

Specialists in mathematics publishing

Mathematics for the international student

Pamela Vollmar Michael Haese Robert Haese Sandra Haese Mark Humphries

for use with IB Middle Years Programme

MATHEMATICS FOR THE INTERNATIONAL STUDENT 6 (MYP 1)

Pamela Vollmar	B.Sc.(Hons.), PGCE.
Michael Haese	B.Sc.(Hons.), Ph.D.
Robert Haese	B.Sc.
Sandra Haese	B.Sc.
Mark Humphries	B.Sc.(Hons.)

Haese & Harris Publications 3 Frank Collopy Court, Adelaide Airport, SA 5950, AUSTRALIA Telephone: +61 8 8355 9444, Fax: +61 8 8355 9471 Email: info@haeseandharris.com.au Web: www.haeseandharris.com.au

National Library of Australia Card Number & ISBN 978-1-876543-47-1

© Haese & Harris Publications 2008

Published by Raksar Nominees Pty Ltd 3 Frank Collopy Court, Adelaide Airport, SA 5950, AUSTRALIA

First Edition 2008

Cartoon artwork by John Martin. Artwork by Piotr Poturaj and David Purton. Cover design by Piotr Poturaj. Computer software by David Purton, Thomas Jansson and Troy Cruickshank.

Typeset in Australia by Susan Haese (Raksar Nominees). Typeset in Times Roman $10\frac{1}{2}/11\frac{1}{2}$

The textbook and its accompanying CD have been developed independently of the International Baccalaureate Organization (IBO). The textbook and CD are in no way connected with, or endorsed by, the IBO.

This book is copyright. Except as permitted by the Copyright Act (any fair dealing for the purposes of private study, research, criticism or review), no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Enquiries to be made to Haese & Harris Publications.

Copying for educational purposes: Where copies of part or the whole of the book are made under Part VB of the Copyright Act, the law requires that the educational institution or the body that administers it has given a remuneration notice to Copyright Agency Limited (CAL). For information, contact the Copyright Agency Limited.

Acknowledgements: The publishers acknowledge the cooperation of Oxford University Press, Australia, for the reproduction of material originally published in textbooks produced in association with Haese & Harris Publications.

While every attempt has been made to trace and acknowledge copyright, the authors and publishers apologise for any accidental infringement where copyright has proved untraceable. They would be pleased to come to a suitable agreement with the rightful owner.

Disclaimer: All the internet addresses (URL's) given in this book were valid at the time of printing. While the authors and publisher regret any inconvenience that changes of address may cause readers, no responsibility for any such changes can be accepted by either the authors or the publisher.

FOREWORD

This book may be used as a general textbook at about 6th Grade (or Year 6) level in classes where students are expected to complete a rigorous course in Mathematics. It is the first book in our Middle Years series 'Mathematics for the International Student'.

In terms of the IB Middle Years Programme (MYP), our series does not pretend to be a definitive course. In response to requests from teachers who use 'Mathematics for the International Student' at IB Diploma level, we have endeavoured to interpret their requirements, as expressed to us, for a series that would prepare students for the Mathematics courses at Diploma level. We have developed the series independently of the International Baccalaureate Organization (IBO) in consultation with experienced teachers of IB Mathematics. Neither the series nor this text is endorsed by the IBO.

In regard to this book, it is not our intention that each chapter be worked through in full. Time constraints will not allow for this. Teachers must select exercises carefully, according to the abilities and prior knowledge of their students, to make the most efficient use of time and give as thorough coverage of content as possible.

We understand the emphasis that the IB MYP places on the five Areas of Interaction and in response there are links on the CD to printable pages which offer ideas for projects and investigations to help busy teachers (see p. 5).

Frequent use of the interactive features on the CD should nurture a much deeper understanding and appreciation of mathematical concepts. The inclusion of our new Self Tutor software (see p. 4) is intended to help students who have been absent from classes or who experience difficulty understanding the material.

The book contains many problems to cater for a range of student abilities and interests, and efforts have been made to contextualise problems so that students can see the practical applications of the mathematics they are studying.

We welcome your feedback. Email: info@haeseandharris.com.au

Web: www.haeseandharris.com.au

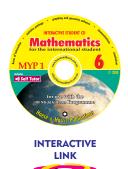
PV, PMH, RCH, SHH, MH

Acknowledgements

The authors and publishers would like to thank all those teachers who have read proofs and offered advice and encouragement.

Among those who submitted courses of study for Middle Years Mathematics and who offered to read and comment on the proofs of the textbook are: Margie Karbassioun, Kerstin Mockrish, Todd Sharpe, Tamara Jannink, Yang Zhaohui, Cameron Hall, Brendan Watson, Daniel Fosbenner, Rob DeAbreu, Philip E. Hedemann, Alessandra Pecoraro, Jeanne-Mari Neefs, Ray Wiens, John Bush, Jane Forrest, Dr Andrzej Cichy, William Larson, Wendy Farden, Chris Wieland, Kenneth Capp, Sara Locke, Rae Deeley, Val Frost, Mal Coad, Pia Jeppesen, Wissam Malaeb, Eduardo Betti, Robb Kitcher, Catherine Krylova, Julie Tan, Rosheen Gray, Jan-Mark Seewald, Nicola Cardwell, Tony Halsey, Ros McCabe, Alison Ryan, Mark Bethune, Keith Black, Vivienne Verschuren, Mark Willis, Curtis Wood, Ufuk Genc, Fran O'Connor. Special thanks to Heather Farish. To anyone we may have missed, we offer our apologies.

The publishers wish to make it clear that acknowledging these individuals does not imply any endorsement of this book by any of them, and all responsibility for the content rests with the authors and publishers.


USING THE INTERACTIVE CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision and practice. The CD also has the text of the book, allowing students to leave the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of new interactive features can be accessed:

- ♦ SelfTutor
- Areas of Interaction links to printable pages
- Interactive Links to spreadsheets, video clips, graphing and geometry software, computer demonstrations and simulations

SELF TUTOR is a new exciting feature of this book.

The Self Tutor icon on each worked example denotes an active link on the CD.

Simply 'click' on the Self Tutor (or anywhere in the example box) to access the worked example, with a teacher's voice explaining each step necessary to reach the answer.

Play any line as often as you like. See how the basic processes come alive using movement and colour on the screen.

Ideal for students who have missed lessons or need extra help.

Example 9	Self Tutor
Find: a $\frac{3}{4} - \frac{1}{3}$ b	$\frac{5}{6} - \frac{1}{3} - \frac{2}{9}$
a $\frac{3}{4} - \frac{1}{3}$	$\{LCD = 12\}$
$=rac{3 imes 3}{4 imes 3}-rac{1 imes 4}{3 imes 4}$	{converting to 12ths}
$=\frac{9}{12}-\frac{4}{12}$	{simplifying}
$=\frac{5}{12}$	{subtracting the numerators}
b $\frac{5}{6} - \frac{1}{3} - \frac{2}{9}$	$\{LCD = 18\}$
$= \frac{5\times3}{6\times3} - \frac{1\times6}{3\times6} - \frac{2\times2}{9\times2}$	{converting to 18ths}
$= \frac{15}{18} - \frac{6}{18} - \frac{4}{18}$	{simplifying}
$=\frac{5}{18}$	{subtracting the numerators}
$-\frac{1}{18}$	{subtracting the numerators}

AREAS OF INTERACTION

The International Baccalaureate Middle Years Programme focuses teaching and learning through five Areas of Interaction:

- Approaches to learning
- Community and service
- Human ingenuity

- Environments
- Health and social education

The Areas of Interaction are intended as a focus for developing connections between different

Click on the heading to access a printable 'pop-up' version of the link.

subject areas in the curriculum and to promote an understanding of the interrelatedness of different branches of knowledge and the coherence of knowledge as a whole.

In an effort to assist busy teachers, we offer the following printable pages of ideas for projects and investigations:

Links to printable pages of ideas for projects and investigations

Chapter 2: Operations with whole numbers p. 44	TENNIS RANKINGS Human ingenuity, Approaches to learning
Chapter 3: Points, lines and angles p. 64	MAKING A PROTRACTOR Human ingenuity
Chapter 5: Number properties p. 104	CICADAS Environments, Approaches to learning
Chapter 7: Polygons p. 142	PROTECTING YOURSELF, THE OLDFASHIONED WAYHuman ingenuity
Chapter 11: Operations with decimals p. 213	BODY MASS INDEX Health and social education
Chapter 12: Measurement p. 232	CALCULATING YOUR CARBON FOOTPRINT Environments, Community and service
Chapter 15: Time and temperature p. 293	HOW MANY STEPS DO YOU TAKE EACH DAY? Environments, Health and social education
Chapter 19: Area, volume and capacity p. 370	HOW MANY BRICKS ARE NEEDED TO BUILD A HOUSE? Approaches to learning
Chapter 20: Equations p. 388	HOW ARE DIVING SCORES CALCULATED? Human ingenuity
Chapter 24: Solids and polyhedra p. 449	PLATONIC SOLIDS Human ingenuity, Approaches to learning

TABLE OF CONTENTS

1	NUMBER SYSTEMS	9
А	Different number systems	10
В	The Hindu-Arabic system	17
С	Big numbers	20
	Review set 1A	23
	Review set 1B	24
2	OPERATIONS WITH WHOLE	
	NUMBERS	25
А	Adding and subtracting	0.6
р	whole numbers	26
В	Multiplying and dividing whole numbers	28
С	Two step problem solving	28 32
D	Number lines	32 34
E	Rounding numbers	35
F	Estimation and approximation	40
1	Review set 2A	44
	Review set 2B	45
3	POINTS, LINES AND ANGLES	47
A B	Points and lines	48 52
D C	Angles Angles at a point or on a line	52 57
D	Angles of a triangle	59
E	Angles of a quadrilateral	61
F	Bisecting angles	62
•	Review set 3A	6 <u>4</u>
	Review set 3B	65
4	LOCATION	67
A	Map references	69
B	Number grids	71
C	Interpreting points on a grid	75
D	Bearings and directions	77
ν	Review set 4A	82
	Review set 4B	83
5	NUMBER PROPERTIES	85
A	Addition and subtraction	86
B	Multiplication and division	88

С	Zero and one	90
D	Index or exponent notation	91
Е	Order of operations	92
F	Powers with base 10	95
G	Squares and cubes	96
Η	Factors of natural numbers	98
Ι	Divisibility tests	99
J	Prime and composite numbers	100
Κ	Multiples and LCM	102
	Review set 5A	104
	Review set 5B	105
6	FRACTIONS	107
А	Representing fractions	110
В	Fractions of regular shapes	112
С	Equal fractions	113
D	Simplifying fractions	115
E	Fractions of quantities	117
F	Comparing fraction sizes	120
G	Improper fractions and	
	mixed numbers	122
	Review set 6A	124
	Review set 6B	125
7	POLYGONS	127
А	Polygons	128
В	Triangles	130
С	Quadrilaterals	134
D	Euler's rule for plane figures	140
	Review set 7A	142
	Review set 7B	143
8	FRACTION OPERATIONS	145
А	Adding fractions	146
В	Subtracting fractions	150
С	Multiplying fractions	154
D	Reciprocals	157
Е	Dividing fractions	158
F	Problem solving	159
	Review set 8A	161
	Review set 8B	162

•	DECIMALS	1/5
9	DECIMALS	165
А	Constructing decimal numbers	166
В	Representing decimal numbers	170
С	Decimal currency	172
D	Using a number line	174
Е	Ordering decimals	176
F	Rounding decimal numbers	178
G	Converting decimals to fractions	179
Н	Converting fractions to decimals	180
	Review set 9A	182
	Review set 9B	183
10	PROBLEM SOLVING	185
А	Trial and error	186
В	Making a list	188
С	Modelling or drawing a picture	189
D	Making a table	
	and looking for a pattern	191
Е	Working backwards	194
	Review set 10A	196
	Review set 10B	196
11	OPERATIONS WITH DECIMALS	5 197
А	Adding and subtracting decimals	198
A B	Adding and subtracting decimals Multiplying and dividing	198
		198 200
	Multiplying and dividing	
В	Multiplying and dividing by powers of 10	200
B C	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals	200 203 205
B C D	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers	200 203
B C D	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring	200 203 205 208
B C D E F	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals	200 203 205 208 210
B C D E	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator	200 203 205 208 210 212
B C D E F	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A	200 203 205 208 210 212 213
B C D E F	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator	200 203 205 208 210 212
B C D E F G	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A	200 203 205 208 210 212 213
B C D E F G	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B	200 203 205 208 210 212 213 214
B C D E F G	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B MEASUREMENT	200 203 205 208 210 212 213 214 215
B C D E F G 12 A	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B MEASUREMENT Units of measurement	200 203 205 208 210 212 213 214 215 217
B C D E F G I 2 A B	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B MEASUREMENT Units of measurement Reading scales	200 203 205 208 210 212 213 214 215 217 219
B C D E F G I 2 A B C	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B MEASUREMENT Units of measurement Reading scales Length conversions	200 203 205 208 210 212 213 214 215 217 219 221
B C D E F G I 2 A B C D	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11B MEASUREMENT Units of measurement Reading scales Length conversions Perimeter	200 203 205 208 210 212 213 214 215 217 219 221 223
B C D E F G I 2 A B C D E E	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11A Review set 11B MEASUREMENT Units of measurement Reading scales Length conversions Perimeter Scale diagrams	200 203 205 208 210 212 213 214 215 217 219 221 223 226
B C D E F G A B C D E F F	Multiplying and dividing by powers of 10 Large decimal numbers Multiplying decimal numbers Dividing decimals by whole numbers Terminating and recurring decimals Using a calculator Review set 11A Review set 11A Review set 11B MEASUREMENT Units of measurement Reading scales Length conversions Perimeter Scale diagrams Mass	200 203 205 208 210 212 213 214 215 217 219 221 223 226 228

13	DIRECTED NUMBERS	235
А	Opposites	236
В	Directed numbers and	
	the number line	241
С	Using a number line	
	to add and subtract	245
D	Adding and subtracting negatives	248
Е	Multiplying directed numbers	250
F	Dividing directed numbers	253
G	Combined operations	254
Η	Using your calculator	256
	Review set 13A	257
	Review set 13B	257
14	PERCENTAGE	259
А	Percentages	260
В	Converting fractions to percentages	263
С	Converting percentages to fractions	266
D	Converting decimals to percentages	267
Е	Converting percentages to decimals	268
F	Plotting numbers on a number line	270
G	Shaded regions of figures	271
	Review set 14A	273
	Review set 14B	274
15	TIME AND TEMPERATURE	275
А	Time lines	277
B	Units of time	279
C	Differences in time	281
D	Reading clocks and watches	283
E	Timetables	285
F	Time zones	288
G	Average speed	290
Н	Temperature conversions	292
11	Review set 15A	293
	Review set 15B	294
16	USING PERCENTAGES	297
A	Comparing quantities	298
B	Finding percentages of quantities	301
C	Percentages and money	302
D E	Profit and loss	303
E	Discount Coods tay	305
F	Goods tax	306
G	Simple interest Review set 16A	308 309
	Review set 16B	309 310
		J10

17 DATA COLLECTION AND REPRESENTATION

А	Samples and populations	
В	Categorical data	

C Graphs of categorical data

D Numerical data

Е	Mean or average	
	Review set 17A	
	Review set 17B	

18 ALGEBRA AND PATTERNS

А	Patterns	332
В	Variables and notation	335
С	Algebraic form	336
D	The value of an expression	338
E	Substituting into formulae	339
F	Practical problems using formulae	342
G	Linear graphs	344
	Review set 18A	346
	Review set 18B	346

19 AREA, VOLUME AND CAPACITY

~~	
	Review set 19B
	Review set 19A
G	Problem solving
F	Capacity
E	Volume
D	The area of a triangle
С	The area of a rectangle
В	Conversion of area units
А	Area

20 EQUATIONS

С

А	What are equations?	374
В	Solving simple equations	375
С	Maintaining balance	377
D	Inverse operations	380
E	Solving equations	382
F	Problem solving with equations	386
	Review set 20A	388
	Review set 20B	389

21 COORDINATES AND LINES 391

A	The number plane	392
В	Points on a straight line	394

Graphing straight lines

- Special lines 396 D E The *x* and *y*-intercepts 398 Review set 21A 400 Review set 21B 401 **22 TRANSFORMATIONS** 403 406 A Reflections and line symmetry Rotations and rotational symmetry 409 В С Translations 414 D Enlargements and reductions 415 E Tessellations 417 Review set 22A 421 Review set 22B 422 **23 SETS** 423 A Sets and their members 424 The intersection of sets 428 B С The union of sets 429 D Venn diagrams 430 Review set 23A 434 Review set 23B 435 24 SOLIDS AND POLYHEDRA 437 Types of solids 439 А Freehand drawings of solids 442 B Isometric projections 445 С Constructing block solids 446 D E Nets of solids 447 Review set 24A 449 Review set 24B 450 **ANSWERS** 451 INDEX 488
- 373 INE

311

313

315

318

322

326

329

330

331

349

350

353

355

358

361 366

368 370

371

395

Number systems

- A Different number systems
- **B** The Hindu-Arabic system
- **C** Big numbers

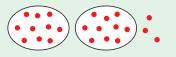
Archaeologists and anthropologists study ancient civilizations. They have helped us to understand how people long ago counted and recorded numbers. Their findings suggest that the first attempts at counting were to use a tally.

For example, in ancient times people used items to represent numbers:

scratches on a cave wall showed the number of new moons since the buffalo herd came through

knots on a rope showed the rows of corn planted

pebbles on the sand showed the number of traps set for fish


notches cut on a branch showed the number of new lambs born

In time, humans learned to write numbers more efficiently. They did this by developing **number systems**.

OPENING PROBLEM

The number system we use in this course is based on the **Hindu-Arabic** system which uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

The number of dots shown here is twenty three. We write this as 23, which means '2 tens and 3 ones'.

How was the number 23 written by:

- ancient Egyptians
- Mayans

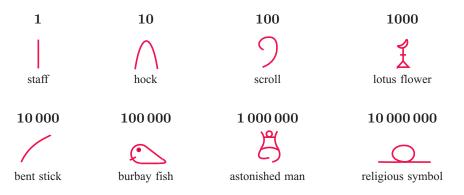
- ancient GreeksChinese and Japanese?
- Romans

DIFFERENT NUMBER SYSTEMS

The ancient Egyptians used tally strokes to record and count objects.

In time they replaced every 10 strokes with a different symbol. They chose \bigwedge to represent |||||||||||.

So, 23 was then written as $\bigcap \bigcap |||$.


We still use tallies to help with counting. Instead of |||||| we now use ||||| .

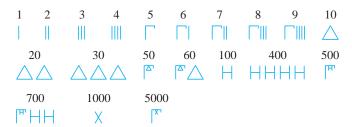
THE EGYPTIAN NUMBER SYSTEM

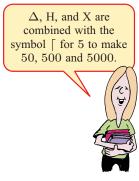
There is archaeological evidence that as long ago as 3600 BC the Egyptians were using a detailed number system. The symbols used to represent numbers were pictures of everyday things. These symbols are called **hieroglyphics** which means sacred picture writings.

The Egyptians used a tally system based on the number ten. Ten of one symbol could be replaced by one of another symbol. We call this a **base ten system**.

The order in which the symbols were written down did not affect the value of the numerals. The value of the numerals could be found by adding the value of the symbols used.

The Egyptian system did not have place values.


EXERCISE 1A.1


- a In the Hindu-Arabic number system, 3 symbols are used to write the number 999. How many Egyptian symbols are needed to write the Hindu-Arabic 999?
 - **b** Write the Egyptian symbols for 728 and 234 124.
- **2** Convert these symbols to Hindu-Arabic numerals:

THE ANCIENT GREEK OR ATTIC SYSTEM

The Ancient Greeks saw the need to include a symbol for 5. This symbol was combined with the symbols for 10, 100, and 1000 to make 50, 500, and 5000.

Some examples of Ancient Greek numbers are:

This number system depends on addition and multiplication.

Exam	ple 1				Self Tutor
Char	nge the follow	ving Ancient	Greek numer	als into a Hindu-A	Arabic number:
а	ХННН∆	$\Delta \ \ $	b	$\mathbb{X} \times \mathbb{H} \to \mathbb{X}$	
а	Х	1000	ь	[^x "X	6000
	HHH	300		ГРНН	700
	\bigtriangleup	20		$\mathbb{P} \triangle \triangle \triangle$	80
		+ 4			+ 1
		1324			6781

EXERCISE 1A.2

1 Change the following Ancient Greek numerals into Hindu-Arabic numbers:

a	$\bigtriangleup $	Ь		c	ННШ
d		e	ſĨHH∆∆III	f	ҝӈн⊾

2 Write the following Hindu-Arabic numbers as Ancient Greek numerals:

a 14	b 31	c 99	d 555	e 4082	f 5601

ROMAN NUMERALS

Like the Greeks, the Romans used a number for five.

The first four numbers could be represented by the fingers on one hand, so the V formed by the thumb and forefinger of an open hand represented 5.

Two Vs joined together \checkmark became two lots of 5, so ten was represented by X.

C represented one hundred, and half a - or L became 50.

One thousand was represented by an \bigwedge . With a little imagination you should see that an $\bigwedge \bigwedge$ split in half and turned on its side became >, so D became half a thousand or 500.

