  
 

Hence, 
 2 2

d d .
2 3 1 4

x x

x x x


   
   

 
Substituting 1,z x   for which d d ,z x  gives 

 

 
 

22

1

1

d d .
42 3

cosh
2

1cosh .
2

x z
zx x

z c

x c
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Example 6.11.4 

Find 
2

2 5 d .
6 10

x x
x x


 

  

 
Solution 
 
In this case, the integral is split into two by writing one integral with a numerator which is the 

derivative of 2 6 10.x x   

Now,  2d 6 10 2 6.
d

x x x
x

     

But 2 5 2 6 1x x     

and 
2 2 2

1 2

2 5 2 6 1d d d .
6 10 6 10 6 10

, say.

x xx x x
x x x x x x

I I

  
     

 

    

Because the derivative of 2 6 10x x   is 2 6,x   then for 1I  the substitution 2 6 10z x x    

gives d 2 6
d

z x
x
   and consequently 

 

1
2

1
2

1

1
2

2

d

d

2 6 10.

zI
z

z z

z

x x









  





 

For 2 ,I  completing the square in the denominator, 

 

 

2 2

2

6 10 6 9 1

3 1.

x x x x

x

     

  

 

So that 
 2 2

d .
3 1

xI
x


   

The substitution 3u x   will give d 1,
d
u
x
  

and 

 

2 2

1

1

d

1

sinh

sinh 3 .

uI
u

u

x










 

  

Therefore, the complete integral is 

  2 1
1 2 2 6 10 sinh 3 .I I x x x c        
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Exercise 6J 
 
1. Evaluate the following integrals: 

 (a)  
2

d ,
9

x

x 
  (b) 

2

d ,
16

x

x 
  (c) 

2

d ,
4 25

x

x 
  

 (d) 
2

d ,
9 49

x

x 
  (e) 

 2

d ,
1 4

x

x  
  (f) 

 2

d ,
2 16

x

x  
   

 (g) 
2

d ,
4 5

x

x x 
  (h) 

2

d .
2 2

x

x x 
  

 
 
6.12 Solving equations 

 
You are likely to meet two types of equations involving hyperbolic functions.  The methods 
for solving them are quite different. 
 
The first type has the form cosh sinh ,a x b x c   or a similar linear combination of 
hyperbolic functions.  The correct method for solving this type of equation is to use the 

definitions of sinh x  and cosh x  to turn the equation into one involving ex  (frequently a 
quadratic equation). 
 
 
Example 6.12.1 

Solve the equation 7sinh 5cosh 1.x x    
 
Solution 
 

Using the definitions e esinh
2

x x

x
  and e ecosh ,

2

x x

x
  

 e e e e7 5 1
2 2

7e 7e 5e 5e 1
2 2 2 2

e 6e 1.

x x x x

x x x x

x x

 

 



         
   

    

  

 

Multiplying throughout by e ,x  

 2e 6 e ,x x    

or 2e e 6 0.x x    

This is a quadratic equation in ex  and factorizes to 

   e 3 e 2 0.x x    

Hence, e 3 or e 2.x x     The only solution possible is ln 2x   because e 3x    since 

e 0x   for all values of x. 
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Example 6.12.2 

Solve the equation 2cosh 4sinh 6.x x   
 
Solution 
 

The identity 2 2cosh sinh 1x x   is used here.  The reason for this can be seen on substitution 
– instead of having an equation involving cosh x  and sinh ,x  the original equation is reduced 
to one involving sinh x  only. 

 
2

2

1 sinh 4sinh 6

sinh 4sinh 5 0.

x x

x x

  

  
 

This is a quadratic equation in sinh x  which factorizes to 
   sinh 5 sinh 1 0.x x    

Hence, sinh 5 or sinh 1x x    

and 1 1sinh 5 or sinh 1,x x      
and 2.31 or 0.88x x        (to two decimal places). 
 
The answers can also be expressed in terms of logarithms, using the results from Section 6.9: 

    
   

1 2

21

sinh 5 ln 5 5 1 ln 5 26 ;

sinh 1 ln 1 1 1 ln 2 1 .





    

         
 

 

Note that it is not advisable to use the definitions of sinh x  and cosh x  when attempting to 

solve the equation in Example 6.12.2 – this would generate a quartic equation in ex  which 
would be difficult to solve. 
 