1	2	3	4	5	6	7	8	9	10	
Ι	II	III	\mathbf{IV}	\mathbf{V}	\mathbf{VI}	VII	VIII	IX	\mathbf{X}	
20	30	40	50	60	70	80	90	100	500	1000
$\mathbf{X}\mathbf{X}$	XXX	\mathbf{XL}	\mathbf{L}	$\mathbf{L}\mathbf{X}$	\mathbf{LXX}	LXXX	\mathbf{XC}	\mathbf{C}	D	\mathbf{M}

Unlike the Egyptian system, numbers written in the Roman system had to be written in order. For example:

IV stands for 1 before 5 or 4 whereas VI stands for 1 after 5 or 6.

XC stands for 10 before 100 or 90 whereas CX stands for 10 after 100 or 110.

There were rules for the order in which symbols could be used:

- I could only appear before V or X.
- X could only appear before L or C.
- C could only appear before D or M.

One less than a thousand was therefore not written as IM but as CMXCIX.

Larger numerals were formed by placing a stroke above the symbol. This made the number 1000 times as large.

5000	10000	50000	100000	500000	1000000
$\overline{\mathbf{V}}$	$\overline{\mathbf{X}}$	$\overline{\mathbf{L}}$	$\overline{\mathbf{C}}$	$\overline{\mathbf{D}}$	$\overline{\mathbf{M}}$

EXERCISE 1A.3

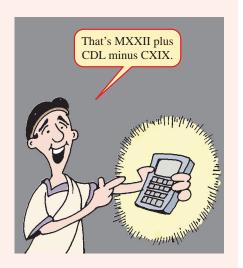
1 What numbers are represented by the following symbols?

a VIII	b XIV	c XVI	d XXXI	c CX
f LXXXI	g CXXV	h CCXVI	i LXII	j MCLVI
$\mathbf{k} \overline{\mathrm{D}} \overline{\mathrm{L}} \mathrm{D} \mathrm{C} \mathrm{V}$	DCCXX	m CDXIX	n $\overline{D}\overline{L}\overline{V}DI$	• $\overline{M}\overline{M}\overline{C}\overline{C}\overline{C}$
W7.: 4 - 41 - 6 - 11				

2 Write the following numbers in Roman numerals:

- a 18 b 34 c 279 d 902 e 1046 f 2551
- **a** Which Roman numeral less than one hundred is written using the greatest number of symbols?
 - What is the highest Roman numeral between M and MM which uses the least number of symbols?
 - Write the year 1999 using Roman symbols.
- **4** Use Roman numerals to answer the following questions.
 - a Each week Octavius sharpens CCCLIV swords for his general. How many will he need to sharpen if the general doubles his order?
 - What would it cost Claudius to finish his courtyard if he needs to pay for CL pavers at VIII denarii each and labour costs XCIV denarii?

ACTIVITY 1


IF YOU LIVED IN ROMAN TIMES

What to do:

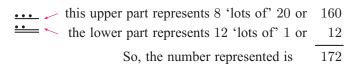
1 Use Roman numerals to write:

- a your house number and postcode
- **b** your height in centimetres
- **c** your phone number
- **d** the number of students in your class
- e the width of your desk in centimetres.
- **2** Use a calendar to help you write in Roman numerals:
 - a your date of birth, for example XXI-XI-MCMXLVI
 - b what the date will be when you are:i XV ii L iii XXI iv C

THE MAYAN SYSTEM

The Mayans originally used pebbles and sticks to represent numbers. They later recorded them as dots and strokes. A stroke represented the number 5.

1	2	3	5		<u>9</u>	10
					19 ₩	


Unlike the Egyptians and Romans, the Mayans created a **place value** by placing one symbol *above* the other.

The Hindu-Arabic system we use in this course involves base 10.

The number 172 is 17 'lots of' 10 plus 2 'lots of' 1.

In contrast, the Mayan system used base 20.

Consider ...

The Mayans also recognised the need for a number zero to show the difference between 'lots of 1' and 'lots of 20'. The symbol which represented a mussel shell, works like our zero.

OTHER WAYS OF COUNTING

Compare these symbols:

43	40	68	60	149	100	
••	• •	• • •	• • •	<u>• • </u>		lots of 20
•••		• • •		<u>• • • •</u>		lots of 1

EXERCISE 1A.4

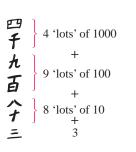
- 1 Write these numbers using Mayan symbols:
- a 23
 b 50
 c 99
 d 105
 e 217
 f 303

 2 Convert these Mayan symbols into Hindu-Arabic numbers:

 a
 b
 c
 d
 e
 f

RESEARCH

Find out:


a how the Ancient Egyptians and Mayans represented numbers larger than 1000

- **b** whether the Egyptians used a symbol for zero
- c what Braille numbers are and what they feel like
 d how deaf people 'sign' numbers.

THE CHINESE - JAPANESE SYSTEM

The Chinese and Japanese use a similar place value system.	1	2	3 =	4 E9	5 Fi	
Their symbols are:	_			_	~	/ 、
	7	8	9	10	100	1000
	t	ト	h	+	百	Ŧ

This is how 4983 would be written:

EXERCISE 1A.5

a

1 What numbers are represented by these symbols?

も百六十五	5 三千二百四十八	。 た 千九 百九 ナ九
-------	-----------	--------------------------

- 2 Write these numbers using Chinese-Japanese symbols:
 - a 497 b 8400 c 1111
- **3** Copy and complete:

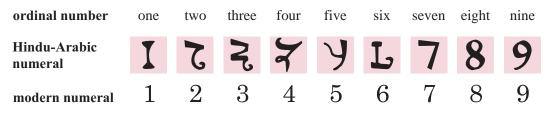
	Words	Hindu-Arabic	Roman	Egyptian	Mayan	Chinese-Japanese
a	thirty seven	37				
Ь				21111		
c			CLIX			
d						

ACTIVITY 2

MATCHSTICK PUZZLES

Use matchsticks to solve these puzzles. Unless stated otherwise, you are not allowed to remove a matchstick completely.

- 1 Move just one matchstick to make this correct:
- **2** Move one matchstick to make this correct:
- **3** Arrange 4 matchsticks to make a total of 15.
- 4 Make this correct moving just one matchstick:
- **5** Remove 3 matchsticks from this sum to make the equation correct.
- $|\bigvee || = \lor$ $||| || = |\lor$
- X = | + | X | + | = |


THE HINDU-ARABIC SYSTEM

The number system we will use throughout this course was developed in India 2000 years ago. It was introduced to European nations by Arab traders about 1000 years ago. The system was thus called the **Hindu-Arabic** system.

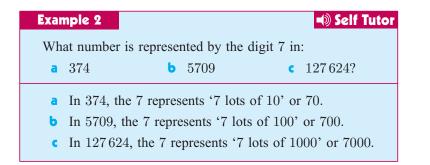
B

The marks we use to represent numbers are called **numerals**. They are made up using the symbols 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0, which are known as **digits**.

The digits 3 and 8 are used to form the numeral 38 for the number 'thirty eight' and the numeral 83 for the number 'eighty three'.

The numbers we use for counting are called **natural numbers** or sometimes just **counting numbers**. The possible combination of natural numbers is endless. There is no largest natural number, so we say the set of all natural numbers is **infinite**.

If we include the number **zero** or 0, then our set now has a new name, which is the set of **whole numbers**.


The Hindu-Arabic system is more useful and more efficient than the systems used by the Egyptians, Romans, and Mayans.

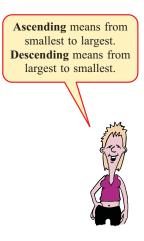
- It uses only 10 digits to construct all the natural numbers.
- It uses the digit 0 or zero to show an empty place value.
- It has a **place value** system where digits represent different numbers when placed in different place value columns.

Each digit in a number has a place value.

For example: in 567 942

on hundred thousands	ten thousands	⁴ thousands	o hundreds	tens	units
5	6	7	9	4	2

EXERCISE 1B


1 What number is represented by the digit 8 in the following?

a	38	b	81	C	458	d	847
e	1981	f	8247	9	2861	h	28902
- i	60 008	j	84019	k	78794	Т	189964

2 Write down the place value of the 3, the 5 and the 8 in each of the following:

- **a** 53 486 **b** 3580 **c** 50 083 **d** 805 340
- **a** Use the digits 6, 4 and 8 once only to make the largest number you can.
 - **b** Write the largest number you can using the digits 4, 1, 0, 7, 2 and 9 once only.
 - What is the largest 6 digit numeral you can write using each of the digits 2, 7 and 9 twice?
 - **d** How many different numbers can you write using the digits 3, 4 and 5 once only?
- 4 Put the following numbers in *ascending* order:
 - **a** 57, 8, 75, 16, 54, 19
 - **b** 660, 60, 600, 6, 606
 - **c** 1080, 1808, 1800, 1008, 1880
 - **d** 45 061, 46 510, 40 561, 46 051, 46 501
 - **e** 236 705, 227 635, 207 653, 265 703
 - **f** 554 922, 594 522, 545 922, 595 242
- 5 Write the following numbers in *descending* order:
 - **a** 361, 136, 163, 613, 316, 631
 - **b** 7789, 7987, 9787, 8779, 8977, 7897, 9877

 - **d** 563 074, 576 304, 675 034, 607 543, 673 540

Example 3 Self Tutor **a** Express $3 \times 10000 + 4 \times 1000 + 8 \times 10 + 5 \times 1$ in simplest form. **b** Write 9602 in expanded form. **a** $3 \times 10\,000 + 4 \times 1000 + 8 \times 10 + 5 \times 1 = 34\,085$ **b** $9602 = 9 \times 1000 + 6 \times 100 + 2 \times 1$ **6** Express the following in simplest form: DEMO **a** $8 \times 10 + 6 \times 1$ **b** $6 \times 100 + 7 \times 10 + 4 \times 1$ **c** $9 \times 1000 + 6 \times 100 + 3 \times 10 + 8 \times 1$ **d** $5 \times 10\,000 + 2 \times 100 + 4 \times 10$ $2 \times 10000 + 7 \times 1000 + 3 \times 1$ $2 \times 100 + 7 \times 10\,000 + 3 \times 1000 + 9 \times 10 + 8 \times 1$ **g** $3 \times 100 + 5 \times 100\,000 + 7 \times 10 + 5 \times 1$ **h** $8 \times 100\,000 + 9 \times 1000 + 3 \times 100 + 2 \times 1$ **7** Write in expanded form: DEMO **a** 975 **b** 680 **c** 3874 **d** 9083 **Q** 600 829 **2** 56 742 f 75007**h** 354718 8 Write the following in numeral form: a twenty seven **b** eighty **d** one thousand and sixteen **c** six hundred and eight e eight thousand two hundred f nineteen thousand five hundred and thirty eight g seventy five thousand four hundred and three **h** six hundred and two thousand eight hundred and eighteen. **9** What number is: a one less than eight b two more than eleven **c** four more than seventeen • one less than three hundred \mathbf{f} 3 less than 10000 e seven greater than four thousand g four more than four hundred thousand **b** 26 more than two hundred and nine thousand? **10** The number 372474 contains two 7s and two 4s. first 7 second 7 **a** How many times larger is the first 7 compared with the second 7?

- **b** How many times smaller is the second 7 compared with the first 7?
- Which of the 4s represents a larger number? By how much is it larger than the other one?

C

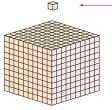
BIG NUMBERS

Commas or, are sometimes used to make it easier to read numbers greater than 3 digits.

For example: 2,954 two thousand, nine hundred and fifty four 4,234,685 four million, two hundred and thirty four thousand, six hundred and eighty five

When typed, we usually use a space instead of the comma. Can you suggest some reasons for this?

Millions			Tho	usands		Units			
hundreds	tens	units	hundreds	tens	units	hundreds	tens	units	
	5	3	4	7	9	6	8	2	


The number displayed in the place value chart is 53 million, 479 thousand, 682. To make the number easier to read the digits are arranged into the units, the thousands, and the millions. With spaces now used to separate the groups, the number on the place value chart is written $53\,479\,682$.

A MILLION

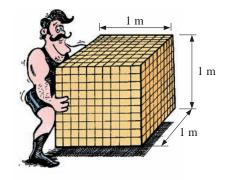
One million is written 1 000 000. Just how large is one million?

Consider the following:

- is a diagram of a cube with sides 1 mm.

is a diagram of a cube with sides 1 cm. Each 1 cm = 10 mm. This cube contains 1000 cubes with sides 1 mm.

A cube which has sides 10 cm is made up of $10 \times 10 \times 10 = 1000$ cubes with sides 1 cm, and each cube with sides 1 cm is made up of 1000 cubes with sides 1 mm. So, it is made up of 1000×1000 or 1000000 cubes with sides 1 mm.


A BILLION AND A TRILLION

A **billion** is 1000 million or 1 000 000 000.

We saw previously that a 10 cm \times 10 cm \times 10 cm \times 10 cm cube contains 1 000 000 cubic millimetres.

A billion cubic millimetres are contained in a cube which is $1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$.

A **trillion** is 1000 billion or 1 000 000 000 000.

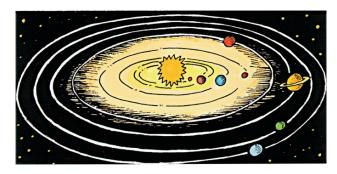
	Trillions		В	Billions		Millions		Thousands			Units				
I	Ч	Т	U	Η	Т	U	Η	Τ	U	Η	Τ	U	Η	Τ	U
		6	3	5	8	4	2	0	1	5	7	1	9	2	6

The number displayed in the place value chart is

63 trillion, 584 billion, 201 million, 571 thousand 9 hundred and 26.

EXERCISE 1C

- 1 In the number 53 479 682, the digit 9 has the value 9000 and the digit 3 has the value 3 000 000. Give the value of the:
 - **a** 8 **b** 5 **c** 6 **d** 4 **e** 7 **f** 2
- 2 Write the value of each digit in the following numbers:
 - **a** 3 648 597 **b** 34 865 271
- **3** Read the following stories about large numbers. Write each large number using numerals.
 - **a** A heart beating at a rate of 70 beats per minute would beat about thirty seven million times in a year.
 - Austria's largest hamburger chain bought two hundred million bread buns and used seventeen million kilograms of beef in one year.
 - The Jurassic era was about one hundred and fifty million years ago.
 - **d** One hundred and eleven million, two hundred and forty thousand, four hundred and sixty three dollars and ten cents was won by two people in a Powerball Lottery in Wisconsin USA in 1993.
 - A total of twenty one million, two hundred and forty thousand, six hundred and fifty seven Volkswagen 'Beetles' had been built to the end of 1995.



- f In a lifetime the average person will blink four hundred and fifteen million times.g One Megabyte of data on a computer is one million, forty eight thousand, five
 - hundred and seventy six bytes.
- 4 Arrange these planets in order of their distance from the Sun starting with the closest.

Venus 108 200 000 kms Saturn 1427000000 kms Earth 149600000 kms Uranus 2 870 000 000 kms Mercury 57 900 000 kms Jupiter 778 300 000 kms Pluto 5 900 000 000 kms Neptune 4497000000 kms Mars 227 900 000 kms

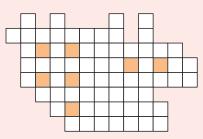
22 NUMBER SYSTEMS (Chapter 1)

- **5** a Use the table to answer the following:
 - Which continent has the greatest area?
 - ii Name the continents with an area greater than 20 million square kilometres.
 - Which continents are completely in the Southern Hemisphere?

Continent	Area in square km
Africa	30271000
Antarctica	13 209 000
Asia	44 026 000
Australia	7 682 000
Europe	10 404 000
North America	24258000
South America	17823000

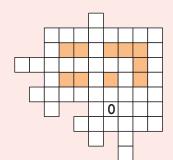
ACTIVITY 3

NUMBER SEARCH PROBLEMS


Number searches are like crossword puzzles with numbers going across and down.

The aim is to fit all of the numbers into the grid using each number once. There is only one way in which all of the numbers will fit.

Draw or click on the icon to print these grids then insert the given numbers.


Search 1:

2 digits	6 digits	8 digits
89, 92, 56	949875	62658397
3 digits	7 digits	79408632
183	8 097 116	10343879
4 digits	3291748	91 863 432
4 <i>alglis</i> 6680	6709493	81 947 368
	7264331	
5 digits	4387096	
69235	3872095	

Search 2:

- seven hundred and nine
- five hundred and eighty six
- sixty thousand, two hundred and eighty four
- seven hundred and ninety three thousand and forty two
- four hundred and forty nine thousand, seven hundred and sixty eight
- three million eight hundred and two thousand, seven hundred and forty eight
- two million six hundred and eighty three thousand, one hundred and forty eight
- seventy million, two hundred and eighty three thousand, six hundred and forty two

- nineteen million, three hundred and eighty four thousand, and three
- five hundred and eighty three million, seventy nine thousand, six hundred and forty six
- three hundred and forty five million, six hundred and ninety seven thousand and fifty one

Did you know?

The milk from 1000000 litre cartons would fill a 50 metre long by 20 metre wide pool to a depth of 1 metre.

KEY WORDS USED IN THIS CHAPTER

- Ancient Greek system
- counting number
- Hindu-Arabic system
- million
- numeral
- tally

- Chinese-Japanese system
- Egyptian system
- Mayan system
- number system
- Roman numeral
- whole number

- **REVIEW SET 1A**
- 1 Give the numbers represented by the Ancient Greek symbols:
 - b XXITHAAAIIII $H \square \land \Gamma$
- **2** Write the following numbers using Egyptian symbols:
 - **a** 27 **b** 569
- **3** Give the numbers represented by the Roman numerals:
 - a XVIII **b** LXXIX
- **4** Write the year 2012 using Roman numerals.
- **5** Write the following numbers using the Mayan system:
 - **a** 46 **b** 273
- 6 Give the numbers represented by the Chinese-Japanese symbols:

a	E	Ь	Ē
	百		冝
	t		Æ
	+		1
	$\dot{\overline{\mathbf{x}}}$		ħ

7 Give the number represented by the digit 4 in: a 3409 **b** 41076

- 8 What is the place value of the 8 in the following numbers?
 - a 3894 **b** 856 042
- **9** Use the digits 8, 0, 4, 1, 7 to make the largest number you can.
- **10** Write these numbers in ascending order (smallest first): 569 207, 96 572, 652 097, 795 602, 79 562
- **11** Express $2 \times 1000 + 4 \times 100 + 9 \times 10 + 7 \times 1$ in simplest form.
- **12** Write seventeen thousand three hundred and four in numeral form.

- billion • digit
 - infinite
 - natural number
 - place value
 - trillion

- **13** Write the value of each digit in the number 4532681.
- **14** The total area of Canada is approximately nine million, nine hundred and eighty four thousand, seven hundred square kilometres. Write this number using numerals.

REVIEW SET 1B

1 Write the following numbers using Ancient Greek symbols:

a 78 b 245

2 Give the numbers represented by the Egyptian symbols:

° 77∧∧∧∧III ° 8⊂⊆íí7771111

- **3** Which Roman numeral between 100 and 200 uses the greatest number of symbols?
- 4 Write these numbers using the Chinese-Japanese system:
 - a 386 b 2113
- 5 What number is represented by the digit 7 in the following?
 - **a** 3174 **b** 207409
- What is the largest 6 digit number you can write using each of the digits 0, 5 and 8 twice?
- 7 Write in descending order (largest first): 680 969, 608 699, 6 080 699, 698 096, 968 099
- 8 Write the following numbers in expanded form:
 - **a** 2159 **b** 306 428
- **9** What number is:
 - a five more than eighteen **b** nine less than one thousand?
- **10** Write the value of each digit in the number 37405922.
- **11** The average person will travel five million, eight hundred and ninety thousand kilometres in a lifetime. Write this number using numerals.
- **12** Consider the number $2\,000\,000\,000$.
 - **a** Write this number in words.
 - **b** Copy and complete: 2 000 000 000 is lots of one million.

1st 2nd

13 The number 2552667 contains two 2s, two 5s and two 6s.

1st 2nd

- **a** How many times larger is the first 2 compared with the second 2?
- **b** How many times smaller is the second 5 compared with the first 5?
- Which of the 6s represents a larger number? By how much is it larger than the other 6?

Operations with whole numbers

- Adding and subtracting whole numbers
- Multiplying and dividing whole numbers
- Two step problem solving
- Number lines
- **Rounding numbers**
- Estimation and approximation

OPENING PROBLEM

Andreas is typing an essay on his computer. He is very quick at typing.

Things to think about:

- If Andreas types 70 words each minute, how many words will he type in 6 minutes?
- If Andreas types 378 words in 6 minutes, how many words per minute has he typed?
- If Andreas types 72 words per minute for 2 minutes and then 80 words per minute for 3 minutes, how many words has he typed in the 5 minute period, and what was his overall rate of typing?

ADDING AND SUBTRACTING WHOLE NUMBERS

When we add or subtract whole numbers it is often easier to write the numbers in columns so that the place values are lined up.