 
Examples 6K 

1. Solve the equations: 

 (a)  4sinh 3e 9,xx    (b) 3sinh 4cosh 4,x x   

 (c)  2cosh 3sinh 5,x x   (d) cosh 2 3cosh 4,x x   

 (e)  2tanh 7sech 3.x x   
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Miscellaneous exercises 6 

1. (a) Express cosh sinhx x  in terms of e .x  
 

 (b) Hence evaluate
0

1 d .
cosh sinh

x
x x



  

[AQA March 1999] 
 
 
2. (a) Using the definitions 

    1cosh e e
2

x xx    and   1sinh e e ,
2

x xx    

  prove that 
   2sinh cosh sinh 2 .x x x  
 
 (b) Hence, or otherwise, solve the equation 

   8sinh 3sech ,x x  

  leaving your answer in terms of natural logarithms. 
[AEB January 1997] 
 
 
3. (a) By considering sinh .y x  or otherwise, prove that 

    1 2sinh ln 1 .x x x     

 
 (b) Solve the equation 
   2cosh 2 5sinh 8 0,     

  leaving your answers in terms of natural logarithms. 
[AEB January 1996] 
 
 
4. (a) Show that the equation 
   14sinh 10cosh 5x x   
  can be expressed as 

   22e 5e 12 0.x x    
 
 (b) Hence solve the equation 
   14sinh 10cosh 5,x x   

  giving your answer as a natural logarithm. 
[AQA June 2001] 
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5. (a) Starting from the definition of cosh t  in terms of e ,t  show that 

   34cosh 3cosh cosh 3 .t t t   
 
 
 (b) Hence show that the substitution coshx t  transforms the equation 

   316 12 5x x   

  into  5cosh 3 .
4

t   

 
 (c) The above equation in x has only one real root.  Obtain this root, giving your answer in 

the form 2 2 ,p q  where p and q are rational numbers to be found. 

[AQA March 1999] 
 
 
 
6. (a) Using the definitions of sinh  and cosh   in terms of exponentials, show that 

   
2

2
e 1tanh .
e 1



 


 

 (b) Hence prove that 

    1 1 1tanh ln ,
2 1

xx
x

 


 

  where 1 1.x    
[AEB June 1999] 
 
 
7. (a) By expressing tanh x  in terms of sinh  and cosh ,x x  show that 

   (i)  2 2tanh 1 sech ,x x   

  (ii)  2d tanh sech .
d

x x
x

  

 

 (b)  (i)  Find  3tanh tanh d .x x x  

  (ii)  Hence, or otherwise, find 3tanh d .x x  

[AQA March 2000] 
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8. (a) Explain, by means of a sketch, why the numbers of distinct values of x satisfying the 
equation 

   cosh x k  

  in the cases 1, 1 and 1k k k    are 0, 1 and 2, respectively. 
 

 (b) Given that 17 4cosh    and   sinh ,
8 3

x y   

   (i)  express y in the form ln ,n  where n is an integer, 

  (ii)  show that one of the possible values of x y  is ln12  and find the other possible 
         value in the form ln ,a  where a is to be determined. 

[AQA March 2000] 
 
 

9. (a) State the values of x for which 1cosh x  is defined. 
 
 (b) A curve C is defined for these values of x by the equation 

   1cosh .y x x   

   (i)  Show that C has just one stationary point. 

  (ii)  Evaluate y at the stationary point, giving your answer in the form ln ,p q  where 
         p and q are numbers to be determined. 
[NEAB March 1998] 
 
 

10. (a) Prove that 

     2d tanh sech .
d

x x
x

  

 
 (b) Hence, or otherwise, prove that 

    1
2

d 1tanh .
d 1

x
x x

 


 

 

 (c) By expressing 
2

1
1 x

 in partial fractions and integrating, show that 

    1 1 1tanh ln .
2 1

xx
x

 


 

 
 (d) Show that 

    
1
2 1 2

2
0

tanh d ln ,
1

x x a b
x




  

  where a and b are numbers to be determined. 
[AQA June 1990] 
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11. The diagram shows a region R in the x–y plane bounded by the curve sinh ,y x  the x-axis 
and the line AB which is perpendicular to the x-axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) Given that 4
3

AB  , show that ln 3.OB   

 

 (b)  (i)  Show that  
2 1cosh ln .
2

kk
k
  

  (ii) Show that the area of the region R is 2 .
3

 

 

 (c)  (i)  Show that  
ln 3

2

0

1sinh d sinh ln 9 ln 9 .
4

x x      

  (ii)  Hence find, correct to three significant figures, the volume swept out when the 
         region R is rotated through an angle of 2π  radians about the x-axis. 