Example 1	Self Tutor
Find: $32 + 427 + 3274$	
3 2	
427	
+ 3274	
3733	

Example 2	Self Tutor
Find: a $207 - 128$	b 4200 - 326
$ \overset{1}{\overset{9}{\overset{1}}} \overset{1}{\overset{9}{\overset{17}}} \overset{17}{\overset{7}{\overset{7}}} \overset{7}{\overset{7}{\overset{7}}} $	$ \overset{3 119 10}{\cancel{4299}} $
-128	-326
$7 \ 9$	$3\ 8\ 7\ 4$

EXERCISE 2A.1

1 Do these additions:

a	3 9 2	Ь	$6\ 0\ 1$	c	$1\ 9\ 1\ 7$
+	415	+	729	+	2078

d	913	e	$2\ 1\ 7$	f	$9\ 0\ 0\ 4$
	$2\ 4$		$1 \ 0 \ 6$		$2\ 1\ 6$
	+ 707		+ 1274		$2\ 3$
-					+ 3816
• • • •					
2 Find:					
a 4	42 + 37	Ь	72 + 35	C	421 + 327
d	624 + 72	e	921 + 1234	f	6214 + 324 + 27
9	90 + 724	h	32 + 627 + 4296	÷.	912 + 6 + 427 + 3274
3 Do th	hese subtractions:				
а	97	b	$6\ 3$	c	$2\ 4\ 7$
	- 15		- 19		- 138
-					
d	$6\ 0\ 2$	e	$7\ 1\ 3$	f	$6\ 0\ 0\ 5$
	-149		- 48		-2349
-					
4 Find:	:				
a	47 - 13	Ь	62 - 14	c	33 - 27
d	40 - 18	e	214 - 32	f	623 - 147
9	503 - 127	h	5003 - 1236		

OPERATIONS WITH WHOLE NUMBERS (Chapter 2)

WORD PROBLEMS

We will now look at solving some **word problems** where the solution depends on **addition** or **subtraction**. When we answer the problem, we write a **mathematical sentence** which involves numbers.

Example 3

Self Tutor

Clive filled a wheelbarrow with 5 kg of potatoes, 3 kg of carrots, 7 kg of onions and 25 kg of pumpkin. What was the total weight of Clive's vegetables?

Total weight = 5 + 3 + 7 + 25= 40 kg

27

EXERCISE 2A.2

- 1 Jack bought 4 separate lengths of timber. Their lengths were 5 m, 1 m, 7 m, and 9 m. What was the total length of timber that Jack bought?
- 2 Xuen bought a Wii for \$255. She also purchased another controller for \$50, a game for \$95, and a bag to store these in for \$32. How much did she pay altogether?

28 OPERATIONS WITH WHOLE NUMBERS (Chapter 2)

3 Kerry needs to lose some weight to be chosen in a light weight rowing team. He currently weighs 60 kg but needs to weigh 54 kg. How much weight does he need to lose?

- 4 Stefanie made €72 worth of phone calls in one month. Her parents said they would only pay €31 of this. How much did Stefanie have to pay?
- 5 Erika had 65 minutes of time left on her prepaid cellphone. She made a 10 minute call to Hiroshi, a 7 minute call to her mother, and a 26 minute call to her boyfriend Marino. How many minutes did she have left after making these calls?
- 6 Rima went on an overseas trip that required three plane flights. The first flight was 2142 km long, the next one was 732 km long, and the third one was 1049 km long. What was the total distance that Rima flew?
- 7 Bill measured out a straight line 6010 cm long on the school grounds. He actually went too far. The line should have been 4832 cm long. How much of the line will he need to rub out?

B

MULTIPLYING AND DIVIDING WHOLE NUMBERS

MULTIPLYING BY POWERS OF 10

When we multiply by:

- : 10 we make a number 10 times larger
 - 100 we make a number 100 times larger
 - 1000 we make a number 1000 times larger.

When we multiply by 100 we add two zeros onto the end of the whole number.

The first three **powers of 10** are

10, 100 and 1000.

Example 4		Self Tutor
Find: a 23×10	b 89 × 100	c 381 × 1000
a 23×10 = 230	b 89×100 = 8900	c 381×1000 = 381 000

Example 5			Self Tutor
Find: a 67×4	b	53×16	c 428 × 54
a 67	ь	$5\ 3$	c 428
× 24		$\times 1 6$	$\times \begin{smallmatrix} 1 & 5 & 4 \\ 1 & 4 & 3 \end{smallmatrix}$
268		318	1712
		530	21400
		848	$2\ 3\ 1\ 1\ 2$
XERCISE 2B.1			
1 Find:			
a 50×10	b 50 × 100	c 50 × 100	0 d 69×100

MULTIPLYING LARGER WHOLE NUMBERS

1 Find:				
a $50 imes 10$	b	50 imes 100 c	50 imes 1000 d	69×100
€ 69×10	00 f	69×10000 g	123 imes 100 h	246×1000
960×1	00	49×10000 k	490×100	4900×100
2 Find:				
a 24×5	Ь	37×4 c	62×8 d	53×24
	f	56×49 g	324×45 h	642×36
274×2	1 j	958 imes 47 k	117×89	368 imes 73

DIVIDING BY POWERS OF 10

When we divide by:	10	we make a number 10 times smaller
	100	we make a number 100 times smaller
	1000	we make a number 1000 times smaller.

When we divide by 100 we remove two zeros from the end of the whole number.

Example 6		Self Tutor
Find: a 34 000 ÷ 10	b 34000 ÷ 100	c 34000 ÷ 1000
a $34000 \div 10$ = 3400	b $34000 \div 100$ = 340	c $34000 \div 1000$ = 34

DIVISION BY A SINGLE DIGIT NUMBER

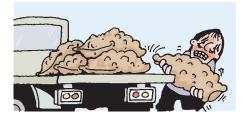
Example 7				Self Tutor
Find: a 256		64	b	4 1 7
b 250	$2 \div 6$	$4 2 5^{1}6$		$6 \ 2 \ 5^{1} 0^{4} 2$

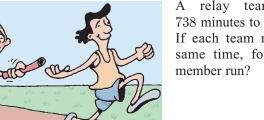
EXERCISE 2B.2

1	Find:		
	a $2000 \div 10$	b 2000 ÷ 100	c 2000 ÷ 1000
	d $57000 \div 10$		f $57000 \div 1000$
	g 243 000 ÷ 10	h $243000 \div 100$	$243000 \div 1000$
	$45000 \div 10$	k $45000 \div 100$	$45000 \div 1000$
	m $720000 \div 10$	n $720000 \div 100$	• $720000 \div 1000$
	p 6000000 ÷ 10	q $6000000 \div 100$	$6000000 \div 1000$
2	Do these divisions:		
	a 3 4 2	b 4 2 1 6	c 8 168
	d 5 375	e 7 6307	f 11 6809
3	Find:		
	a $24 \div 4$	b 125÷5	c 312 ÷ 6
	d $240 \div 5$	€ 624÷3	f $7353 \div 9$

WORD PROBLEMS

Example 8	Self Tutor
How long wo	uld a satellite orbiting the earth at 8000 km per hour
take to fly 1	nillion km?


The time taken = 1 million \div 8000 hours = 1 000 000 \div 1000 \div 8 hours {8000 = 1000 \times 8} = 1000 \div 8 hours {dividing by 1000 first} = 125 hours


Example 9	Self Tutor
Jason works for a supermarket baskets of fresh cherries at a How much does the supermar	price of $\pounds 38$ for each basket.
Total cost = $217 \times \pounds 38$ = $\pounds 8246$	$ \begin{array}{r} 2 1 7 \\ \times 1 3 8 \\ \underline{2 5} \\ 1 7 3 6 \\ 6 5 1 0 \\ 1 \\ 8 2 4 6 \end{array} $

EXERCISE 2B.3

5

- 1 A fighter jet travels at 1000 km per hour. How long will it take the jet to fly non-stop for 1 000 000 km?
- **2** How long would a car, travelling non-stop at 100 kilometres per hour, take to travel a million kilometres?
- 3 Carlos lifted five 18 kg bags of potatoes onto a truck. How many kg of potatoes did he lift altogether?
- 4 My three brothers and I received a gift of \$320. If we share the money equally amongst ourselves, how much will each person receive?

A relay team of nine people took 738 minutes to complete a charity relay race. If each team member ran for exactly the same time, for how long did each team member run?

- This maths textbook is 245 mm long. If I put 10 books end to end, how far would they stretch?
- **7** 24 people each travelled 28 km to play sport. How far did they travel in total?
- 8 If I write 8 words per minute, how long will it take me to write 648 words?
- **9** How long would a motor cyclist, riding non-stop at 50 kilometres per hour, take to travel one million kilometres?
- **10** A sporting ground has a capacity of 50 000 people. How many capacity crowds would be needed so that 1 000 000 people will have visited the ground?
- 11 A supermarket chain places an order for 12 000 kg of onions. The onions arrive in bags weighing 50 kg each. How many bags arrive?
- 12 In the following questions, how many times does the given container need to be filled to make a total of 1 000 000 units?
 - a a fuel tank holds 50 litres
 - **c** a school hall seats 400 students
 - a case is packed with 100 oranges
 - **g** a restaurant feeds 125 diners
- **b** a packet contains 250 sugar cubes
- **d** a rainwater tank holds 2000 litres
- f a carriage holds 80 passengers
- **h** a DVD rack stores 40 disks

NOTATION

The following symbols are commonly inserted between numbers to show how they compare:

- = reads 'is equal to' \approx reads 'is approximately equal to'
- > reads 'is greater than'
- < reads 'is less than'

EXERCISE 2B.4

- 1 In each of the following, replace \Box by = or \approx :
 - **a** $375 + 836 \square 1200$
 - $978 463 \square 515$
 - $455 + 544 \square 999$
 - **g** $2000 1010 \square 990$
- 2 In each of the following, replace Δ by > or < :
 - **a** 5268 3179 Δ 4169
 - $672 + 762 \Delta 1444$
 - $\simeq 20 \times 80 \Delta 160$
 - **g** 5649 + 7205 Δ 12844

- **b** $79 \times 8 \Box 640$
- **d** 7980 \div 20 \Box 400
- $50 \times 400 \square 20000$
- **b** $29 \times 30 \Delta 900$
- **d** $720 \div 80 \Delta 8$

TWO STEP PROBLEM SOLVING

Sometimes we need to perform more than one operation to solve a problem. In these situations it may be easier to solve the problem in two steps.

For example, how much change would you receive from $\notin 50$ if you bought three bags of potatoes at €14 a bag?

- Step 1: Total cost of potatoes is $\notin 14 \times 3 = \notin 42$
- Step 2: So, the change is $\notin 50 \notin 42 = \notin 8$

Example 10

Each week Clancy is paid \$350 as a retainer and \$65 for each vacuum cleaner he sells. How much does Clancy earn if he sells 13 vacuum cleaners in a week?

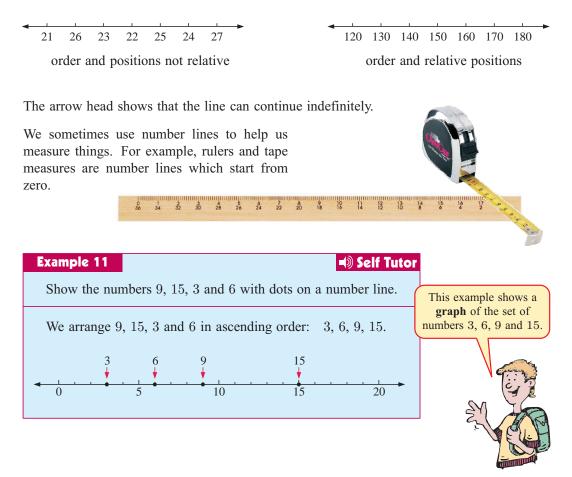
Money from sales = 65×13	$6\ 5$
= \$845	$\times 13$
So, the total earned = $\$845 + \350	195
= \$1195	650
	845

- $3000 \div 300 \Box 10$ h
- - f $700 \times 80 \Delta 54000$
 - **h** $6060 606 \Delta 5444$

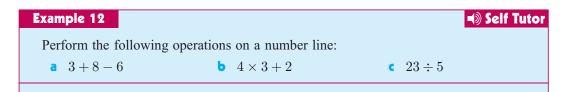
EXERCISE 2C

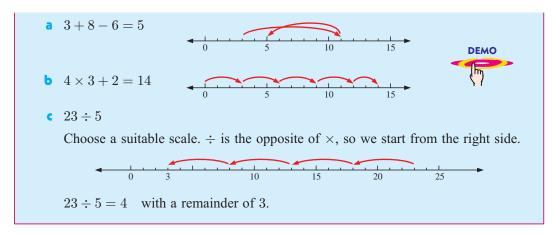
- 1 Deloris bought a shirt costing \$29 and a pair of jeans costing \$45. How much change did she get from \$100?
- **2** Rahman bought three T-shirts costing RM42 each and a pair of shoes costing RM75. Find the total cost of his purchases.
- 3 Maria bought five 3 kilogram bags of oranges. The numbers of oranges in the bags were 10, 11, 12, 12, and 10. Find the average number of oranges in a bag.
- 4 Mafinar had a herd of 183 goats. He put 75 in his largest paddock and divided the rest equally between two smaller paddocks. How many goats were put in each of the smaller paddocks?

- 5 George had $\pounds 436$ in his bank account. He was given $\pounds 30$ cash for his birthday. How much money did he have left if he bought a bicycle costing $\pounds 455$?
- The cost of placing an advertisement in the local paper is €10, plus €4 for each line of type. If my advertisement takes 5 lines, how much will I pay?
- 7 How much would June pay for 8 iced buns if 3 buns cost her 54 cents?
- 8 Marcia saved \$620 during the year and her sister saved twice that amount. How much money did they save in total?
- 9 Anastasia had €463 in her savings account and decided to bank €20 a week for 14 weeks. How much was in the account at the end of that time?
- 10 Juen worked 45 hours at one job for €24 an hour, and 35 hours at another for €26 an hour. He hoped to earn €2000 over this period. Did he succeed?
- 11 Tony's wages for the week were \$496. He was also paid for 3 hours overtime at \$18 per hour. How much did he earn in total?
- 12 Alicia ran 8 km each day from Monday to Saturday, and 12 km on Sunday. How far did she run during the week?
- 13 A plastic crate contains 100 boxes of ball point pens. The boxes of pens each weigh 86 grams. If the total mass of the crate and pens is 9200 g, find the mass of the crate.

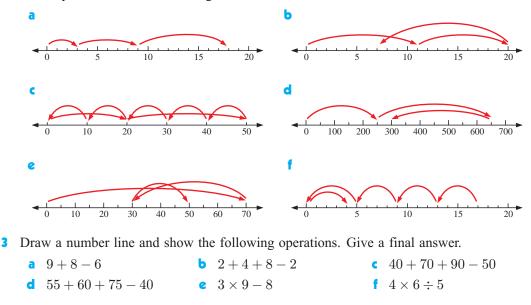

D

NUMBER LINES


A line on which equally spaced points are marked is called a number line.

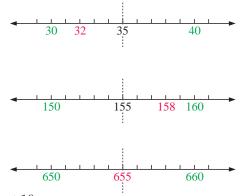


A number line allows the order and relative positions of numbers to be shown.


Number lines can also be used to show the four basic **operations** of adding, subtracting, multiplying, and dividing with whole numbers.

EXERCISE 2D

- 1 Use dots to show the following numbers on a number line:
 - **a** 9, 4, 8, 2, 7
 - **c** 70, 30, 60, 90, 40
 - **e** 4000, 3000, 500, 2500, 1500
- **b** 14, 19, 16, 18, 13
- **d** 250, 75, 200, 25, 125
- 2 What operations do the following number lines show? Give a final answer.


ROUNDING NUMBERS

Often we are not really interested in the *exact* value of a number, but we want a reasonable **estimate** or **approximation** for it.

For example, suppose there were 306 competitors at an athletics carnival. We might say "there were about 300 competitors" since 300 is a good approximation for 306. In this case 306 has been "rounded" to the nearest hundred.

In order to approximate a number to the nearest ten, we start by finding the multiples of the ten on each side of the number.

- 32 lies between 30 and 40. It is nearer to 30, so 32 is approximately 30. We say 32 is rounded down to 30.
- 158 lies between 150 and 160. It is nearer to 160 than to 150, so 158 is approximately 160. We say 158 is **rounded up** to 160.
- 655 lies between 650 and 660.
 It is half way between 650 and 660.
 In this case we agree to round up.
 So, 655 is approximately 660, to the nearest 10.
 We say 655 is **rounded up** to 660.

The rules for rounding off are:

- If the digit after the one being rounded off is less than 5, i.e., 0, 1, 2, 3 or 4, then we round down.
- If the digit after the one being rounded off is **5 or more**, i.e., 5, 6, 7, 8, or 9, then we round **up**.

Exan	ple 13 📕 🗐 Self Tutor
Roi	nd off to the nearest 10:
a	63 b 475 c 3029
a	63 lies between 60 and 70.It is nearer to 60, so we round down.63 is approximately 60.
Ь	475 lies halfway between 470 and 480, so we round up. 475 is approximately 480.
c	3029 lies between 3020 and 3030.It is nearer to 3030, so we round up.3029 is approximately 3030.

EXERCISE 2E.1

1 Write the nearest multiple of 10 on each side of the number:

	a	21	Ь	46	c	65	d	82	e	93	f	199
	9	461	h	785	i	1733	j	2801	k	3947	- I	6982
2	2 Which of the two outer numbers is nearer to the number in bold type?											
	a	30, 38 , 40			Ь	70, 71 ,	80		c	90, 95 ,	100	
	d	130, 132 ,	140		e	450, 4 5	57 , 460		f	730, 73	35 , 740	
	9	810, 818 ,	820		h	1220, 1	1 225 , 1	230	i, i	6740, 6	6743 , 6'	750

3 Round off to the nearest 10:

a	17	b	35	c	53	d	71	e	97	f	206
9	311	h	502	i	888	j	3659	k	7444	I.	8705
m	9606	n	14075	0	30122	р	47777	q	69569	r	70099

Ro	und off to the n	earest 100:			To approximate a
a	63	b 249	c	1655	number to the nearest hundred, look at the
а	63 lies betwee It is nearer to 63 is approxir	100, so we r			multiples of one hundred on each side of the number.
b	249 lies betwee It is nearer to 249 is approx	200, so we r		vn.	
c	1655 lies betw It is nearer to 1655 is approx	1700, so we	round up).	E

4 Write the nearest multiple of 100 on each side of the number:

	a	89	b	342	C	755	d	1694	e	3050	f	6219
5	Wh	ich of the o	uter	numbers is	ne	arer to th	ne num	ber in bo	ld typ	be?		
	a	500, 547 , 6	600		b	7600, 7	631 , 7	700	c	2900, 298	35 , 30	000
6	Ro	und off to th	ne n	earest 100:								
	a	75	b	211	C	572	d	793	e	1050	f	2684
	9	6998	h	13208	I.	27660	j	38457	k	55443	1	85074
E	Example 15											
	Round off to the nearest 1000:											
	a	932		b 450	0		c	44482		To approxi		
	а	It is nearer	to	en 0 and 10 1000, so we mately 1000	rou	und up.				to the nea look at th one thous side of	e mul sand c	ltiples of on either
	 4500 lies midway between 4000 and 5000, so we round up. 4500 is approximately 5000. 											
	 44 482 lies between 44 000 and 45 000. It is nearer to 44 000, so we round down. 44 482 is approximately 44 000. 											

38 OPERATIONS WITH WHOLE NUMBERS (Chapter 2)

7 Round off to the nearest 1000:

a	834	b	495	c	1089	d	5485
e	7800	f	6500	9	9990	h	9399
i.	13095	j	7543	k	246088	I.	499859

Example 16

Self Tutor

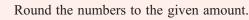
Round off to the nearest 10000:

- **a** 42635 **b** 99981
- 42 635 lies between 40 000 and 50 000.
 It is nearer to 40 000, so we round down.
 42 635 is approximately 40 000.
- 99 981 lies between 90 000 and 100 000.
 It is nearer to 100 000, so we round up.
 99 981 is approximately 100 000.

8 Round off to the nearest 10 000:

- a 18 124 b 47 600 e 89 888 f 52 749
- **9** Round off to the nearest 100 000:
 - **a** 181 000 **b** 342 000
 - e 139888 f 450749
- **10** Round off to the accuracy given:
 - **a** 37 musicians in an orchestra
 - **b** 55 singers in a youth choir
 - c a payment of €582
 - d a tax bill of \$4095
 - e a load of bricks weighs 687 kg
 - f a car costs \$24 995
 - g the journey was 35621 km
 - **h** the circumference of the earth is $40\,008$ km
 - i the cost of a house is $\pounds 463\,590$
 - i the population of Manhattan is 1537195

To approximate a number to the nearest 10 000, look at the multiples of 10 000 on either side of the number.



- (to the nearest 10)
 (to the nearest 10)
 (to the nearest €10)
 (to the nearest \$10)
 (to the nearest 100 kg)
 (to the nearest \$100)
 - (to the nearest 100 km)
- tm (to the nearest 10 000 km)
 - (to the nearest $\pounds 10\,000$)
 - (to the nearest 100 000)

PUZZLE

ROUNDING WHOLE NUMBERS

Click on the icon to obtain a printable version of this puzzle.

The shaded figures are significant because they

> occupy the biggest place values.

> > h

					_	Ac	ross			D	own		
1		2			3] 1	4866	to the nearest	10	1	44	to the nearest	10
				4		4	64	to the nearest	10	2	7247	to the nearest	100
	5		6			5	10938	to the nearest	100	3	751	to the nearest	100
7						7	27194	to the nearest	1000	4	550	to the nearest	100
8					9	8	85	to the nearest	10	5	165	to the nearest	10
		10				10	2629	to the nearest	1000	6	8500	to the nearest	1000
						-				7	293	to the nearest	10
										9	45	to the nearest	10

ROUNDING TO A NUMBER OF FIGURES

When we round to a number of significant figures, this is the number of digits from the left hand side that we believe are important.

For example, if we round

37 621 to **two** significant figures, we notice that 37 621 is closer to 38 000 than it is to 37 000.

So, $37621 \approx 38000$ (to 2 significant figures)

Example 17	Self Tutor
Round:	
a 3442 to one significant figure b 25 678 to two significant	icant figures.
a 3442 is closer to 3000 than to 4000, so $3442 \approx 3000$.	
b 25 678 is closer to $\frac{26}{000}$ 000 than to $\frac{25}{000}$, so $25678 \approx 26000$).