[NEAB June 1998] 
 

 

 y 

x O 

 A

B

 R
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Chapter 7: Arc Length and Area of Surface of Revolution 

7.1  Introduction 

7.2 Arc length 

7.3 Area of surface of revolution 

 
 
 
 
 
 
This chapter introduces formulae which allow calculations concerning curves.  When you 
have completed it, you will: 

 know a formula which can be used to evaluate the length of an arc when the equation of 
the curve is given in Cartesian form; 

 know a formula which can be used to evaluate the length of an arc when the equation of 
the curve is given in parametric form; 

 know methods of evaluating a curved surface area of revolution when the equation of the 
curve is given in Cartesian or in parametric form. 
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7.1 Introduction 

You will probably already be familiar with some formulae 
to do with the arc length of a curve and the area of surface 
of revolution.  For example, the area under the curve 

 fy x  above the x-axis and between the lines x a  

and x b  is given by d .
b

a
A y x   

You will also be familiar with the formula 2π d
b

a
V y x   which gives the volume of the solid 

of revolution when that part of the curve between the lines x a  and x b is rotated about 
the x-axis. 
 
The formulae to be introduced in this chapter should be committed to memory.  You should 
also realise that, as with many problems, the skills needed to solve them do not concern the 
formulae themselves but involve integration, differentiation and manipulation of algebraic, 
trigonometric and hyperbolic functions – many of which have been introduced in earlier 
chapters. 
 

 xb  a 

 y

 O 
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7.2 Arc length 

The arc length of a curve is the actual distance you would 
cover if you travelled along it.  In the diagram alongside, s  is 
the arc length between the points P and Q on the curve 

 f .y x  If P has the coordinates  , ,x y  Q has coordinates 

 ,x x y y    and PN is parallel to the x-axis so that angle 

PNQ is 90º, it follows that PN x  and .QN y  
 
Now, if P and Q are fairly close to each other then the arc length s  must be quite short and 
PQN be approximately a right-angled  triangle.  Using Pythagorus’ theorem, 

      2 2 2
.s x y     

Dividing by  2
,x   

22

1 .
ys

x x


 
    
 

 

In the limit as 0,x    
22

2

dd 1
d d

dd 1 .
d d

ys
x x

ys
x x

    
 

    
 

 

Thus,  
2

d
1 d .

d

b

a

y
s x

x
    
   

 
 
 
 
 
 
 
 
 

If  f ,y x  the length of the arc of curve from 

the point where x a  to the point where x b  
is given by 

2
d

1 d
d

b

a

y
s x

x
    
   

 x

 y

 O

 P 

 Q

 N δx 
 δy  δs 

 y  y

 b a 
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A corresponding formula for curves given in terms of a parameter can also be derived.  
Suppose that x and y are both functions of a parameter t.  As before, 

      2 2 2
.s x y     

Dividing by  2
,t     

22 2

.
ys x

t t t
 

  
    
 

 

As 0,x   0t   and    
 

22 2

22

dd d
d d d

dd d
d d d

ys x
t t t

ys x
t t t

    
 

    
 

 

  2

1

22 dd d ,
d d

t

t

yxs t
t t

    
   

where t1 and t2 are the values of the parameter at each end of the arc length being considered. 
 
 
 
 
 
 
 
 
 
 
The use of these formulae will be demonstrated through some worked examples. 
 
 

The length of arc of a curve in terms of a parameter t 
is given by 

 2

1

22 dd dt,
d d

t

t

yxs
t t

    
   

where t1 and t2 are the values of the parameter at 
each end of the arc. 
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Example 7.2.1 

Find the length of the curve coshy x  between the points where 0x   and 2.x   
 
Solution 
 

 
cosh

d
sinh .

d

y x

y
x

x




 

Therefore, 
2

2

2

2

d
1 1 sinh

d

cosh

d
1 cosh .

d

y
x

x

x

y
x

x

    
 



   
 

 

Now, 

 

22

0

2

0

2

0

d
1 d

d

cosh d

sinh

sinh 2 sinh 0

sinh 2.

y
s x

x

x x

x

    
 





 





 

 



MFP2 Textbook– A-level Further Mathematics – 6360 

 
136 

Example 7.2.2 

Show that the length of the curve (called a cycloid) given by the equations  sin ,x a     

 1 cosy a    between 0 and 2π    is 8a. 