EXERCISE 2E.2

- **1** Round off to one significant figure:
 - 79**b** 298 392**d** 351 а 6833 $59\,500$

9

- **f** 2666 978e
- **2** Round off to two significant figures:
 - **a** 781 **b** 267 **c** 750 339d
 - 6649 **2** 1566 **9** 8750 h 34621
- **3** Round off to the accuracy given:
 - **a** €46345 (to one significant figure)
 - **b** a distance of 8152 km (to two significant figures)
 - c a weekly salary of $\pounds 475$ (to one significant figure)
 - **d** last year a company's profit was \$307882 (to three significant figures)
 - the population of a town is 6728 (to two significant figures)
 - f the number of people at a football match is 32688 (to two significant figures)

RESEARCH

Research the following and round off to the accuracy requested. Record the name and date of publication of the reference (book or magazine title, or internet URL), the value given in the reference and your rounded value.

- 1 The population of your nearest capital city (nearest 10000).
- **2** The speed of light (nearest 1000 km per hour).
- **3** The railway distance between Cairo and Luxor (nearest 100 km).
- 4 The population of Zimbabwe (nearest 100 000).
- **5** The population of the world (nearest billion).
- 6 The distance to the sun (nearest million km).

ESTIMATION AND APPROXIMATION

Calculators and computers are part of everyday life. They save lots of time, energy and money by the speed and accuracy with which they complete different operations.

However the people operating the computers and calculators often make mistakes when keying in the information.

It is therefore very important that we can make an **estimate** of what the answer should be. An estimate is not a guess. It is a quick and easy **approximation** of the correct answer.

By making an estimate we can tell if the computed answer is **reasonable**.

ROUNDING

ONE FIGURE APPROXIMATIONS

A quick way to estimate an answer is to use a **one figure approximation**. To do this we use the following rules:

- Leave single digit numbers as they are.
- Round all other numbers to single figure approximations.

For example, $3789 \times 6 \approx 4000 \times 6$ $\approx 24\,000$

Exam	ple 18				Self Tutor
Esti	mate the produc	ct: a	29×8	Ь	313×4
a	29×8 $\approx 30 \times 8$ ≈ 240 313×4	C C			8 is kept as 8} , 4 is kept as 4}
	$\approx 300 \times 4$ ≈ 1200	(,	,

EXERCISE 2F.1 . •

4

1 Est	imate	these	products:	
-------	-------	-------	-----------	--

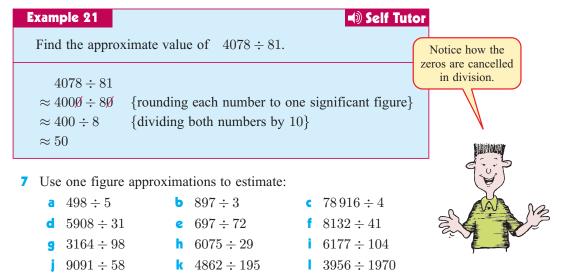
a	89 imes 3	\mathbf{b} 57 $ imes$ 9	9 c	62×6	d	28×8				
e	113×7	f 6895	× 6 9	8132×8	h	29898×9				
2 Est	2 Estimate the cost of:									
a	a 59 pens at \$4 each			b 77 books at \$8 each						
• 208 staplers at \$7 each				d 4079 rolls of tape at \$9 each						
Exam	ple 19			🛋 🕬 Self Tut	or					

Estimate the product: 511×38 Notice how the zeros are used in the multiplication. 511×38 $\{511 \text{ is rounded to } 500 \text{ and } 38 \text{ is rounded to } 40\}$ $\approx 500 \times 40$ $\{5 \times 4 = 20 \text{ and then add on the } 3 \text{ zeros}\}$ ≈ 20000

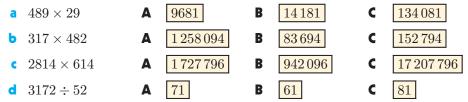
3 Using one figure approximations to estimate:

a 39×51	b 58 × 43	c	69×69	d 82×81	
e 213 × 18	f 391×22	9	189×41	h 189×197	5. 1
Estimate the cos	st of:				
a 48 books at	\$19 each		b 82 ca	lculators at €28 eac	ch 🗸

- c 69 concert tickets at £48 each
 d 89 CD players at \$59 each.


Example 20	() Self Tutor
Estimate the pro	duct: 414×692
414	
414×692	
$\approx 400 \times 700$	$\{414 \text{ is rounded to } 400 \text{ and } 692 \text{ is rounded to } 700\}$
≈ 280000	$\{4 \times 7 = 28 \text{ and then add on the } 4 \text{ zeros}\}$

42 OPERATIONS WITH WHOLE NUMBERS (Chapter 2)

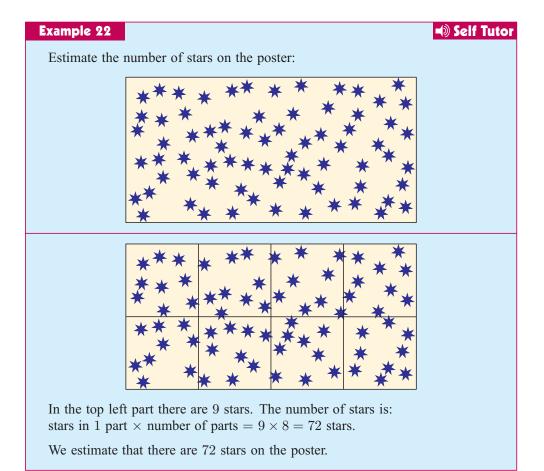

 4966×41

- **5** Use one figure approximations to estimate:
 - a 192×304 b
 - e 3207×8 f 1966×89
- c 607×491 d 885×990 g 39782×5 h 3814×7838

- **6** Estimate the cost of:
 - **a** 79 computers at \$1069 each
 - 388 monitors at \$578 each
- **b** 683 game consoles at €198 each
- **d** 4138 tennis tickets at $\pounds 59$ each.

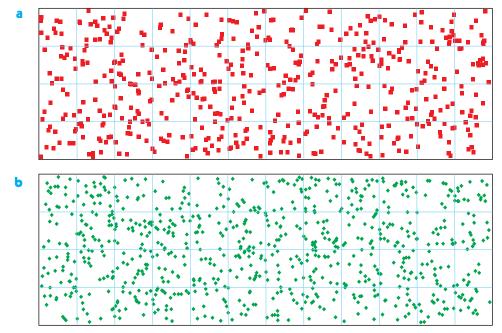
- a Estimate how much each person would get if a €489555 lottery prize is equally divided amongst 18 friends
 - **b** Estimate how long it would take Andreas to type a 7328 word article for a magazine if he types at 68 words per minute.
- One of the numbers given in a rectangle is correct. Use one figure estimation to find the correct answer for:

- 10 In each of the following, use one figure approximation to estimate the answer.
 - a Helga can type at a rate of 58 words per minute. Estimate the number of words she can type in 38 minutes.
 - An apple orchard contains 72 rows of apple trees with 38 trees per row.
 - i Estimate the number of apple trees in the orchard.
 - ii Suppose each tree has yields on average of 278 apples. Estimate the total number of apples picked from the orchard.



- A wine vat holds 29675 litres of wine. The wine is siphoned into barrels for ageing. If each barrel holds 1068 litres of wine, how many barrels are needed?
- d Michael wants to tow his boat on a trailer between two cities which are 468 km apart. It is a big boat so his car can only average 52 km per hour while towing. How long will the journey take Michael?
- A concert hall has 87 rows of seats, each with 58 seats. The cost per seat is \$32.
 - Estimate the total number of seats
 - **ii** Estimate the total income if all seats are sold.

ESTIMATION OF NUMBERS OF OBJECTS


When we conduct a **counting** process, for example, count the number of sheep in a field, or the number of people in a crowd, we do not always need to know the *exact* answer. We can estimate the answer using the following method:

- Step 1: Divide the area into equal parts.
- Step 2: Count the number of objects in one part.
- *Step 3:* Multiply the number in one part by the total number of parts.

EXERCISE 2F.2

1 Estimate the number of objects in:

2 Click on the icon to load more objects to be estimated. Play with the software to improve your estimation skills. Note that the coloured square which appears is chosen at random by the computer.

KEY WORDS USED IN THIS CHAPTER

• addition

estimate

round down

- approximation
- multiplication
 - round up

- division
- quotient
- subtraction

TENNIS RANKINGS

Areas of interaction: Human ingenuity, Approaches to learning

REVIEW SET 2A

- 1 Find:
 - **a** 46 + 178

b 311 - 39

- **2** Damien bought some shorts for \$39 and a polo shirt for \$32. How much change did he get from \$100?
- Would €200 be enough to pay for a €69 budget flight to Munich, a €114 return ticket, and an €18 ticket to the football? Show your working.

- 4 Find:
 a 34 × 100
 b 59 000 ÷ 1000

 5 Find:

 a 29 × 18
 b 768 ÷ 6

 6 Are the following statements true or false?

 a 1000 000 = 100 × 100 × 100
 b 10 000 000 = 10 × 100 × 1000
 c 468 751 > 468 577
 d 1000 × 4612 ≠ 2306 × 2000

 7 Replace □ by > or <:</p>

 a 60 × 1000 □ 59 000
 b 499 994 □ 499 949

 8 Find the cost of 24 opera tickets at £112 each.
 9 Nine office median form a readiant of here.
- 9 Nine office workers form a syndicate and buy lottery tickets. If they win €4275, how much does each person receive?
- **10** Kathryn was paid wages of \$608 for the week. She also earned \$24 an hour for 5 hours overtime. How much did Kathryn earn in total?

- **11** The population of Australia is approximately 20 000 000 and the population of New Zealand is approximately 4 000 000.
 - **a** What is the difference in population size?
 - **b** How many times larger is the population of Australia than the population of New Zealand?
- **12** How long would an aeroplane flying non-stop at 250 km per hour take to fly 1 million kilometres? Give your answer in days and hours.
- **13** Round off:
 - **a** 35 to the nearest 10
- **b** 4384 to the nearest 1000
- 463 994 to one significant figure.
- **14** Estimate the cost of 28 books at $\pounds 19$ each.
- **15** Find the approximate value of 197×234 .
- **16** Estimate the mass of one carton of cat food if a crate containing 196 cartons weighs 402 kilograms.

REVIEW SET 2B

1 Find:

a 206 + 47 + 195

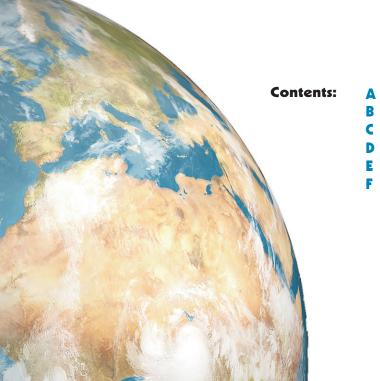
b 3040 - 197

b 8703 - 6679 = 2124

d $3036 \div 6 = 506$

b $8020 \div 20 \Box 400$

b $408 \div 8$


- Sally bought a jacket for €95, a pair of shoes for €78, and a scarf for €19. How much did Sally pay in total?
- **3** During 3 days of practice, a golfer hit 24 more balls each day than the previous day. How many golf balls did he hit in the 3 days if he hit 376 on the first day?
- **4** Find:
 - **a** 532×100 **b** $46\,000 \div 1000$
- **5** Are the following statements true or false?
 - a $4\,863\,663 < 4\,863\,363$
 - **c** $504 \times 1998 \approx 1\,000\,000$
- 6 Replace \Box by = or \approx :
 - **a** $237 + 384 \square 620$
- **7** Find:
 - a 23×39
- 8 If Derek takes 6 minutes to construct one section of fence, how many sections can he construct in one hour?
- **9** A recycle depot pays 5 cents for each empty bottle. How much would a school's fundraising committee get if it collects and fills 154 crates with two dozen bottles in each?
- **10** A fuel tank holds 50 litres of fuel. How many times would the tank need to be filled from empty in order to use 1 000 000 litres of fuel?
- **11 a** Round £39758 to the nearest £100.
 - **b** Round $56\,082$ to the nearest $10\,000$.
- **12** Round off to the accuracy given:
 - **a** a phone bill for \$82 (to one significant figure)
 - **b** the number of people in a sporting ground is 16 310 (to two significant figures).
- **13** Estimate the total cost of 3 dozen pizzas costing \$9 each.
- **14** Find an approximate value for 687×231 .
- **15** The area of Africa is approximately 30 271 000 km² and the area of Europe is approximately 10 404 000 km². Approximately how many times larger than Europe is Africa?

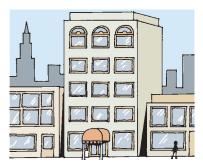
Points, lines and angles

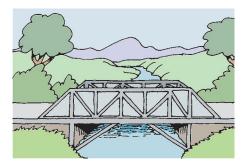
- A Points and lines
- 3 Angles
- C Angles at a point or on a line

R

- Angles of a triangle
- E Angles of a quadrilateral
- F Bisecting angles

OPENING PROBLEM




A **triangle** is a closed shape made from three straight sides.

- Is there any special property which the angles of a triangle have?
- If the triangle has two sides which are equal in length, can we say anything special about the angles of this triangle?

GEOMETRICAL SHAPES

Buildings and structures such as bridges and towers contain different geometrical shapes for visual appeal or strength. When we look at buildings we see many square corners, and windows which are rectangles. Triangles are often seen in bridges.

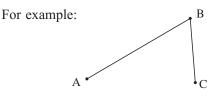
POINTS AND LINES

DISCUSSION

WHAT IS A POINT?

In groups of 4 or 5, for at most 10 minutes, discuss the following questions:

- **1** What is meant by a *point*?
- 2 Give examples of things which could be used to represent a point.
- **3** How small can a point be?


Each group could make a brief report to the class.

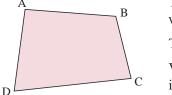
POINTS IN GEOMETRY

Good examples of points in the classroom are:

- a corner of the room where two walls and the floor all meet
- a speck of dust in the room at a particular instant in time.

In **geometry**, a point is represented by a small dot. To help identify it we name it with a capital letter.

The letters A, B and C are useful because we can identify then refer to a particular point.


We can make statements like: "the distance from A to B is" or "the angle at B measures".

In mathematics: a **point** marks a position and does not have any size.

In order to see where a point is, we use a **dot** which has both size and colour.

FIGURES

A figure is a drawing which shows things we are interested in.

The figure alongside contains four points which have been labelled A, B, C and D.

These corner points are known as vertices.

Vertices is the plural of vertex, so point B is a **vertex** of the figure.

A **straight line**, usually just called a **line**, is a continuous infinite collection of points with no beginning and no end.

This line passes through points A and B. It continues indefinitely in both directions, but because we cannot draw a line of infinite length, we use arrow heads to show it continues endlessly.

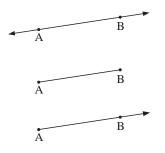
A line actually has no width, but in order to see it we give it thickness.

B

LINES

Vertices is the plural of vertex.

DISCUSSION

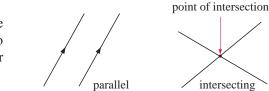

What to do:

Discuss the following questions:

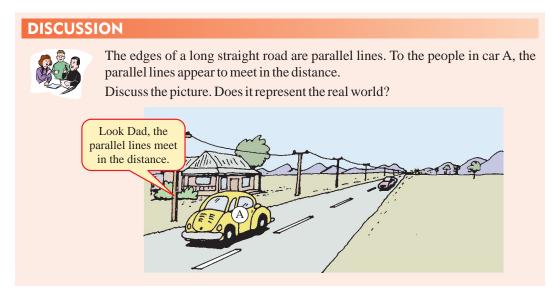
- 1 How many different straight lines could be drawn through the single point A?
- **2** Suppose A and B are two separate points. How many straight lines could be drawn which pass through both A and B?
- **3** Suppose P, Q and R are three different points. How many straight lines can be drawn which pass through all three points P, Q and R? Explain your answer.

Each group could report their findings to the class.

NOTATION


(AB) is the **line** which passes through A and B and continues indefinitely in both directions.

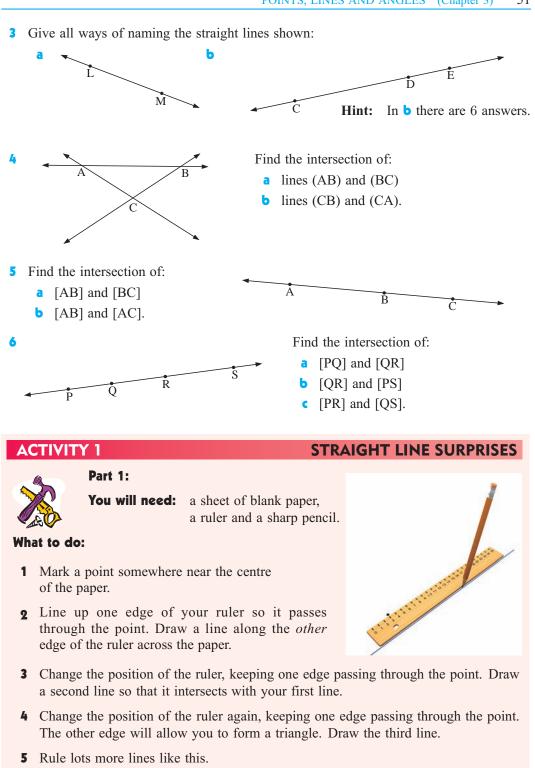
[AB] is the **line segment** which joins the two points A and B. It is only a part of the line (AB).


[AB) is the **ray** which starts at A, passes through point B, and continues on indefinitely.

PARALLEL AND INTERSECTING LINES

In Mathematics, a **plane** is a flat surface like a table top or a sheet of paper. Two straight lines down a plane are either **parallel** or **intersecting**.

Parallel lines are lines which are always a fixed distance apart and never meet.

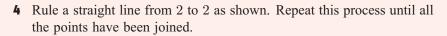

EXERCISE 3A

- 1 Give two examples in the classroom which indicate:
 - a a point b a line
- **2** In geometry, what is meant by:
 - a a vertex **b** a point of intersection

c parallel lines?

Draw diagrams to illustrate each.

6 Describe what happens to the shape formed by the intersecting lines as more lines are drawn.


7 Why is this shape forming?

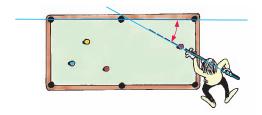
Part 2:

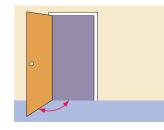
You will need: a sheet of 5 mm graph paper, a ruler, and a sharp pencil.

What to do:

- 1 On the graph paper draw a horizontal base line. Mark the numbers from 0 to 16 on it as shown in the diagram on the next page.
- **2** Draw a vertical line at 0. Mark on it the numbers from 1 to 16 at the intersections with the horizontal lines, as shown.
- **3** Rule a straight line from 1 to 1 as shown.

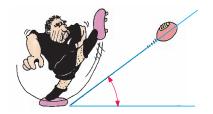
- 5 Now draw a vertical line at 16 on the base line and repeat the pattern.
- A real challenge is to turn the page upside down and repeat the pattern so that you have drawn 4 sets of straight lines.

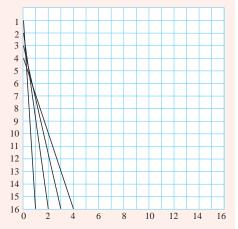

Whenever two lines or edges meet, an **angle** is formed between them.


The angle between the

pole and the ground.

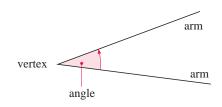
The angle between the line of the ball's motion and the edge of the cushion.


The angle between the wall and the door.



The angle between the hands of a clock.

The angle between the ground and the direction of the ball.



DEMO

An **angle** is made up of two arms which meet at a point called the **vertex**.

The **size** of the angle is measured by the amount of turning or rotation from one arm to the other.

CLASSIFYING ANGLES

We use the following names to classify angles according to their sizes:

Revolution	Straight Angle	Right Angle		
<u> </u>		This small square indicates a right angle.		
One complete turn.	A $\frac{1}{2}$ turn.	A $\frac{1}{4}$ turn.		
Acute Angle	Obtuse Angle	Reflex Angle		
Less than a $\frac{1}{4}$ turn.	Between a $\frac{1}{4}$ and $\frac{1}{2}$ turn.	Between a $\frac{1}{2}$ and 1 turn.		

MEASURING ANGLES

In order to accurately find the size or measure of an angle, we need a unit of measurement. The unit we will use is the **degree**. It was decided that there would be 360 degrees in a full turn. 360 was probably chosen because it can be divided by 2, 3, 4, 5, 6, 8, 9, 10, 12, and 15, to give whole number answers.

So, a straight angle or half turn will measure $\frac{1}{2}$ of 360 degrees, or 180 degrees.

We write this as 180° . This small circle is used to indicate degrees and saves us writing the full word.

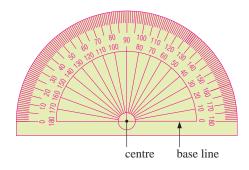
A right angle or quarter turn will measure $\frac{1}{4}$ of 360°, or 90°.

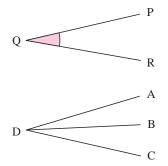
We can now classify angles in degree measure:

Name	Figure	Degrees
Revolution		360 ^o
Straight angle		180°
Right angle		90°

54 POINTS, LINES AND ANGLES (Chapter 3)

Name	Figure	Degrees
Acute angle		between 0^o and 90^o
Obtuse angle		between 90^o and 180^o
Reflex angle		between 180° and 360°

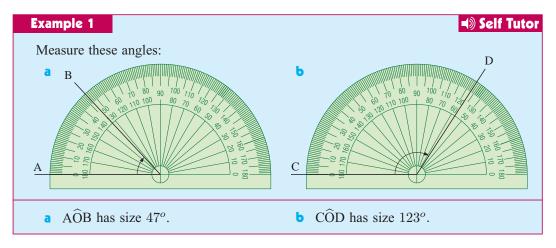

MEASURING DEVICES


In order to measure angles we use a **protractor** with tiny 1^o markings on it.

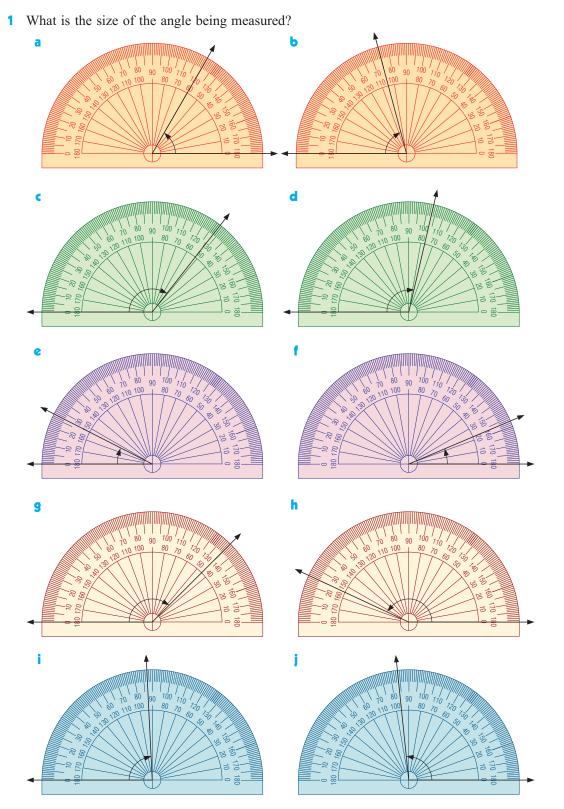
To use a protractor to measure angles we:

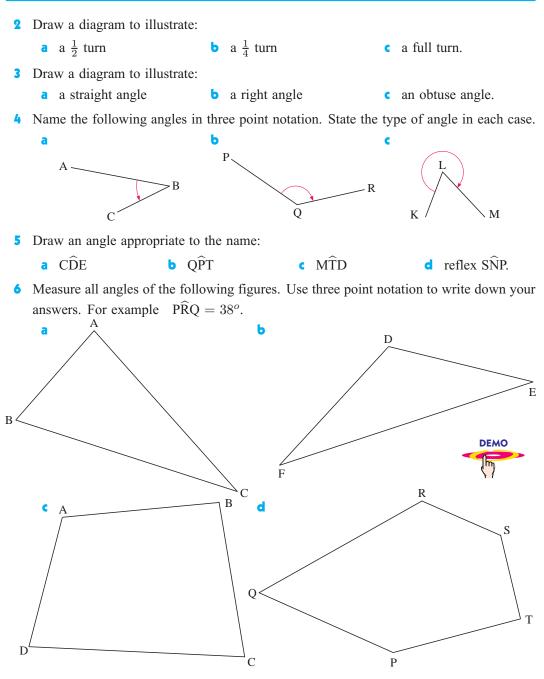
- place it so its centre is at the angle's vertex and 0^o lies exactly on one arm
- start at 0° and follow the direction the angle turns through to reach the other arm.

NAMING ANGLES

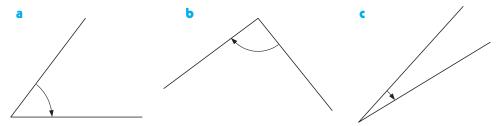

The angle at Q is written as $P\widehat{Q}R$ or $R\widehat{Q}P$.

Notice that Q is in the middle.


This method of writing angles is called **three point notation**.

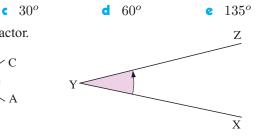

The figure alongside shows why three point notation is essential.

If we say 'the angle at D' we could be referring to \widehat{ADB} , \widehat{ADC} or \widehat{BDC} .



EXERCISE 3B

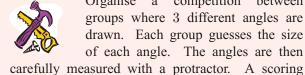
7 Estimate the size of the following angles. Check how good or bad your estimations are by using your protractor.


8 Using only a *ruler and pencil*, draw angles you *estimate* to be:

a 90° **b** 45°

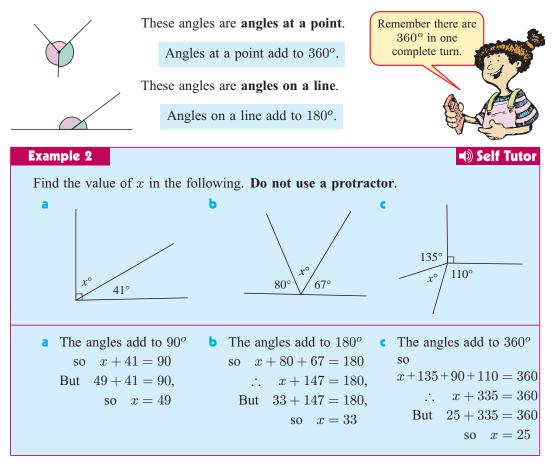
Check your estimations using a protractor.

9 Which is the larger angle, \widehat{ABC} or \widehat{XYZ} ?

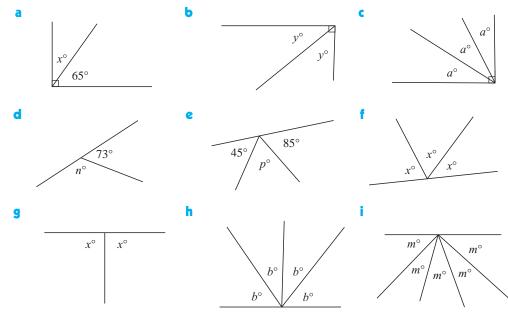


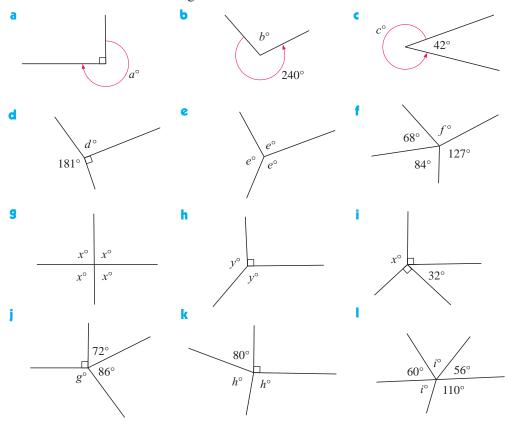
ACTIVITY 2

system could be:


ANGLE GUESSING COMPETITION

Organise a competition between groups where 3 different angles are drawn. Each group guesses the size of each angle. The angles are then


correct answer	$\pm 1^{o}$	5 points
correct answer	$\pm 2^{o}$	4 points
correct answer	$\pm 3^{o}$	3 points
correct answer	$\pm 4^{o}$	2 points
correct answer	$\pm 5^{o}$	1 point



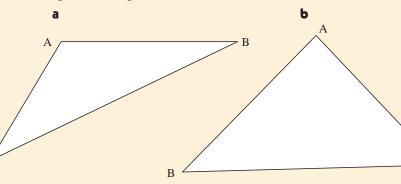
EXERCISE 3C

1 Find the size of the unknown angle in:

2 Find the size of the unknown angle in:

ANGLES OF A TRIANGLE

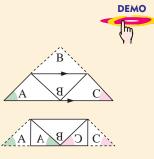
ANGLES OF A TRIANGLE


INVESTIGATION 1

What to do:

С

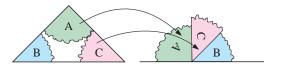
1 Use a protractor to measure, to the nearest degree, the sizes of the angles of triangle ABC:

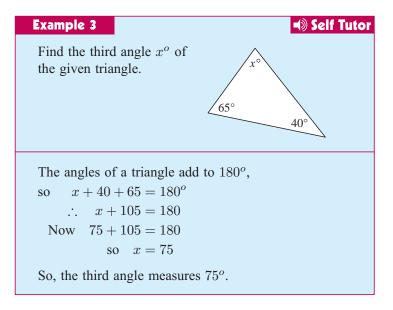

2 Copy and complete the following table. Use the results of a and b above, and draw *two* other triangles of your own choice (c and d).

	ABC	BĈA	CÂB	sum of the 3 angles
a				
b				
C				
d				

3 From your results in **2**, copy and complete:

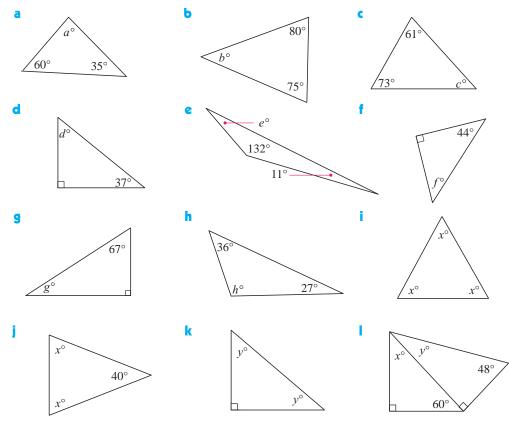
"The sum of the angles of a triangle is".


4 Now draw any triangle ABC and carefully cut it out. Fold down the angle at B to meet the side [AC]. Fold corner A along a vertical line to meet B. Fold corner C along a vertical line to meet B also. What do you notice? Repeat with another triangle of your choosing.


From the Investigation you should have noticed that:

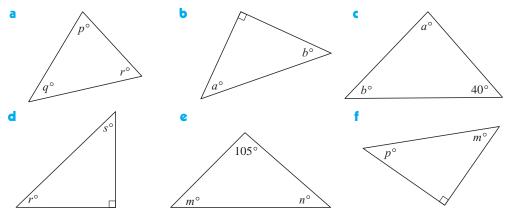
The sum of the angles of a triangle is always 180° .

We can also see this result by tearing the angles of the triangle and rearranging them to sit on a line.



Note that when diagrams are not drawn to scale, we cannot use a protractor to measure the angles.

EXERCISE 3D


1 Find the unknowns in the following which *have not been drawn to scale*:

В

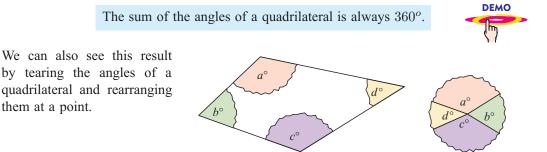
С

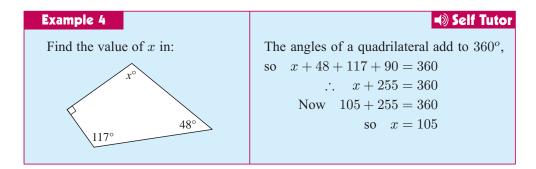
2 Write down a rule connecting the unknown angles in:

ANGLES OF A QUADRILATERAL

INVESTIGATION 2 ANGLES OF A QUADRILATERAL

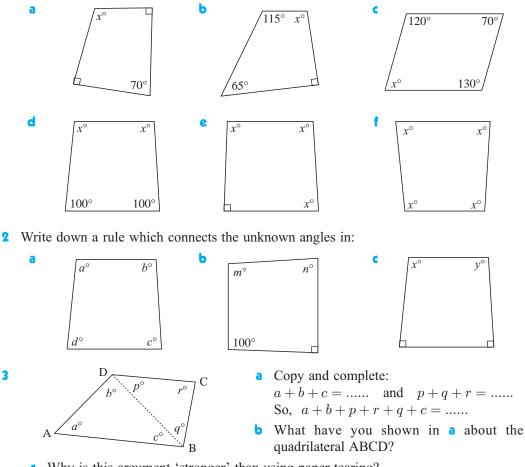
What to do:


- 1 Draw 4 half page size quadrilaterals and label the vertices A, B, C and D.
- **2** Accurately measure the angles at each vertex with a protractor.
- **3** Copy and complete the following table:

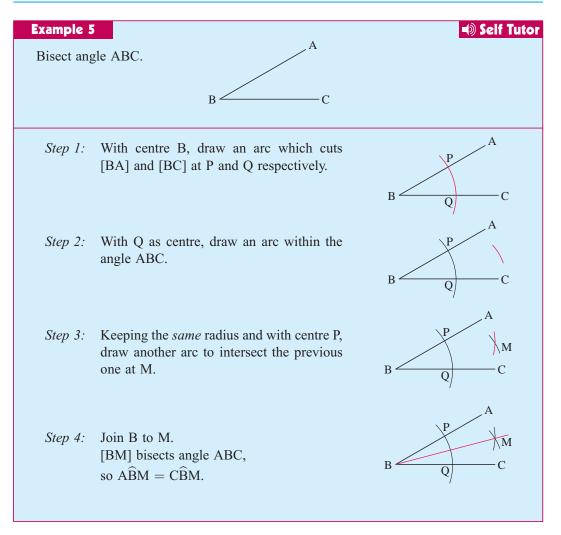

Diagram	DÂB	AÂC	BĈD	CDA	sum of the angles
а					
Ь					
c					
d					

4 From your results in **3**, copy and complete:

"The sum of the angles in a quadrilateral is"


From the Investigation you should have discovered that:

EXERCISE 3E


1 Find the unknowns in the following which *have not been drawn to scale*:

• Why is this argument 'stronger' than using paper tearing?

When we **bisect** an angle with a straight line, we divide it into two angles of equal size. In the following example we show how to bisect an angle using a *compass and ruler only*. A diagram drawn using a compass and ruler is called a **construction**.

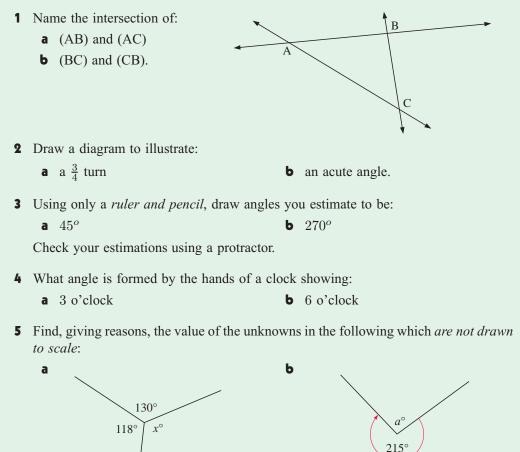
EXERCISE 3F

- 1 Use your protractor to draw an angle ABC of size 80° .
 - a Bisect angle ABC using a compass and ruler only.
 - **b** Check with your protractor the size of each of the two angles you constructed.
- **2** Draw an acute angle XYZ of your own choice.
 - **a** Bisect the angle without using a protractor.
 - **b** Check your construction using your protractor.
- **3** Draw an obtuse angle ABC of your own choice.
 - a Bisect the angle using a compass only.
 - **b** Check your construction using your protractor.
- **a** Using a ruler, draw any triangle with sides greater than 5 cm.
 - **b** Bisect each angle using a compass and ruler only.
 - What do you notice about the three angle bisectors?

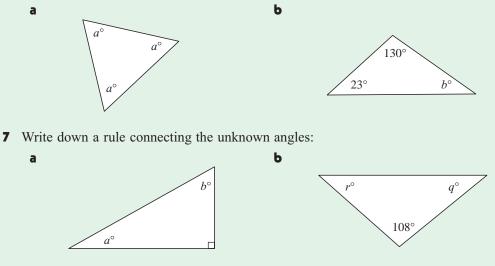
KEY WORDS USED IN THIS CHAPTER

- acute angle
- intersecting lines
- obtuse angle
- quadrilateral
- revolution
- vertex

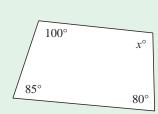
INKS

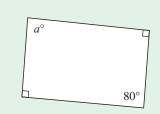

- angle
- line
- parallel lines
- ray
- right angle

- degree
- line segment
- point
- reflex angle
- straight angle


MAKING A PROTRACTOR

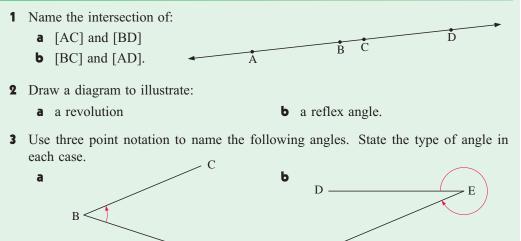
Areas of interaction: Human ingenuity


REVIEW SET 3A



6 Find the sizes of the missing angles in the following which *are not drawn to scale:*

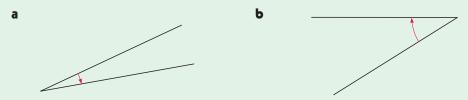
8 Find the unknowns in the following which have not been drawn to scale:



Use your protractor to draw an angle PQR of size 120°. Bisect this angle using your compass and ruler only. Check that the two angles produced are each 60°.

b

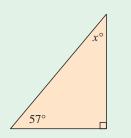
REVIEW SET 3B

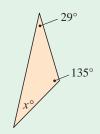

a

۰A

Ε·

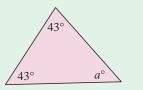
4 Estimate the size of the following angles, then check your estimations using a protractor:

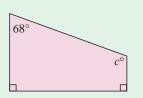



5 Find, giving reasons, the value of a in the following which are not drawn to scale:a

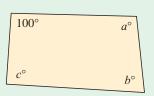
6 Find, giving reasons, the value of x in the following which *are not drawn to scale:*

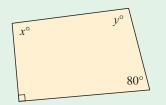
Ь


7 Find the sizes of the missing angles in the following which *are not drawn to scale*:


b

h


а



8 Write down a rule which connects the unknown angles in:

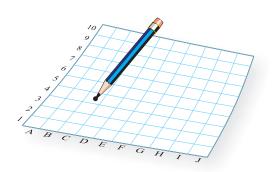
a

9 Draw an acute angle XYZ of your own choice. Bisect this angle using your compass and ruler only. Use your protractor to check the size of each of the two angles you have constructed.

Chapter

Location

- A Map references
- **B** Number grids
- C Interpreting points on a grid


4

D Bearings and directions

68 LOCATION (Chapter 4)

Suppose your teacher gives each student in your class an identical blank sheet of paper and asks you to mark a point on that paper. Probably every student would mark a different point on the page. Now, what if your teacher wanted you to all mark exactly the same point on your sheets of paper? How can the exact position of the point be described?

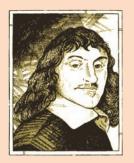
The answer to this question is to use a **map** or **grid reference**. We often see map references in street directories, and grid references in an atlas. They tell us where to look for a particular location.


OPENING PROBLEM

Archeologists use a grid to mark the positions of buildings and artefacts they discover while digging at a site.

Things to think about:

- 1 Mr Bone has used pegs and ropes to form a grid over his archeological 'dig'. What else does he need to do so that he can identify the positions of his discoveries?
- **2** How could Mr Bone improve his accuracy in identifying positions? Discuss your ideas.


3 Mr Bone wants to record the position of an object in his grid and the depth at which it is found. Suggest a way in which he could do this.

HISTORICAL NOTE

Frenchman **René Descartes** found a method for describing the position of a point in a plane. His work led to a new branch of mathematics called **coordinate geometry**.

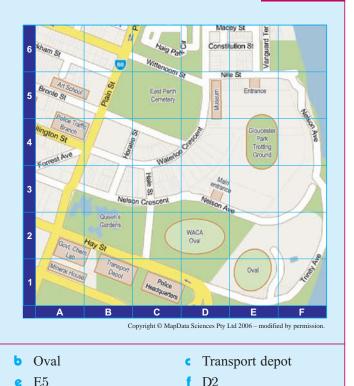
One of his main rules was "never to accept anything as true which I do not clearly and distinctly see to be so", which is a good piece of advice for your own study of mathematics.

MAP REFERENCES

In order to find the position of a street in a street directory, lines or **axes** of reference are added to the map. These lines are horizontal and vertical. Usually letters are used along one axis and numbers along the other. So, the position of a point or street on the map can be found using a pair such as D4 or E5.

An advantage of using letters on one axis and numbers on the other is that the order in which we list them is not important. For example, D3 and 3D are the same point.

Notice that the map reference does not tell us *precisely* where a feature is, but rather gives a square or region in which the feature is located.



Self Tutor

Example 1

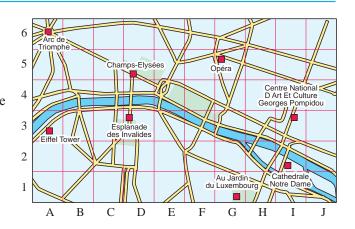
This map is taken from a street directory of Perth, Western Australia.

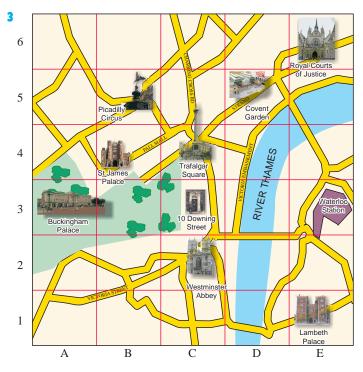
- **a** Name the street at A5.
- Name the feature found at E1.
- Name the depot located at B1.
- **d** State the location of Mineral House.
- Locate the Nile Street entrance to Gloucestor Park trotting ground.
- f Locate the WACA oval.