 
Solution 
 

 
 d 1 cos

d
d

sin .
d

x a

y
a





 


 

Therefore, 

 

   

 
 
 
 

 

2 2

2

22
22 2 2

2 2 2

2

2

2

2 2

22
2 2

(using sin cos 1)

(using 2 sin 1 cos 2 )

dd 1 cos sin
d d

1 2cos cos sin

1 2cos 1

2 2cos

2 1 cos

2 2sin
2

dd 4 sin
d d 2

2 sin .
2

yx a a

a

a

a

a

a

yx a

a

 

 

  

  










 



 

 

     
 

   

  

 

 



   
 



 

Now, 

 

 

 
 

222π

0

2π

0

2π

0

dd d
d d

2 sin d
2

2 2cos
2

4 cos π 4 cos 0

8 .

yxs

a

a

a a

a
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7.3 Area of surface of revolution 

If an arc of a curve is rotated about an axis, it forms a surface.  The area of this surface is 
known as the ‘curved surface area’ or ‘area of surface of revolution’. 
 
Suppose two closely spaced points, P and Q, are taken on the 
curve  f .y x  This arc is rotated about the x-axis by 2π  

radians.  The coordinates of  P and Q are  ,x y  and 

 , ,x x y y    respectively, and the length of arc PQ is δs. 

You can see from the diagram that the curved surface 
generated by the rotation is larger than that of the cylinder of 
width δs obtained by rotating the point P about the x-axis, but 
smaller than the area of the cylinder width δs obtained by 
rotating the point Q about the same axis.  Using the formula 

2πS rh  for the area of the curved surface of a cylinder, the 
area of the former is 2πy s  and that of the latter 

is  2π .y y s    If the actual area generated by the rotation 

of arc PQ about the x-axis is denoted by δA, it follows that 
  2π 2πy s A y y s       

or, dividing by δs, 

  2π 2π .Ay y y
s

     

Now as 0,x   0 and 0y s    so that the right-hand side of the inequality tends to 
2π .y   Therefore, 

 

2

d 2π
d

2π d

d
2π 1 d

d

b

a

b

a

A y
s

A y s

y
y x

x





    
 




 
(from section 7.2)

 

 
 
 
 
 
 
 
 
 
 

 x

 y

 O 

 P 

 Q
 δs  δy 

 y  y

 b a 

 δx 

The area of surface of revolution obtained by rotating an arc of the 
curve  fy x  through 2π radians about the x-axis between the 

points where x a  and x b  is given by 

2
d

2π 1 d
d

b

a

y
A y x

x
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Example 7.3.1 

Find the area of surface of revolution when the curve coshy x  between the points where 
0x   and 2.x   is rotated through 2π radians about the x-axis. 

 
Solution 
 
This was the curve used in example 7.2.1 – from there 

 
2

d
1 cosh .

d
y

x
x

   
 

 

Hence, 

 

 

22

0

2

0

2
2

0

2

0

2

0

d
2π 1 d

d

2π cosh cosh d

2π cosh d

12π 1 cosh 2 d
2

sinh 2π
2

1 1π 2 sinh 4 π 0 sinh 0
2 2

1π 2 sinh 4 .
2

y
A y x

x

x x x

x x

x x

xx

    
 





 

    

            
    






 

 
Example 7.3.2 

Show that the area of surface of revolution when the cycloid curve given by the equations 

 sin ,x a      1 cosy a    between 0 and 2π    is rotated through 2π radians 

about the x-axis is 264 π .
3

a  



MFP2 Textbook– A-level Further Mathematics – 6360 

 
139 

 

Solution 
 
This was the curve used in example 7.2.2 – from there 

  
22 dd 2 sin .

d d 2
yx a 

 
   
 

 

Now, 

 

 
 

  
 
 

2

222π

0

2π

0

2π
2 2

0

2π
2 2

0

2π
2 2

0

(using cos 2 2 cos 1)

dd2π d
d d

= 2π 1 cos 2 sin d
2

4π 1 2cos 1 sin d
2 2

4π 2sin 2cos sin d
2 2 2

8π sin cos sin d .
2 2 2

x x

yxA y

a a

a

a

a

 

 

  

   

   



 

    
 



  



 







 

 

Now, consider 2cos sin d .
2 2
     The substitution cos

2
u   gives 

 1d sin d
2 2

u     

and the integral becomes 

 

 
3

2

3
2

22d
3

2cos
.