EXERCISE 4A

d A1

а


Bronte St


- **1** Use the street directory in **Example 1** to determine:
 - a the grid reference for:
 i the Art School ii the Museum iii Government Chem Labs
 b the feature located at:
 i E4 ii C5 iii B2 iv A4 v C1

70 LOCATION (Chapter 4)

- 2 Use the map of Paris to determine:
 - a the grid reference for:
 - **Opera**
 - ii the Arc de Triompheiii Cathedrale Notre Dame
 - the feature located at:
 - A3
 - **G**1
 - II I3

Use the map of London alongside to determine:

- **a** the grid reference for:
 - Westminster Abbey
 - ii Trafalgar Square
 - iii No. 10 Downing St.
 - Lambeth Palace
 - V St. James Palace
- **b** the feature located at:
 - A3
 - E6
 - D5
 - iv B5 v E3

ACTIVITY 1

STREET DIRECTORY

What to do:

- 1 In a street directory for your local area, find the page which shows the street where you live.
- 2 List 5 other streets on that page, perhaps the streets where your friends live.
- **3** Use the reference axes on the map to give references for each street.
- 4 Check your references with those in the index of your street directory.
- **5** Discuss any differences you found between the way you referenced the streets and the way they were referenced in the index.

SCHOOL MAP

DISCUSSION

What difficulties can arise when using a letter and a number to locate positions on a map?

How could you overcome them?

ACTIVITY 2

R

Next week some VIPs (very important people) will be visiting your school. It is your job to produce a map so they can find their way around.

What to do:

- 1 Draw a rough plan of your school grounds, including major landmarks and buildings.
- **2** On your plan, draw two labelled reference axes together with horizontal and vertical grid lines.
- **3** Provide a list of about 8 school landmarks or buildings together with references. For example: Library E4, Tennis Courts A7.
- **4** Compare your map with others produced in your class. Discuss the advantages and disadvantages of each map.
- **5** Display the maps around the classroom.

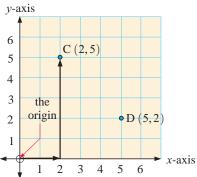
NUMBER GRIDS

In **Exercise 4A** we saw how street directories and other maps use two reference lines or axes to direct us to a particular *region* on a map.

Another way of locating the exact position of a point in a plane is to use a **number grid**.

Here we have numbers on both axes.

The point of intersection is called the **origin**, **O**. The horizontal axis is called the *x*-axis. The vertical axis is called the *y*-axis.

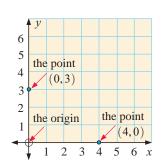

To get from O to point C, we first move 2 units in the x-direction and then 5 units in the y-direction.

We say that C has coordinates (2, 5). The *x*-coordinate is 2 and the *y*-coordinate is 5.

To get from O to point D, we first move 5 units in the x-direction and then 2 units in the y-direction. So, D has coordinates (5, 2).

These number pairs are called **ordered pairs** because we move first in the x-direction and then in the y-direction.

C(2, 5) and D(5, 2) are at different positions in the number plane.

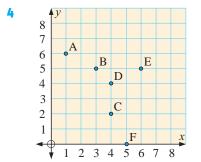


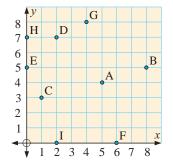
POINTS ON THE AXES

If a point has an x-coordinate of 0 then it lies on the y-axis, because there is no movement to the right, only up.

If a point has a y-coordinate of 0 then it lies on the x-axis, because after we move to the right there is no movement up.

The origin **O** has coordinates (0, 0).


Example 2	-> Self Tuto	or
On the same set of axes plot and label the points with coordinates: A(3, 5), B(6, 1), C(0, 4), D(2, 0).	$\begin{array}{c} 6\\ 5\\ 4\\ 3\\ 2\\ 1\\ 1\\ 2\\ 3\\ 2\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$	


EXERCISE 4B

1 Use graph paper to draw a set of axes and plot and label the following points:

a A(2, 3)	b B(5, 7)	c C(4, 1)	d D(0, 5)
e E(3, 0)	f F(3, 2)	g G(8, 2)	h H(7, 0)
i I(1, 0)	J (0, 8)	k K(1, 8)	L(0, 0)

- **2** Copy and complete:
 - a All points on the x-axis have a y-coordinate equal to
 - **b** All points on the *y*-axis have an *x*-coordinate equal to
- **3** Write down:
 - a the x-coordinates of A, C, F and E
 - **b** the *y*-coordinates of C, G, H and I
 - c the coordinates of A, B, C, D, E, F, G, H and I
 - **d** the coordinates of the origin, O.

- a Name two points which have the same *x*-coordinates as each other. What do you notice about these points?
- Name two points which have the same y-coordinates as each other. What do you notice about these points?
- Name the point whose x-coordinate is equal to its y-coordinate.

5 ABCD is a rectangle. A, B and C are marked on the grid. Write down the coordinates of D.

10

9

8

7

6

5

4

3

2

1

0

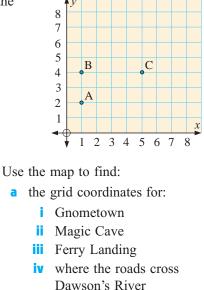
Oasis

Mt. Ogre

2 3

1

Haunted Forest


Elftown

Cemetery

Dawson's

Lion's Den

6

- the places located at:
 - (9, 4) (6, 3)
 - (2, 4)**iv** (1, 6)

 $6\frac{1}{2}$ is half-way

between 6 and 7.

7 On one set of axes, plot and label the points A(1, 2), B(2, 4), C(3, 6), D(4, 8).

8

7

Magic Cave

Ferry Landing

Gnometown

Treasure Trove

> 9 10

a Join these points. What do you notice?

4 5 6

Ь If the pattern continues, what will the next point be?

Mt. Dragon

- On one set of axes, plot and label the points A(1, 9), B(2, 8), C(3, 7), D(4, 6). 8 If the pattern continues, what will the coordinates of the next three points be?
- On 5 mm square graph paper, draw a set of axes. Number the 9 horizontal x-axis from 0 to 20 and the vertical y-axis from 0 to 30. Plot and join these points with straight lines:
 - $(11, 20), (10, 20), (8, 20\frac{1}{2}), (6\frac{1}{2}, 22), (6\frac{1}{2}, 23),$ $(8, 22\frac{1}{2}), (6\frac{1}{2}, 22\frac{1}{2}).$

Lift pencil. $(8, 22\frac{1}{2}), (9, 22), (10, 22).$ Lift pencil. $(6\frac{1}{2}, 23)$, (6, 24), $(6\frac{1}{2}, 26)$, (8, 27), (11, 26), $(13, 24), (14\frac{1}{2}, 21), (14\frac{1}{2}, 20), (13, 15), (13, 13),$ $(14, 10\frac{1}{2}), (14\frac{1}{2}, 8), (14, 4), (14\frac{1}{2}, 2\frac{1}{2}), (13\frac{1}{2}, 3),$ $(13, 2), (12\frac{1}{2}, 2\frac{1}{2}), (12, 1\frac{1}{2}), (11\frac{1}{2}, 2\frac{1}{2}), (10\frac{1}{2}, 1\frac{1}{2}),$ $(10\frac{1}{2}, 3), (9\frac{1}{2}, 3), (10\frac{1}{2}, 4), (10, 7\frac{1}{2}), (7, 7), (6\frac{1}{2}, 4),$ $(7\frac{1}{2}, 2\frac{1}{2}), (6\frac{1}{2}, 2\frac{1}{2}), (6, 1\frac{1}{2}), (5, 2\frac{1}{2}), (4, 1\frac{1}{2}), (4, 3),$ $(3, 2), (3, 3), (2, 2\frac{1}{2}), (2, 3), (3\frac{1}{2}, 4\frac{1}{2}), (3, 9), (4, 13),$ (9, 18), (10, 20).

Lift pencil. (13, 24), $(14\frac{1}{2}, 24\frac{1}{2})$, (14, 23), $(15, 23\frac{1}{2})$, (15, 22), $(15\frac{1}{2}, 22\frac{1}{2})$, (15, 21), $(16, 21\frac{1}{2})$, $(15, 19\frac{1}{2})$, $(16, 19\frac{1}{2})$, $(14\frac{1}{2}, 17)$, (13, 13). Lift pencil. $(14, 10\frac{1}{2})$, $(15\frac{1}{2}, 10\frac{1}{2})$, $(16\frac{1}{2}, 10)$, (17, 9), (16, 6), (17, 5), $(17, 4\frac{1}{2})$, (16, 4), $(16, 4\frac{1}{2})$. Lift pencil. (16, 4), (15, 4), $(15, 4\frac{1}{2})$. Lift pencil. (15, 4), (14, 4). Lift pencil. $(7, 3\frac{1}{2})$, $(10, 3\frac{1}{2})$. Lift pencil. (2, 3), (1, 3), (2, 4), $(1\frac{1}{2}, 6)$, $(1\frac{1}{2}, 9)$, $(2, 9\frac{1}{2})$, $(2\frac{1}{2}, 9\frac{1}{2})$, (3, 9). Lift pencil. $(1\frac{1}{2}, 9)$, (0, 11), $(0, 12\frac{1}{2})$, (1, 14), (4, 15), (6, 16), (6, 17), $(3\frac{1}{2}, 19)$, $(3, 21\frac{1}{2})$, (2, 20), (2, 22), (3, 24), (4, 24), (5, 22), (5, 20), $(4, 21\frac{1}{2})$, $(4, 19\frac{1}{2})$, (7, 17), (7, 16). Lift pencil. $(3\frac{1}{2}, 11)$, $(3, 11\frac{1}{2})$, $(3, 12\frac{1}{2})$, (4, 13). Lift pencil. $(7, 25\frac{1}{2})$, $(7\frac{1}{2}, 26)$, $(7\frac{1}{2}, 25\frac{1}{2})$, $(7, 25\frac{1}{2})$. Lift pencil. (11, 24), $(11, 24\frac{1}{2})$, $(11\frac{1}{2}, 24\frac{1}{2})$, $(11\frac{1}{2}, 24)$, (11, 24).

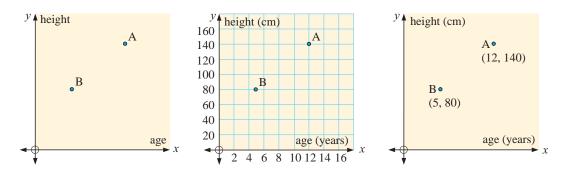
10 On 5 mm square graph paper draw a set of axes. Number the horizontal x-axis from 0 to 30 and the vertical y-axis from 0 to 20. Plot and join these points with straight lines: (8, 10), (7, 8), (4, 12), (4, 14), (7, 17), (9, 17), (10, 18), (12, 18),(10, 17), (10, 16), (11, 16), (10, 15), (8, 15), (7, 13), (7, 12), (8, 10),(12, 12), (16, 12), (20, 10), (21, 12), (21, 13), (20, 15), (18, 15),(17, 16), (18, 16), (18, 17), (16, 18), (18, 18), (19, 17), (21, 17),(24, 14), (24, 12), (21, 8), (20, 10).Lift pencil. (21, 8), (21, 6), (23, 6), (27, 10), (26, 11), (26, 10), (23, 7), (21, 7).Lift pencil. (23, 6), (26, 6), (28, 4), (26, 5), (20, 5), (21, 6). Lift pencil. (18, 4), (20, 5), (22, 3), (24, 2), (25, 1), (23, 2), (21, 3), (20, 4), (16, 4), (18, 2), (18, 1), (16, 1), (18, 0), (19, 0), (20, 1), (20, 3), (17, 4).Lift pencil. (16, 4), (11, 4), (8, 3), (8, 1), (9, 0), (10, 0), (12, 1), (10, 1), (10, 2), (12, 4).Lift pencil. (11, 4), (8, 4), (7, 3), (5, 2), (3, 1), (4, 2), (6, 3), (8, 5), (10, 4). Lift pencil. (7, 8), (7, 6), (8, 5), (2, 5), (0, 4), (2, 6), (7, 6).Lift pencil. (5, 6), (1, 10), (2, 11), (2, 10), (5, 7), (7, 7).

Lift pencil. $(11, 11\frac{1}{2}), (12, 11\frac{1}{2}), (12, 12)$. Lift pencil $(16, 12), (16, 11\frac{1}{2}), (17, 11\frac{1}{2})$.

ACTIVITY 3

HOPPING AROUND A NUMBER PLANE

Click on the icon to obtain instructions and a printable grid to do this activity.

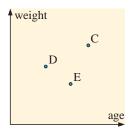

C INTERPRETING POINTS ON A GRID

A quantity whose value can change is called a variable.

A graph is a means of showing how two variables are related.

POINT GRAPHS

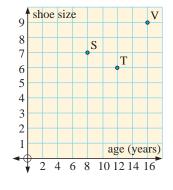
The following **point graphs** show the heights and ages of two girls, Anh and Belinda. The two points on the graph show this information. Point A gives us information about Anh's height and age, while point B gives the same information about Belinda.


The first graph just shows the two points and does not give any numerical information. All that we can deduce is that Anh is older than Belinda, since A lies to the right of B, and that Anh is taller than Belinda, since A lies above B.

The second graph is identical to the first, but it contains additional numerical information. It tells us that Anh is 12 years old and 140 cm tall, while Belinda is 5 years old and 80 cm tall.

The third graph shows the same numerical information as the second graph, but in a different format. Instead of giving scales on each of the axes, the values relating to each point are given as a pair of coordinates. Point A has coordinates (12, 140) and point B has coordinates (5, 80). Remember that the first number of the ordered pair relates to the horizontal axis. So, A(12, 140) means that Anh's age is 12 years and her height is 140 cm, while B(5, 80) means that Belinda's age is 5 years and height is 80 cm.

EXERCISE 4C

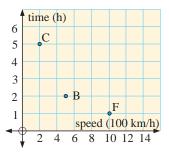

- 1 This graph shows the weights and ages of Christopher (C), Dragan (D) and Emilio (E).
 - a i What are the two variables represented on this graph?
 - What variable is represented on the horizontal axis?
 - iii What variable is represented on the vertical axis?
 - **b i** Who is the heaviest? **ii** Who is the oldest?
 - iii Who is the youngest? iv Who is the lightest?

- Answer true or false to these statements, using the information on the graph:
 - **ii** Dragan is younger than Emilio.
 - **III** Dragan is heavier than Emilio.

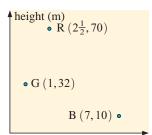
Emilio is older than Christopher.

- **iv** Older boys are heavier than younger boys.
- 2 This graph relates the shoe sizes and ages of Sarah (S), Thao (T) and Voula (V). Using the graph, answer the following questions:
 - **a** Which girl is the youngest?
 - **b** Which girl has the largest feet?
 - What is Sarah's age and shoe size?
 - **d** What is Voula's age and shoe size?
 - What is Thao's age and shoe size?
- 3 Consider the truck, the family sedan, and the drag racing car pictured below. The truck is the slowest vehicle. The drag racer is the lightest vehicle.

When asked to graph quantity A against quantity B, place quantity A on the vertical axis and quantity B on the horizontal axis.


Draw point graphs to represent the following relationships. Remember to label your axes. Label the points with S for Sedan, D for Drag racer, and T for Truck.

- a Top speed against weight.
- **c** Top speed against length.
- Height against weight.

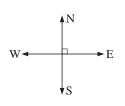

- **b** Top speed against height.
- d Height against length.
- f Weight against length.
- ⁴ The cheetah is the fastest of all land animals. A fully-grown grizzly bear is heavier than a giraffe. The two graphs below relate the speed of each of these animals to its weight, and the height of each animal to its (horizontal) length. Use this information and the information shown in the pictures of these animals to answer the following questions:

- a Identify each of the points P, Q, R, X, Y and Z with the animal that it represents.
- **b** Which animal is faster, the giraffe or the grizzly bear?
- Draw a pair of axes with speed on the vertical axis and height on the horizontal axis. Mark in points to represent each of the animals.
- **d** Draw a pair of axes with height on the vertical axis and weight on the horizontal axis. Mark in points to represent each of the animals.
- **5** A Cessna aeroplane (C), a Boeing 747 (B), and an fighter plane (F) all fly from Dublin to Paris. The times taken to complete the journey and the speeds at which they fly are shown in this graph. Answer the following questions using the graph:
 - a What is the Cessna's speed and flight time?
 - **b** What is the Boeing 747's speed and flight time?
 - What is the F111's speed and flight time?
 - **d** From the information in the graph, what can you say about the relationship between the flight time and the speed of an aeroplane?

- 6 This graph shows the height (in metres) and trunk diameter (in metres) of a Red Gum (G), a Californian Redwood (R), and a Baobab (B):
 - a Which tree is the tallest?
 - **b** Which tree has a trunk of smallest diameter?
 - What is the trunk diameter and the height of the Red Gum?
 - **d** What is the height of the Californian Redwood?
 - What is the height of the Baobab?
 - f What is the trunk diameter of the Baobab?



trunk diameter (m)

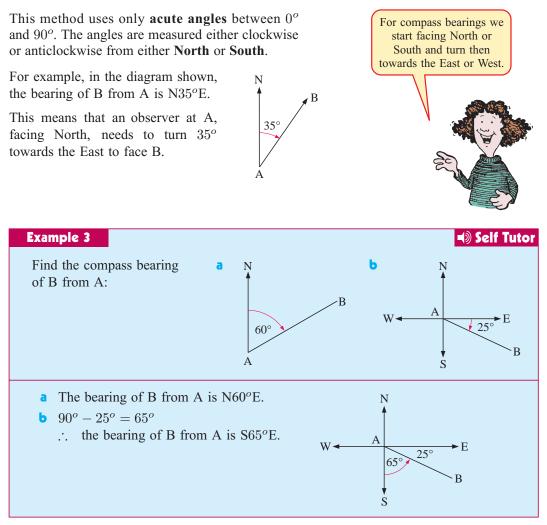

D

BEARINGS AND DIRECTIONS

One of the most important applications of angles is in **navigation**. When flying an aeroplane, sailing a ship or hiking across land, you need to know the direction in which to travel.

COMPASS POINTS

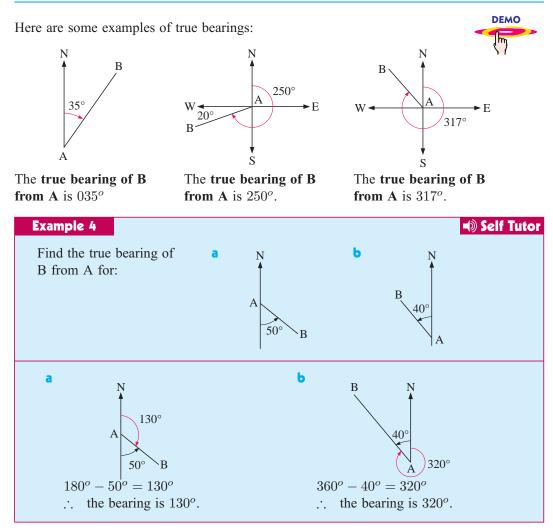
We are most familiar with the directions of the four main compass points: North, South, East and West. They are often called the **cardinal** directions, and are 90° apart.


We can divide each 90° into 45° angles to create the 'half-way' directions, NE, SE, SW and NW. For example, Southwest (SW) is half-way between South and West.

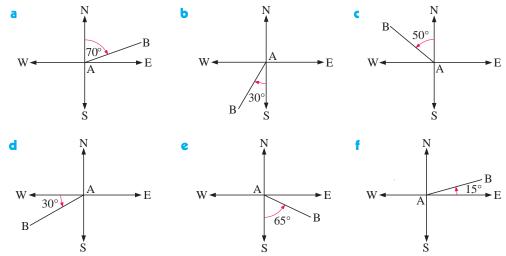
 $W \xrightarrow{W} F$

The directions NE, SE, SW and NW are sometimes called **ordinal** directions.

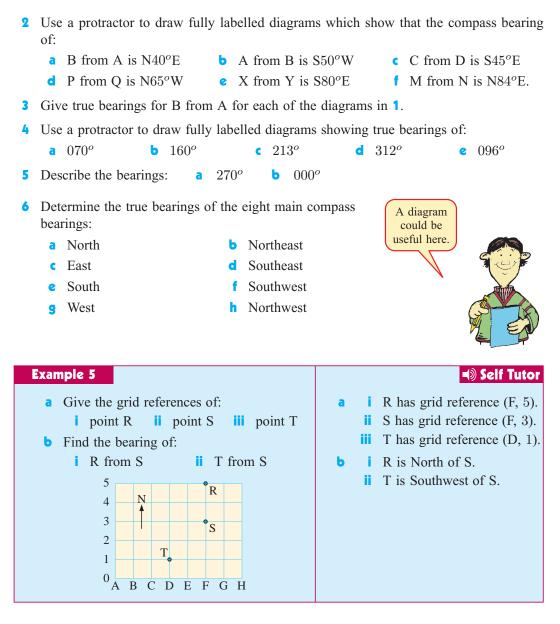
However, in order to navigate a ship more accurately, we need to be able to specify directions exactly. To do this we use either **compass bearings** or **true bearings**.

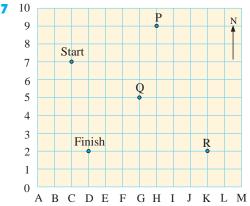

COMPASS BEARINGS

TRUE BEARINGS


This method uses **clockwise** rotations from the **true north** direction and so angles between 0° and 360° are used.

When writing a true bearing we always use three digits. For example, we write 072° instead of 72° , and 009° instead of 9° .




EXERCISE 4D

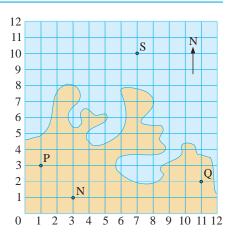
1 Give the compass bearing of B from A in each of the following:

80 LOCATION (Chapter 4)

An orienteer must travel from the Start to P, then to Q, then to R, and finally to the Finish point.

• The Start is given by the grid reference C7. Find the grid references for:

i P **ii** Q **iii** R **iv** Finish.


b Use a protractor to find the true bearing of:

- P from the Start
- **R** from Q
- **Q** from R
- iv the Start from the Finish.

- 8 P, Q and N are landmarks on the map and S is a ship at sea. The position of S is given by (7, 10).
 - **a** What is at the point given by (3, 1)?
 - **b** What is the compass bearing of N from P?
 - What is the true bearing of:
 - i the ship from P
 - ii the ship from Q
 - Q from P?

MAGNETIC COMPASS

RESEARCH

Find out what a magnetic compass is and how it works.

ACTIVITY 4

ORIENTEERING IN THE SCHOOL YARD

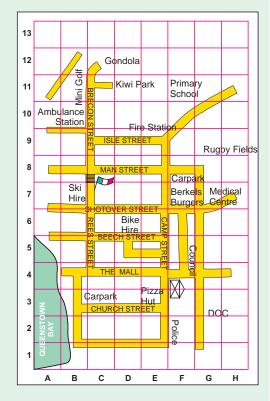
You will need: a magnetic compass, a trundle wheel or tape measure

What to do:

1 Find 4 or 5 places in the school grounds that are easily accessible and where you have a clear line of sight from one to the next. For example, you might choose the flagpole, goal posts, or the corner of a building.

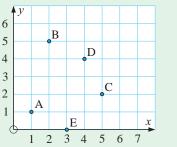
- 2 Draw a rough sketch of the school grounds showing the objects you have selected.
- **3** From a starting point, measure the distances and directions from one point to the next. Record all distances and bearings on your rough sketch.
- 4 Accurately draw your pathway on clean paper, showing all distances and bearings.
- **5** Give the detailed map to another student and see if he or she can follow your directions accurately.

KEY WORDS USED IN THIS CHAPTER

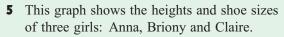

- cardinal direction
- coordinates
- ordinal direction
- true bearing
- *x*-axis
- y-coordinate

- clockwise
- number grid
- origin
- true north
- *x*-coordinate

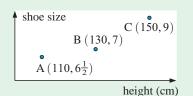
- compass bearing
- ordered pair
- point graph
- variable
- y-axis

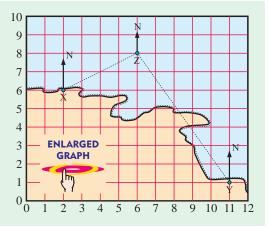

REVIEW SET 4A

- 1 Use the street map of Queenstown in New Zealand to answer the following questions.
 - **a** Find what is at: **i** D11 **ii** G7.
 - **b** Give the location of
 - i the Pizza Hut
 - ii Queenstown Primary School.
 - The Italian Restaurant has a flag as its symbol. What is its location?



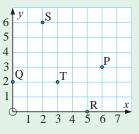
2 Write the coordinates or ordered pairs for the following points:


a A b B c C d D e E

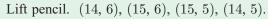

- **3** Plot the points A(4, 2), B(7, 2) and C(7, 5) on grid paper. Find the coordinates of D, the fourth vertex of rectangle ABCD.
- 4 Construct a 10 by 10 grid and label each axis from 0 to 10.
 Follow the directions to locate the points and join them in the correct order.
 Begin with (2, 3), (8, 3), (7, 2), (5, 2), (5, 1), (4, 1), (4, 2), (3, 2), (2, 3).
 Lift pencil. (4, 3), (4, 10), (8, 4), (2, 4), (4, 10), (5, 10), (4, 9).

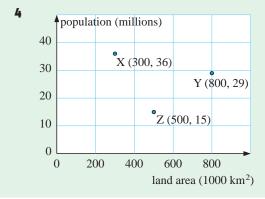
- **a** Who has the largest shoe size?
- **b** Who is the shortest?
- What is Briony's height and shoe size?

- X and Y are radar stations on the coastline. Z represents a yacht.
 - **a** What is at the point given by (2, 6)?
 - **b** What is the grid reference for radar station Y?
 - What is the true bearing of the radar station X:
 - i from the yacht Z
 - **ii** from radar station Y?

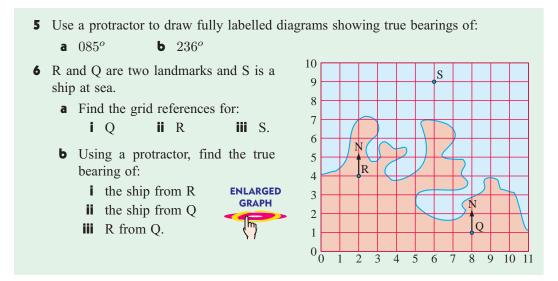

REVIEW SET 4B

- 1 Refer to the street directory map given in **Example 1** on page **69** to answer the following questions.
 - **a** Find what is at: **i** D5
 - **b** Give the location of: **i** Vanguard Terrace
- **2** Write the coordinates or ordered pairs for the following points:
 - a P b Q c R d S e T


ii.


Queen's Gardens.

Rule up a grid with the vertical y-axis from 0 to 10 and the horizontal x-axis from 0 to 20. Follow the directions to locate the points and join them in the correct order. Begin with (4, 8), (6, 9), (12, 9), (14, 8), (12, 7), (6, 7), (4, 8), (4, 3), (6, 2), (12, 2), (14, 3), (14, 8).


Lift pencil. (14, 7), (16, 7), (16, 4), (14, 4), (18, 3), (18, 1), (14, 0), (4, 0), (0, 1), (0, 3), (4, 4).

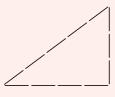
The graph alongside shows the population (in millions of people) and land area (in thousands of square km) of three countries: X, Y and Z.

- **a** Which country has the smallest population?
- **b** Which country is the largest?
- What is the population of country Z?
- **d** What is the land area of country X?
- Which country is the most crowded?

PUZZLE

MORE MATCHSTICK PUZZLES

In playing with matches a number of interesting puzzles have been developed. It is impossible to state any general rules for solving puzzles with matches but the fun and the challenge remain.


Investigate the following puzzles:

- **1** In the configuration of 12 matches given:
 - **a** remove 4 matches to leave 1 square
 - **b** remove 2 matches to leave
 - i 3 squares ii 2 squares
 - **c** shift 4 matches to obtain 3 squares.
- **2** Using 17 matches we can obtain the rectangle shown:
 - **a** Remove 5 matches to leave 3 congruent squares.
 - **b** Remove 2 matches to leave 6 squares.
- **3** Using the 24 match rectangle shown:
 - **a** remove 4 matches to make 5 squares
 - **b** make 2 squares by removing 8 matches
 - c remove 8 matches to leave
 - i 2 squares ii 3 squares iii 4 squares
 - **d** remove 12 matches to leave 3 squares
 - e shift 8 matches to make 3 squares.
- 4 The triangle alongside has area 6 units 2 .
 - **a** Move two matches to make the area 5 units 2 .
 - **b** See what other areas you can make by moving matches 2 at a time.

Number properties

- A Addition and subtraction
- B Multiplication and division

- C Zero and one
- Index or exponent notation
- Order of operations
- F Powers with base 10
- G Squares and cubes
- **H** Factors of natural numbers
- Divisibility tests
- Prime and composite numbers
- K Multiples and LCM

OPENING PROBLEM

Stanley's Mowers only sell lawn mowers, which come in three models.

The Standard model sells for \$365, the Advanced for \$485, and the Deluxe for \$650. In one month they sell 85 Standards, 46 Advanced, and 28 Deluxe mowers.

Things to think about:

- **a** How many mowers did they sell for the month?
- **b** What was the income for each mower type?
- What was the total income for the business?
- **d** If the business costs including rent, salaries, and the mowers amount to \$36580 for the month, how much profit was made?

ADDITION AND SUBTRACTION

To find the **sum** of two or more numbers, we **add** them.

For example, the sum of 8 and 6 is 8+6 which is 14.

To find the **difference** between two numbers we **subtract** the smaller one from the larger one.

For example, the difference between 5 and 12 is 12-5 which is 7.

Example 1	Self Tutor
Find: a the sum of 7, 8 and 11	b the difference between 13 and 31.
a The sum of 7, 8 and 11 = $7 + 8 + 11$ = 26	b The difference between 13 and 31 = $31 - 13$ {larger - smaller} = 18

When we add 3 or more numbers together we can rewrite them **in any convenient order** before we find the sum.

For example, in 8+39+12 we notice that 8+12 is 20

So,
$$8 + 39 + 12$$

= $8 + 12 + 39$
= $20 + 39$
= 59

b the difference between 18 and 37

3+6+7+4

Example 2	Self Tutor
Find: a $74 + 23 + 7$	b 16+67+14
a $74 + 23 + 7$	b $16 + 67 + 14$
= 23 + 7 + 74	= 16 + 14 + 67
= 30 + 74	= 30 + 67
= 104	= 97

EXERCISE 5A

- Find the sum of:

 a 8 and 11
 b 19 and 13
 c 24 and 17
 d 56, 14 and 28.

 Find the difference between:

 a 7 and 3
 b 27 and 18
 c 19 and 38
 d 123 and 280.
 - **3** Find:
 - **a** the sum of 4, 6 and 13
 - by how much 83 is greater than 66
 - **d** the sum of the whole numbers from 2 to 6.
 - 4 Find the following sums by adding them in the most convenient order:
 - **a** 3+6+7 **b** 19+8+2
 - **e** 45 + 14 + 26 **f** 98 + 57 + 102 **g** 107 + 14 + 23
 - **h** 28 + 13 + 12 + 37
 - **5 a** What number must be increased by 13 to get 42?
 - **b** What number must be decreased by 13 to get 42?
 - 6 At a tennis tournament the first prize was €175000 and second prize was €108500. How much more did the winner get than the runner-up?
 - 7 The lifts by a weight-lifter in one event were 275 kg, 290 kg and 310 kg. How much less than 1000 kg is the total of the three lifts?
 - 8 When measured on a weigh-bridge, a car and empty trailer weigh 1267 kg. Sand is poured into the trailer and the weighing process takes place again. The new weight is 2193 kg. How much does the sand weigh?
 - Herb's bank balance is £1793. He deposits £375 and then £418.
 - **a** How much does he have in his account now?
 - **b** If he then withdraws $\pounds 895$ to buy a kite-surfing kit, how much will be left in his account?

d 21 + 98 + 19

B

MULTIPLICATION AND DIVISION

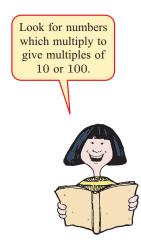
To find the **product** of two or more numbers we **multiply** them.

For example, the product of 6 and 7 is 6×7 which is 42.

To find the **quotient** of two numbers we divide the first one by the second one.

The number being divided is the **dividend** and the number we are dividing by is called the **divisor**.

For example, the quotient of 56 and 7 is $56 \div 7$ which is 8.

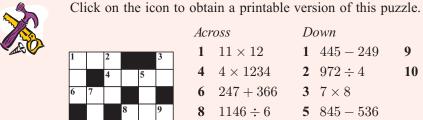

 $56 \div 7 = 8$ $\uparrow \qquad \uparrow \qquad \uparrow$ dividend divisor quotient

Example 3			Self Tutor
Find: a	the product of 7 and 12	b	the quotient of 56 and 7.
a	The product of 7 and 12 = 7×12 = 84	b	The quotient of 56 and 7 = $56 \div 7$ = 8

When we multiply three or more numbers together, we can also rearrange their order to make the multiplication easier.

For example, $4 \times 47 \times 25$ = $4 \times 25 \times 47$ = 100×47 = 4700

Example 4	Self Tutor
Find: a $5 \times 19 \times 4$	b $16 \times 125 \times 8$
a $5 imes 19 imes 4$	b $16 \times 125 \times 8$
$= 5 \times 4 \times 19$	$= 16 \times 1000$
$= 20 \times 19$	= 16000
= 380	


	Example 5						()) Self Tutor
				20.57	4		ay sen rutor
	Find the products:		a 3×4 b	$30 \times$	4 c 30 × 4	100	
	a $3 imes 4$		b 30 ×	< 4	c	30×4	400
	= 12		$= 3 \times$	10×4	=	$3 \times 10^{\circ}$	$0 \times 4 \times 100$
			$= 12 \times$	< 10		12×10^{10}	
			= 120		=	12000	0
l							
EX	ERCISE 5B						
1	Find the product of:						
	a 6 and 9	b	11 and 13	c	2, 5 and 7	d	3, 8 and 11
	• the first five natu	ral 1	numbers.				
2	Find the quotient of:						
	a 12 and 3	b	28 and 7	c	99 and 9	d	165 and 11.
3	Find the products by 1	earr	anging the num	bers in	a more convent	ient or	der:
	a $5 \times 13 \times 2$	b	$25 \times 19 \times 4$	c	$50 \times 21 \times 2$	d	$125 \times 19 \times 8$
	2 4 × 21 × 5	f	$200\times97\times5$	9	$40\times27\times5$	h	$12 \times 125 \times 4$
4	Find:						
	a the product of 17	and	l 13	Ь	the quotient of	120 at	nd 6
	• the sum of the pr	odu	cts of 3 and 4, a	nd 6 a	nd 5.		
5	Find the product:						
	a 3×2	b	30×2	c	30×20	d	300×20
		f	5×70	9	50×70	h	50×700
	3×11	j	30×11	k	300×11	1	300×1100
6	Find the quotient:						
	a $6 \div 2$	b	$60 \div 2$	c	$600 \div 2$	d	$600 \div 20$
	e 35 ÷ 7	f	$350 \div 7$	9	$3500 \div 7$	h	$350 \div 70$
	$12 \div 4$	j	$120 \div 4$	k	$120 \div 40$	1	$12000 \div 40$
_			•				

- 7 I buy 8 tennis racquets for \$175 each. What will it cost me?
- 8 What must I multiply $\pounds 12$ by to get $\pounds 324$?
- **9** 150 rows of pine trees were planted, each row containing 80 trees. How many pine trees were planted altogether?
- 10 A hotel has 6 floors, each with 35 rooms. The hotel is fully occupied and the rooms cost €150 a night.
 - **a** How many rooms does the hotel have?
 - **b** How much income does the hotel have each night?
 - What would be the total income over a 14 day period?

- 11 Paulo runs 42 000 m during a week while training for half marathons. How far does he run each day if he runs the same distance on each of:
 - **c** 3 days? **a** 7 days **b** 5 days
- **12** Revisit the **Opening problem** on page **86** and answer the questions.

PUZZLE

OPERATIONS WITH WHOLE NUMBERS

Acr	OSS	De	own		
1	11×12	1	445 - 249	9	$1000 \div 5 - 1$
4	4×1234	2	$972 \div 4$	10	$204\div12$
6	247 + 366	3	7×8		
8	$1146 \div 6$	5	845 - 536		PUZZLE
10	427×4	7	129 + 58		Śm
11	347 - 128	8	$85\times2+12$		

C

ZERO AND ONE

Zero (0) and one (1) are two very special numbers.

ZERO

- When 0 is added to a number, the number remains the same.
- When 0 is subtracted from a number, the number remains the same.
- When a number is multiplied by 0, the result is 0.
- It is meaningless to divide by 0, so the result is **undefined**.

For example: 12 + 0 = 12, 12 - 0 = 12, $12 \times 0 = 0$, $12 \div 0$ is undefined.

ONE

If we multiply or divide a number by 1, it remains the same.

For example: $5 \times 1 = 1 \times 5 = 5$, $5 \div 1 = 5$.

EXERCISE 5C

1 Find,	if possible:	
---------	--------------	--

	a $7+0$	b 7-0	${f c}$ $7 imes 0$	d $7 \div 0$	≥ 18 − 0
	f $15 + 0 - 8$	g 18÷0	h $0 \div 7$	8+7-0	23 - 0 - 0
2	Simplify, if possi	ible:			
	a $0+73$	b 0 ÷ 12	c $12 \div 0$	d $0 \div 30$	e 30 ÷ 0
	f 11 × 0	g 3×1	h 1×125	$0 \div 8$	$45 \div 1$
	$\mathbf{k} 0 \times 4$	1 × 0	\mathbf{m} 0 $ imes$ 0	n $0 \div 1$	• 235 ÷ 1

INDEX OR EXPONENT NOTATION

Instead of writing $2 \times 2 \times 2 \times 2 \times 2$ we can write 2^5 .

In 2^5 , the 2 is called the **base number** and the 5 is the **index**, **power** or **exponent**. The index is the number of times the base number appears in the product.

25 index, power or exponent base number

This notation enables us to quickly write long lists of identical numbers being multiplied together.

For example:

- 3^4 is the short way of writing $3 \times 3 \times 3 \times 3$
- 10^6 is the short way of writing $1\,000\,000$ as $1\,000\,000 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$

LANGUAGE

The following table demonstrates correct language when talking about index notation.

Natural number	Factorised form	Index form	Spoken form
2	2	2^{1}	two
4	2×2	2^{2}	two squared
8	$2 \times 2 \times 2$	2^{3}	two cubed
16	$2\times 2\times 2\times 2$	2^{4}	two to the fourth
32	$2\times 2\times 2\times 2\times 2$	2^{5}	two to the fifth

Self Tutor
a $5 \times 5 \times 5$ b $2 \times 2 \times 3 \times 3 \times 3 \times 3$
$b \qquad 2 \times 2 \times 3 \times 3 \times 3 \times 3 \\ = 2^2 \times 3^4$

EXERCISE 5D

1 Write using index notation:

a 7×7

- d $2 \times 2 \times 5 \times 5$
- \mathbf{g} 2+3×3×3
- $2 \times 2 \times 2 2$
- **2** Write as a power of 10:

a 100

d one million

b $8 \times 8 \times 8$ **e** $3 \times 3 \times 3 \times 11$ **h** $2 \times 2 + 3 \times 3$ **k** $3 \times 3 - 2 \times 2 \times 2$

b 1000

• one billion

i 7×7+2×2×2
i 5+2×2×2+7×7
c 10000

 $4 \times 4 \times 5 \times 5 \times 5$

 $7 \times 7 \times 7 \times 7$

f one trillion

92 NUMBER PROPERTIES (Chapter 5)

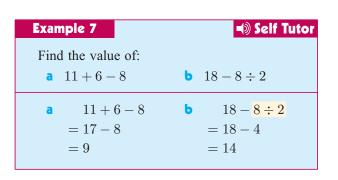
3 Write as an ordina	Write as an ordinary number:					
a 2^4	b 5 ⁴	${f C}$ 7^4	d $2^3 imes 5^4$			
$2^3 + 5^4$	f $3^3 - 2^4$	$5^3 - 3^4$	h $(5-3)^5$			
4 Which is larger:						
a 2^3 or 3^2	b 2^4 or 4^2	c 5^2 or 2^5	d 3^7 or 7^3 ?			

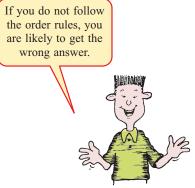
ORDER OF OPERATIONS

To find the value of $8-4 \div 2$,

Allan did the subtraction first and then the division:	8 - 4 - 3	- 2
	$=4 \div 2$	
	=2	
Dale decided to do the division first and then the subt	raction:	$8-4 \div 2$
		= 8 - 2
		= 6

We see that we can get different answers depending on the order in which we do the calculations. To avoid this problem, we agree to use a set of rules.


RULES FOR ORDER OF OPERATIONS


- Perform operations within Brackets first.
- Then, calculate any part involving Exponents.
- Then, starting from the left, perform all **D**ivisions and **M**ultiplications as you come to them.
- Finally, working from the left, perform all Additions and Subtractions.

The word **BEDMAS** may help you remember this order.

Note: • If an expression contains only + and - operations we work from left to right.

- If an expression contains only \times and \div operations we work from left to right.
- If an expression contains more than one set of brackets, work the innermost brackets first.