3

uu u



  

 


 

Integrating for A, 

 

2π
2 3

0

3
2 3

2

2

28π 2cos cos
2 3 2

2 2cos 08π 2cos π cos π 2cos 0
3 3

2 28π 2 2
3 3

64 π .
3

A a

a

a

a
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Miscellaneous exercises 7 

1. (a) Show that 

   (i)    2d
tanh sech

d
 


 , 

  (ii)   d sech sech tanh .
d

       

 
 (b) A curve C is given parametrically by 

   tanh , sech , 0.x y        

   (i)  Show that  
22

2dd tanh .
d d

yx  
   
 

 

  (ii)  The length of arc C measured from the point  0,1  to a general point with 

         parameter   is s.  Find s in terms of   and deduce that, for any point on 

        curve, e .sy   

[AQA Specimen] 
 
 
2. (a) Using only the definitions of cosh  and sinhx x  in terms of exponentials, 

   (i)  determine the exact values of cosh  and sinh ,   where 9ln ,
4

   

  (ii)  establish the identities 

  
2cosh 2 2cosh 1

sinh 2 2sinh cosh .

x x

x x x

 


 

 
 (b) The arc of the curve with equation cosh ,y x  between the points where 0x   and 

9ln ,
4

x   is rotated through one full turn about the x-axis to form a surface of 

revolution with area S.  Show that 

    9π ln
4

S p   

  for some rational number p whose value you should state. 
[AEB June 2000] 
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3. (a)  (i)  Using only the definitions 

    1cosh e e
2

     and  1sinh e e ,
2

     

        prove the identity 

   2 2cosh sinh 1.    

  (ii)  Deduce a relationship between sech  and tanh .   
 
 (b) A curve C has parametric representation sech , tanh .x y    

   (i)  Show that   
22

2dd sech .
d d

yx  
   
 

 

  (ii)  The arc of the curve between the points where 0 and ln 7    is rotated 
         through one full turn about the x-axis.  Show that the area of the surface 

         generated is 36 π
25

 square units. 

[AEB June 1997] 
 
 
4. A curve has parametric representation 

   sin , 1 cos , 0 2π.x y          

 (a) Prove that  
22

2dd 4cos .
d d 2

yx 
 

   
 

 

 

 (b) The arc of this curve, between the points when π0 and 
2

    is rotated 

  about the x-axis through 2π  radians. The area of the surface generated is denoted by S. 
  Determine the value of the constant k for which 

    
π
2 2

0
1 sin cos d ,

2 2
S k      

  and hence evaluate S exactly. 
[AEB June 1996] 
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5. The curve C is defined parametrically by the equations 

   3 21 , ,
3

x t t y t    

 where t is a parameter. 
 

 (a) Show that    
22 22dd 1 .

d d
yx t

t t
    
 

 

 
 (b) The arc of C  between the points where 0 and 3t t   is denoted by L.  Determine 

   (i)  the length of L, 

  (ii)  the area of the surface generated when L is rotated through 2π  radians about 
        the x-axis 
[AEB January 1998] 
 
 
 
6. (a) Given that a is a positive constant and that 

    2 1 2 2sinh ,xy a x a x
a

    

  use differentiation to determine the value of the constant k for which 

   2 2d
.

d
y

k a x
x
   

 

 (b) A curve has the equation 1 2sinh 1 .y x x x     The length of the arc of curve 
between the points where 0 and 1x x   is denoted by L.  Show that 

   5ln 5 12 .
8

L   

[AEB January 2000] 
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Answers to Exercises – Further Pure 2 
 
Chapter 1 
 
 
 

1. (a)  π2,
4

  (b)  π3,
2

 (c)  4, π  (d)  5π2,
6

  

 
2. (a)  3.16, 2.82 (b)  5, 0.93 (c)  7.07, –1.71 
 
 
 
 

1. (a)   π π2 cos isin
4 4

    (b)   π π3 cos isin
2 2
  

 (c)  4 cos π i sin π   (d)   5π 5π2 cos isin
6 6

    

 

2. (a)  2 2 i   (b)  2 2 3 i   
 
 
 
  
1. (a) 3 i , 4 3i   (b)  1 8i , 14 2i     
 
 
 
 

1. (a)   1 6 8i
5

  (b)  2 2i  

 
 
 
 

1. (a)  2 π πcos i sin
3 2 2

  (b)  11 1
1 2

2 22

 and  arg arg arg
zz z

z z
z zz

    
 

 

 

Exercise 1A 

Exercise 1B 

Exercise 1C 

Exercise 1D 

Exercise 1E 
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1. (a)  π6,
2

  
 

 (b)  3 5π,
2 6

  
 

 (c)  4π9,
3

  
 

 

 

 (d)   27 , 0  (e)  π2 ,
9 2

  
 

 

 

2. (a)  2.5 0.5i  (b)  4 2i  (c)  
11 i
3

  

 
 
 
 
1. (a)  5.39, 0.38 (b)  5,  0.93 (c)  7.62, –1.98 
 
 
 
 
1. (a) (b) (c) 
 
 
 
 
 
 
 
 
 
 
 
2. (a)  (b) 
 
 
 
 
 
 
 
 
 
 
 
3.   4. 
 
                   The locus is the line PQ

Exercise 1F 

Exercise 1G 

Exercise 1H 

 y 

 x  O 
 3 

 y

x O  1,0

 π
4

 y 

x O 

  2,1

 y 

 x  O 

 0, 3

 y

 x  O

  4,2  

 y 

 x  O 

  1,1  

 y

 x 

 0,1

 0, 3

 1, 2 

P 

Q
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1. 3 2i  
 

2. (a)   1 4 3i
5

  (b)  (c)  1, 1.2 

 
3. 1 2i,    4 2i   
 

4.  1 1 i
5

  

 

5. (a)  (b)  1 (c) π
3

 

 
 
 
 
 
 
6. 
 
 
 
 
 
 

7. (a)(i)  1 i     (ii)  3π2,
4

 (b)(ii) (iii) 2 10  

 
 
 
 
 
 
 
8. (a)  (b) 
 
 
 
 
 
 

 (c)(i)..
3

2
 (c)(ii)  

3 3 3
i

4 4
  

 

9. (a)  14 2i,1+i  (b)(i)  20, 0.46  and  10, 0.32    (ii)  10  

Miscellaneous exercises 1 

 y 

 x 1, 0

 y

 x 1, 03, 0

A 

1arg π
4

z 

2 3i 3z   

 2, 3  

 y 

 x  O  2, 0  

  4 3,
5 5

 
 y 

x O 
  4 3,

5 5


z

z*

  π4,
6

 
y 

x
O

  7π2 2,
12



P1

P2

 3,1  

 3, 0  

 y 

 x  O 

 Q 

 P 
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Chapter 2 
 
 
 
 

1. (a)  3 i   (b)  5 i   
 

 
 
 
 
1. (a)  1, 1, 3   (b)  1,1 i  (c)  2, 2 i   
 
 
 
 

1. (a)  7, 12, –5 (b)  4
3
 , 7

3
 , 2

3
  

 

2. 3 22 6 7 10 0x x x     
 
 
 
 
 

1&2  (a)  3 23 36 189 0x x x     (b)  3 24 5 0x x x     (c)  3 27 8 4 8 0x x x     
 

3.     (a)  3 22 9 162 0x x                  (b)  3 22 9 12 1 0x x x     
 

     (c)  33 6 8 0x x    
 
 

 
 
 

1. (a) 4 216 6 5 4 0x x x     (b)  3 
 
 
 
 

1. 3 24 6 4 0x x x     
 
2.  2, –3i 
 

3.  i1 i,
2

   

 

Exercise 2A 

Exercise 2C 

Exercise 2D 

Exercise 2E 

Exercise 2F 

Exercise 2B 
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1. (a)  1, 5    
 

(b) 2  
 
2. (b)  (i)  3 4i, 6    

 

   
 
  (ii) 150  
 
  (iii)  0, – 11, 150 
 

3. (a)  30 2
2

        

 

 (b)  3 22 3 8 0x x    
 

4. (a)  8
7  

 

(b)  1 2i ,  6
7
  

 
5. (a)  3p    
 
 (b) (i)  7q   
 

  (ii) 2 0   

 
 (c) (i)  – 3 
 
  (ii)   75 
 
6. (b) (i)  4, 4p q    

Miscellaneous exercises 2 
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Chapter 3 
 
 
 

1. (a)  2r (b)   1 1
2

n n   

 

2. (b)     
1 1

18 3 1 2 3n n n


  
 

 

3. (b)    1 1 2 1
6

n n n   

 
 
 
 

2. (b)    21 1n n n n    

 
9. (a)  2 
 

10. (a)  1 (c)  1 
 

 
 

Exercise 3A 

Miscellaneous exercises 3 
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Chapter 4 
 
 
 
2. (a)  cos15 isin15   (b)  1 (c)  i (d) 8i  

 (e) 64  (f)   1 1 3 i
64

  (g)  41472 3  

 
 
 

1. 33sin 4sin   
 

2. 
3

2
3 tan tan

1 3tan
 





 

 

3. 5 316sin 20sin 5sin     
 
 
 
 

1. (a)  4
4

1 1
2

z
z

  
 

 (b) 7
7

1 1
2

z
z

  
 

 (c) 6
6

1 1
2i

z
z

  
 

 (d) 3
3

1 1
2i

z
z

  
 

 

 
 
 
 

1. (a)  
πi
42e  (b) 

πi
62e


 (c) 

πi
612e  (d) 

5πi
64e  

 
 
 
 
1. (a)  –1 (b)  7 (c)  8 
 
 
 
 

1. (a)  1, i   (b)   2kπ 2kπ2 cos i sin , 0 1, 2
5 5

k     

 (c) kπ kπcos i sin , 0 1, 2, 3, 4, 5
5 5

k       

 

2. 2kπ 2kπcos i sin , 1, 2
5 5

k     

 

3. 1 1, i
2 2

  

 

Exercise 4A 

Exercise 4B 

Exercise 4C 

Exercise 4D 

Exercise 4E 

Exercise 4F 
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1. (a)  
 1 4 πi

82e 0, 1, 2, 3
k

k


  (b) 
 8 1 πi1

6 122 e 1, 2, 3
k

k


  

 (c) 
 6 1 πi1

8 242 e 1, 2, 3, , 8
k

k


   (d)   i 

 (e) 
 4 1 πi

62e 1 0,1, 2
k

k


   (f)  π1 1 i cot
2 5

k  

 
 
 
1. (a)  64, +π  

 (b)   π π2 2 cos i sin
4 4
 ,  3π 3π2 2 cos i sin

4 4
 ,  

   π π2 2 cos i sin
4 4
  ,  3π 3π2 2 cos i sin

4 4
   

 (c)     2 1 i , 2 1 i     

 

2. (a)    π π π π2 cos isin , 2 cos i sin
4 4 6 6
     

 (b)(ii)  1.41 0.12i, 0.81 1.16i, 0.60 1.28i      
 

3. (b)  5 5
8
  (c) 5 5 5 5,

8 8
   

 
4. (b)  1, 3 
 

5. (b)  
 πi 1+2k

51 e 1, 2z k      (c)  centre 1,z    radius 1 

 (d)(i)  π
10

 (ii)  π2cos
10

 

 

6. (b)(ii)  2 1 0x x    (iii) 2π 4π2cos , 2cos
5 5

 (iv)  1 5 1 5,
4 4

     

 
7. (a)(ii)  2i sin n  (b)(i)  1, 3A B    
 

8. (a)(i)  2i sin
2


 (b)  
πi
3e 1, 2

k

k     

 (c)(i)  coefficients of 6w  cancel (ii)  1
2

  

 

Exercise 4G 

Miscellaneous exercises 4 

y 

 x 1 
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9. (a)  
πi
42 2e  (b)  

3πi 7πi
4 122e , 2e


  

  (c) (d)  3 3
2

 

 
 
 
 
 
 
 
 
Chapter 5 
 
 
 

1.  (a)  π
4

 (b)  π
6

   (c)  π
6

  (d)  π
2

   (e)  π
6
  (f)  π  

 
 
 
 

1.  (a)  
2

3
1 9x

  (b)  
2

3

6 9x x




  (c)  
2

2

1 4x
 

 

2.  (a)  1
2

tan
1

x x
x




 

 

     (b)  1

2

2cos 2
1 4

x
x ee x

x

 


 

 

     (c)   
2

1

2

22 sin 2 3
8 12 4

xx x
x x

  
  

 

 

3.  (a)  
1

43 2

3 3sin 3

1 9

x
xx x





 

 

     (b)  

   
 

 

1 2

22 22 2

2 tan 3 16

11 1 3 1

x xx

xx x

 


     
 

 

 

4.  (a)  
 2

1

a

ax b 
  (b)  

 2
1

a

ax b 
 

 C 

2  

2  

2  

 y 

 x 

2  

 A 
 B 

Exercise 5A 

Exercise 5C 
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1.  π
6

 

 
2.  π  
 

3.  π
2

  [note that 1 14 3 πsin sin
5 5 2

    by drawing a 3, 4, 5 right-angled triangle]. 

 

4.  π
4

 

 

5.  π
2

 

 
 
 

1.  (a)   1tan 2x  + c (b)   11 2tan 1
36

x  + c (c)  12 2 1tan
7 7

x  + c 

 

2.  (a)   2 1 1ln 2 3 2 tan
2

xx x       
 

+ c 

 

     (b)   2 11 1 2 1ln 1 tan
2 3 3

xx x       
 

+ c 

 

3.  (a)   1 3sin
4

x  + c (b)   1 1sin
2

x  + c  (c)   11 sin 4 1
2

x  + c 

 

4.  (a)  1 2sin 1x x   + c 
 

     (b)   2 1 13 3 2 sin
2

xx x      + c 

 

     (c)  2 13 2 11 sin
2 5

xx x       
 

+ c 

Exercise 5D 

Exercise 5E 
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Chapter 6 
 
 
 

1. (a)  2
e ex x

 (b) 
2

2
e 1
e 1

x

x



 (c) e 1
e 1

x

x



 (d) 
3 3

2
e ex x

 

 
 
 
1. (a)  0.64 (b)  0.86 (c)  0.24 (d)  –0.54 (e)  1.05 (f)  1.00 
 
 
 
 
1. (a) (b) 
 
 
 
 
 (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. 4 28cosh 8cosh 1x x   
 
 
 
 

1. (a)  3sinh 3x  (b)  6sinh 3 cosh 3x x  (c)  22 cosh sinhx x x x  

 (d)  
2

2 sinh 2 cosh 2x x x
x
  (e)  2tanh sechx x x  (f)   sech tanhx x  

 (g)  cosech cothx x  
 

Exercise 6A 

Exercise 6B 

Exercise 6C 

Exercise 6E 

Exercise 6F 

 x 

y

O

 x

 y 

 1

 O 

x

 y 

 1 

 O 

 –1 
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1. (a)  1 sinh 3
3

x c  (b)   1 1 sinh 2
2 2

x x c   

 (c)  1 1cosh 2 sinh 2
2 4

x x x c   (d)  tanhx x  + c 

 
 
 
 

3. (a)   1ln 3 5
2

  (b)  1 ln 2
2

 (c)  3ln
2

 

 
 
 

1. (a)  
2

3
9 x

 (b)  
2

1

9 x
 (c)  

2

1

16x 
 

 (d)  1

2

ee sinh
1

x
x x

x

 


 (e)  1 2
24

2 1 cosh
1

x
xx




 

 

2.   2 3 ln 2 3
3

   

 
 
 

1. (a)  1sinh
3
x c   (b) 1cosh

4
x c   (c) 11 2sinh

2 5
x c    

 (d) 11 3sinh
3 7

x c   (e) 1 1sinh
2

x c    (f) 1 2cosh
4

x c    

 (g)  1sinh 2x c    (h) 1 1cosh
3

x c    

 
 
 

1. (a)  ln 2  (b)  0, ln 7  (c)     ln 2 1 , ln 4 17   

 (d)  5 21ln
2

  (e)  No solutions 

 

Exercise 6G 

Exercise 6H 

Exercise 6I 

Exercise 6J 

Exercise 6K 
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1. (a)  ex  (b)  1 
 

2. (b)  1 ln 2
2

 

 

3. (b)   ln 2, ln 2 5   

 
4. (b)  ln 4  
 

5. (c)  
2 4
3 32 2

 
  

 

7. (b)(i)  21 tanh
2

x + c  (ii)  21ln cosh tanh
2

x x  + c 

 

8.(a)  (b)(i)  ln 3  (ii)  3ln
4

 

 
 
 
 
 
 
 
 

9. (a)  1x   (b)(ii)   2 ln 2 1   

 

10. (d)   21 ln 3
8

+ c 

 
11. (c)(ii)  1.76 

Miscellaneous exercises 6 

 x 

 y 

O 

1 

two roots

one root 

no roots 
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Chapter 7 
 
 
 
1. (b)(ii)  ln coshs   
 

2. (a)(i)  97 65,
72 72

 (b)  6305
5184

 

 

3. (a)(ii)  2 21 tanh sech    
 

4. (b)  20 2π8π,
3

k   

 

5. (b)(i)  12 (ii)  576 π
5

 

 
6. (a)  2 

 

Miscellaneous exercises 7 
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