EXERCISE 5E

1 Find:

a	12 - 6 + 8	b	12 + 6 - 8	c	$12 \div 6 + 8$
d	$2^3 \times 3 \div 3$	e	$6 \times 2 \div 3$	f	$9+8\div 2^2$
9	$12 \div 3 + 2$	h	$12 \div 4 - 2$	i.	$6 \times 6 \div 2$
j	$5+6\div 3$	k	$20 \div 2 \div 5$	I.	$17-7\times2$
m	$3^3 + 3 \times 5$	n	$5 \times (6-2)$	0	$5 \times 6 - 2$
р	$(8-4) \div 2$	q	$8-4 \div 2$	r	11 - 2 + 3
S	11 - (2 + 3)	t	$6 + (9 \div 3)$	u	$(6+9) \div 3$

Example	8			Self Tutor
Find:	a	$7+3 \times 2-4$	ь	$9 \div 3 + 7 \times 2$
	a	$7 + 3 \times 2 - 4$	ь	$9 \div 3 + 7 \times 2$
		= 7 + 6 - 4		= 3 + 14
		= 13 - 4		= 17
		= 9		

2 Find the value of:

a $7+6-5+2$	b $18 \div 2 \times 3 - 1$	c $18 \div 3 + 10 \times 3$
d $7+3 imes 4 imes 2^2$	\mathbf{e} 8 $ imes$ 3 - 4 $ imes$ 5	f $2^3 \times 4 + 3 \times 2$
g $5+7-3 \times 4$	h $5 + (7 - 3) \times 4$	i $32 - (12 - 5) \times 3$
$22 \div 2 + 5 \times 4$	k $21 \div (2+5) + 4$	$(7+2) \times 5-4$
m $18 - (5+4) \div 3$	n $(14+6) \div (9-5)$	• $6 \times (5-2) + 1$
$27 - 7 \times 2 + 2^3$		

Example 9	Self Tutor
Find the value of $23 - [17 - (2 \times 5)].$	$23 - [17 - (2 \times 5)] = 23 - [17 - 10] = 23 - 7 = 16$

3 Find the value of:

- i $[(3 \times 2) + (11 4)] \times 2$

- **g** $[3 \times (8-2)] 10$ **h** $5^2 [(8-4) \times 2]$
- a $2 \times [(3+2)-4]$ b $[2 \times (8-2)] \div 3$ c $[(4 \times 5)-12] \div 8$ d $[4 \times 2 2] \times 5$ e $[4 \times (2 2)] \times 5$ f $2 + [(3 \times 7) 11] \times 3$

Example 10		Self Tutor
Simplify:	$4 \times (7 - 4)^3$	
$4 \times (7 - 4)^3$	$= 4 \times 3^3$	
	$= 4 \times 27$	
	= 108	

4 Simplify:

a	$2^2 + 5^2$	b	$(2+5)^2$	C	2×3^2	d	$(2 \times 3)^2$
e	$(4-2)^3 \div 8$	f	$3\times 2+2^2$	9	$5 + (4+5)^2$	h	$3^4 - (3 \times 2)^2$

5 Replace * and \blacklozenge by either $+, -, \times$ or \div to make a correct statement

a 4 + 18 * 3 = 10b 6 * 7 - 12 = 30c $(17 * 3) \div 5 = 4$ d $(18 * 2) \blacklozenge 8 = 2$ e $12 * 4 + 10 \blacklozenge 2 = 23$ f $12 * 4 - 10 \blacklozenge 2 = 43$

PUZZLE

Click on the icon to obtain a printable version of this puzzle. Across Down $40 \times 5 - 17$ 1 $100 + 24 \div 4$ 100 - (7 - 1) 2 $10 \times 4 - 20 \div 5$ $(1 + 5 \times 50) \times 25$ 3 $10000 - 3 \times 100 + 2 \times 8$ $3 \times (3 + 20)$ 4 $7 \times 7 - 2 \times 2$

1		2		3	4
		5	6		
7	8		9		
	10	11		12	13
14			15		
16			17		

100 - (7 - 1) $(1 + 5 \times 50) \times 25$ $3 \times (3 + 20)$ $8 \times 11 - 7$ $100 - 9 \times 2$ $5 \times (6 + 7)$ $153 \div 3 + 3 \times 1000$ $90 - 4 \times 4$ $9 \times 100 + 8 \times 5$

 $\begin{array}{cccc} \mathbf{3} & 10\ 000 - 3 \times 100 + 2 \\ \mathbf{4} & 7 \times 7 - 2 \times 2 \\ \mathbf{6} & (7 - 3) \times (6 + 1) \\ \mathbf{8} & 100 \times 100 - 14 \times 14 \\ \mathbf{11} & 625 \div (20 + 5) \end{array}$

- **13** $10 \times (9 \times 6)$
- **14** $70 3 \times 11$
- $15 \quad 2 \times 5 + 3 \times 3$

ACTIVITY 1

NUMBER PUZZLES

In these number puzzles each letter stands for a different one of the digits 0, 1, 2, 3, to 9. There are several solutions to each puzzle. Can you find one of them? Can you find all of them?

а			D	0	G	ь		S	U	R	F
	+		С	А	Т		_	S	А	Ν	D
		Η	А	Т	Е				S	Е	А

POWERS WITH BASE 10

When we use 10 as a base, the index shows the place value or number of zeros following the one.

10^{1}							1	0
$10^2 = 10 \times 10 =$						1	0	0
$10^3 = 10 \times 10 \times 10 =$					1	0	0	0
$10^4 = 10 \times 10 \times 10 \times 10 =$				1	0	0	0	0
$10^5 = 10 \times 10 \times 10 \times 10 \times 10 =$			1	0	0	0	0	0
$10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10 =$		1	0	0	0	0	0	0
$10^7 = 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 =$	1	0	0	0	0	0	0	0
	suo	ons	spu	spu	spu	eds	Tens	Units
	of millions	Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	F	Б
	of n	4	1 thc	n thc	The	Η̈́		
	Tens		dred	Ter				
	L		Hun					

In expanded notation we write the number as the sum of its place values.

For example, $5042 = (5 \times 1000) + (4 \times 10) + (2 \times 1)$.

Power notation is expanded notation written with powers of 10.

For example, $5042 = (5 \times 10^3) + (4 \times 10^1) + (2 \times 1)$

Example 11 Self Tutor
Write the simplest numeral for these numbers:
$(8 \times 10^4) + (7 \times 10^3) + (5 \times 10^2) + (3 \times 10^1) + (9 \times 1)$
$(8 \times 10^4) + (7 \times 10^3) + (5 \times 10^2) + (3 \times 10^1) + (9 \times 1)$
$= (8 \times 10000) + (7 \times 1000) + (5 \times 100) \times (3 \times 10) + (9 \times 1)$
= 87539

Example 12

Self Tutor

Expand 952473 using power notation.

952473= (9 × 100 000) + (5 × 10 000) + (2 × 1000) + (4 × 100) + (7 × 10) + (3 × 1) = (9 × 10⁵) + (5 × 10⁴) + (2 × 10³) + (4 × 10²) + (7 × 10¹) + (3 × 1)

EXERCISE 5F

1 Write the simplest numerals for each of the following:

- **a** $(8 \times 100\,000) + (6 \times 10\,000) + (2 \times 1000) + (9 \times 100) + (5 \times 10) + (3 \times 1)$
- **b** $(3 \times 1\,000\,000) + (5 \times 10\,000) + (7 \times 100) + (9 \times 1)$
- c $(2 \times 10^7) + (3 \times 10^5) + (6 \times 10^4) + (9 \times 10^3) + (6 \times 10^1) + (8 \times 1)$
- **d** $(10^6) + (10^4) + (10^3) + (10^2) + (9 \times 10^1)$
- 9 thousands and 8 hundreds and 3 tens and 6 units
- f 8 hundred thousands + 9 ten thousands + 6 hundreds + 3 tens and seven units
- **g** 5 ten millions + 8 hundred thousands + seven ten thousands + 5 thousands
- **2** Write these numbers using expanded notation:

a 9738	b 29782	c 40 404	d 657 931
e 800 888	f 1247091	g 49755400	h 6777777
Expand these nur	nbers using power notati	on:	
a 658	b 3874	c 95 636	d 100 100
e 505 750	f 1274947	g 36 600 000	h 4 293 375
four hundred	l thousand, six hundred a	and eighty seven	

twenty three million, six hundred and ninety seven thousand, five hundred

С

3

SQUARES AND CUBES

SQUARE NUMBERS

	The pro-	duct of two ide	entical whole nur	nbers is a squar	e number.
For exampl				$3 \times 3 = 9$ so $3^2 = 9$	
So, 1, 4, 9 square num		are all		whol itsel	altiplying a e number by f produces a are number.
SQUARE	ROOT	S			i
The square	root of th	ne square numb	oer 9 is written a	$s\sqrt{9}$	

S

The square root of the square number 9 is written as $\sqrt{9}$. It is the positive number which when squared gives 9.

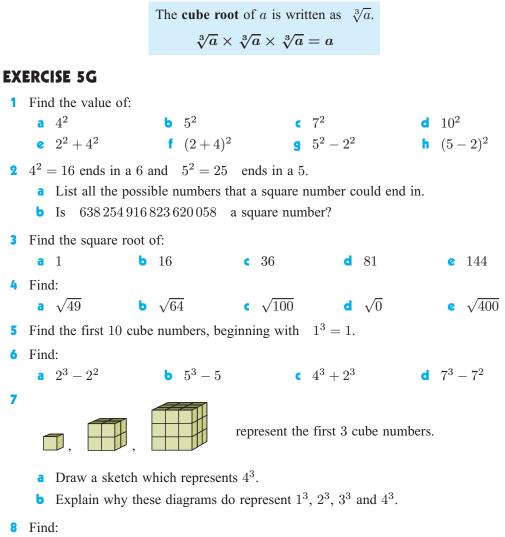
Since $3^2 = 9$, $\sqrt{9} = 3$.

The square root of a is written as \sqrt{a} . $\sqrt{a} \times \sqrt{a} = a$

For example: $2^2 = 4$ $5^2 = 25$ $11^2 = 121$ $15^2 = 225$ so $\sqrt{4} = 2$. so $\sqrt{25} = 5$. so $\sqrt{121} = 11$. so $\sqrt{225} = 15$.

CUBE NUMBERS

The product of three identical whole numbers is a **cube number**.


For example, 8 is a cube number as $2^3 = 2 \times 2 \times 2 = 8$.

CUBE ROOTS

The cube root of 8 is written $\sqrt[3]{8}$.

It is the number when multiplied by itself twice gives 8

Since $2 \times 2 \times 2 = 2^3 = 8$, $\sqrt[3]{8} = 2$.

a $\sqrt[3]{27}$ **b** $\sqrt[3]{64}$ **c** $\sqrt[3]{125}$ **d** $\sqrt[3]{1000}$

Н

FACTORS OF NATURAL NUMBERS

The factors of a natural number are the natural numbers which divide exactly into it.

For example, the factors of 6 are 1, 2, 3 and 6 since $6 \div 1 = 6$, $6 \div 2 = 3$, $6 \div 3 = 2$, and $6 \div 6 = 1$.

4 is not a factor of 6 as $6 \div 4 = 1$ with remainder 2.

All natural numbers can be split into factor pairs.

For example, $11 = 11 \times 1$ and $6 = 1 \times 6$ or 2×3 .

12 has factors 1, 2, 3, 4, 6 and 12, so 12 can be split into 1×12 , 2×6 or 3×4 .

DIVISIBILITY

One number is **divisible** by another if the second number is a factor of the first.

12 is divisible by 1, 2, 3, 4, 6 and 12 since division by any of these numbers leaves no remainder.

EVEN AND ODD NUMBERS

A natural number is even if it has 2 as a factor and thus is divisible by 2.

A natural number is **odd** if it is not divisible by 2.

The units digit of an even number will be 0, 2, 4, 6 or 8.

The units digit of an odd number will be 1, 3, 5, 7 or 9.

EXERCISE 5H

a List the factors of the following natural numbers in ascending order (smallest to largest):

	2		3		4	iv	5	V	7	vi	8
vii	9	viii	10	ix	11	X	13	xi	14	xii	15
xiii	16	xiv	17	XV	18	xvi	19	xvii	20	xviii	21

b Which of the natural numbers in **a** have exactly two different factors?

c List the natural numbers less than 22 which have:

i exactly 4 different factors ii more than 4 different factors.

- **2** List the factors of:
 - **a** 23 **b** 24 **c** 100 **d** 45 **e** 64 **f** 72
- **a** Beginning with 8, write three consecutive even numbers.
 - **b** Beginning with 17, write five consecutive odd numbers.
- **a** Write two even numbers which are not consecutive and which add to 10.
 - **b** Write all the sets of two non-consecutive odd numbers which add to 20.

- Write all the sets of three different even numbers which add to 20.
- **5** Use the words "even" and "odd" to complete these sentences correctly:
 - a The sum of two even numbers is always
 - **b** The sum of two odd numbers is always
 - c The sum of an odd number and an even number is always
 - d When an even number is subtracted from an odd number, the result is
 - e When an odd number is subtracted from an odd number, the result is
 - f The product of two odd numbers is always
 - g The product of an even and an odd number is always

DIVISIBILITY TESTS

How can we quickly decide whether one number is divisible by another? Obviously this can be done using a calculator provided the number is not too big. However, there are also some simple tests we can follow to determine whether one number is divisible by another, without actually doing the division!

STANDARD DIVISIBILITY TESTS

Number Divisibility Test 2 If the last digit is 0 or even, then the original number is divisible by 2. 3 If the sum of the digits is divisible by 3, then the original number is divisible by 3. 4 If the number formed by the last *two* digits is divisible by 4, then the original number is divisible by 4. 5 If the last digit is 0 or 5 then the number is divisible by 5. 6 If a number is divisible by both 2 and 3 then it is divisible by 6.

Exam
Is 7
a b

EXERCISE 51

1	Which of these nu	umbers are divi	sible by 2?		
	a 216	b 3184	c 827	d 4770	e 123456
2	Which of these nu	umbers are divi	sible by 3?		
	a 84	b 123	c 437	d 111114	€ 707 052
3	Which of these nu	umbers are divi	sible by 5?		
	a 400	b 628	c 735	d 21063	e 384 005
4	Which of these nu	umbers are divi	sible by 4?		
	a 482	b 2556	c 8762	d 12368	e 213186
5	Which of these nu	umbers are divi	sible by 6?		
	a 162	b 381	c 1602	d 2156	e 5364
6	Consider the num that the number		m $3\square 8$. Which o	digits could be pu	t in place of \Box so
	a even		ble by 3 c di	visible by 4	divisible by 6?
7		the number for	rms alongside are a	always divisible	$2^3 - 1^3 - 1$
	by 6: a Check that th	a first four of t	them are divisible	by 6	$3^3 - 2^3 - 1$ $4^3 - 3^3 - 1$
	b Check that 1			by 0.	$5^3 - 4^3 - 1$
			-	11 1 11 1 0	:
8	-	-	hat these numbers		
	a $3\Box 2$	b 8□5	c 31	$\Box 14$	$\square 229$

PRIME AND COMPOSITE NUMBERS

Some numbers have only two factors, one and the number itself.

For example, the only two factors of 5 are 5 and 1, and of 23 are 23 and 1.

Numbers of this type are called **prime numbers**.

A **prime** number is a natural number which has exactly two different factors, 1 and itself. A **composite** number is a natural number which has more than two factors.

The first 14 prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, and 43

but the list extends on forever.

Since 1 has only one factor (itself), the number 1 is neither prime nor composite.

PRIME FACTORS

To find the prime factors of a composite number, we systematically divide the number by the prime numbers which are its factors, starting with the smallest.

All composite numbers can be written as a product of prime numbers in index form in exactly one way.

Example 14	Self Tutor
a Write 792 as a product of prime factorb What are the prime factors of 792?	ors in index form.
 a 792 = 2 × 2 × 2 × 3 × 3 × 11 = 2³ × 3² × 11 b 792 has prime factors 2, 3 and 11. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

EXERCISE 5J.1

1	b Explainc How ma	2	prime number. numbers are th	iere?		
	i 30 a	and 40	ii 60 an	d 70	90 and	110.
2	What are the	prime factors	of:			
	a 7	b 12	c 50	d 42	e 108	f 210?
3	Give reasons	why these nur	nbers are not pr	rimes:		
	a 284	b 5615	c 2804	d 993	e 2709	f 111111
4	Write in inde	x form with th	e base number	as small as po	ssible	
	a 4	b 9	c 25	d 8	e 27	f 32
	9 81	h 64	125	243	k 128	343
5	Write these n	umbers as a p	oduct of prime	factors in inde	ex form:	
	a 72	b 160	c 180	d 968	e 3920	f 13500

HIGHEST COMMON FACTOR (HCF)

A number which is a factor of two or more other numbers is called a **common factor** of these numbers.

For example, 5 is a common factor of 15 and 40 since 5 is a factor of both of these numbers.

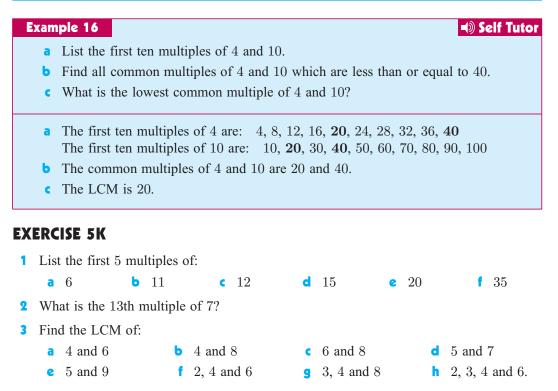
We can use the method of finding prime factors to find the **highest common factor** (**HCF**) of two or more natural numbers.

Example 15		Self Tutor			
Find the highest c	common factor of 18	and 30.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$18 = 2 \times 3 \times 3$ $30 = 2 \times 3 \times 5$			
So, the HCF of 18 and 30 is $2 \times 3 = 6$.					

EXERCISE 5J.2

1 Find the HCF of:			
a 2 and 3	b 4 and 10	c 6 and 30	d 12 and 20
● 18 and 36	f 18 and 27	g 42 and 14	h 32 and 24
2 4 and 60	j 24 and 72	k 33 and 77	26 and 52
2 Find the HCF of:			
a 2, 3, 5	b 4, 8, 20	c 30, 12, 36	d 12, 18, 36

Κ


MULTIPLES AND LCM

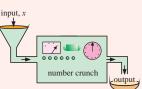
The **multiples** of any whole number have that number as a factor. They are obtained by multiplying it by 1, then 2, then 3, then 4, and so on.

The multiples of 4 are: 4×1 , 4×2 , 4×3 , 4×4 , 4×5 , 4, 8, 12, 16, 20,

The multiples of 6 are: 6, 12, 18, 24, 30,

So, 12 and 24 are two **common multiples** of 4 and 6, and 12 is the **lowest common multiple** (LCM) of 4 and 6.

4 Find the largest multiple of 11 which is less than 200.


5 I am an odd multiple of 5 and the sum of my three digits is 18. What number am I?

ACTIVITY 2

NUMBER CRUNCHING MACHINE

Any positive integer can be fed into a number crunching machine which produces one of two results:

- If the integer fed in is **even**, the machine divides the number by 2.
- If the integer fed in is **odd**, the machine subtracts one from the number.

What to do:

1 Find the result when the following numbers are fed into the machine:

a 26	b 15	c 42	d 117
-------------	-------------	-------------	--------------

2 What was the input to the machine if the output is:

a 8 **b** 13?

It is possible to feed the output from the machine back into the input, and continue to do so until the output reaches zero.

For example, with an initial input of 11, the following would occur:

 $11 \longrightarrow 10 \longrightarrow 5 \longrightarrow 4 \longrightarrow 2 \longrightarrow 1 \longrightarrow 0.$

We see that 6 steps are required to reach zero.

3 Give the number of steps required to reach zero if you start with:

b 24 a 7

4 There are three 4-step numbers. The method of finding them is to work in reverse. The only 4-step numbers are: 5, 6 and 8.

Can you determine all the 5-step numbers?

5 By changing the rules for the number crunching machine, different outputs can be obtained. Try some different possibilities for yourself.

• If the number is divisible by 3, divide it by 3. For example:

• If the number is not divisible by 3, subtract 1.

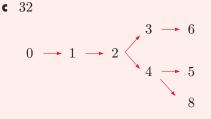
KEY WORDS USED IN THIS CHAPTER

- base
- cube root
- divisor
- factor
- lowest common multiple
- power
- quotient
- sum

- composite
 - difference
 - even number
 - highest common factor
 - number sequence
 - prime
 - square number
 - term

- cube number
- dividend
- exponent
- index
- odd number
- product
- square root
- undefined

CICADAS


Areas of interaction: Environments, Approaches to learning

REVIEW SET 5A

- **1** Simplify:
 - a 13 0 + 19
- **b** 23×0
- **2** What number must be increased by 211 to get 508?
- **3** Find the sum of the first three square numbers.
- 4 Find a $\sqrt{49}$ **b** $\sqrt[3]{64}$
- **5** Simplify:
 - **b** $24 (6+2) \times 2$ **c** $[5 \times (2+6)] \div 4$ a $17 - 7 \times 2$
- **6** Simplify:
 - **a** $396 \times 483 \times 0$
- **b** $25 \times 17 \times 4$
- c $23 \times 40 \times 5$

c 31 + 238 + 69 **d** $0 \div 18$

7 23 students each get 15 books at the start of the year. How many books were given out in total?

- 8 Replace * by either +, -, \times , or \div in $32 \div 8 * 4 + 4 = 12$ to make a correct statement.
- **9** List all the factors of 54.
- **10** What is the 13th odd number?
- **11** List the prime numbers between 20 and 30.
- **12** What is the 6th multiple of 7?
- **13** Find the HCF of 16 and 56.
- **14** Find the LCM of 8 and 6.
- **15** What numbers could \Box be if $2\Box 8$ is divisible by:

a 3 **b** 4?

- **16** Write $2^3 \times 3^2$ as a natural number.
- **17** Write as a product of prime numbers in index form:

a 45 **b** 144.

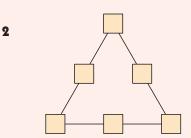
REVIEW SET 5B

- 1 Find:
 - **a** the difference between 17 and 35
 - **b** the sum of 13, 27 and 38
 - **c** the product of 13 and 8
 - **d** the quotient of 115 and 5.
- **2** What number must be increased by 124 to get 360?
- **3** Find:
 - **a** 3×0 **b** $0 \div 3$ **c** $3 \div 0$ **d** 298 + 117 + 2
- **4** Sarah gives \$26 to each of her 5 children. If she had \$180 in her purse, how much money does she now have left?
- **5** Simplify:
 - **a** $6 \times 2 + 8 \times 3$ **b** $45 2 \times 3^2$ **c** $13 + [11 (12 8)] \times 2$
- 6 Replace * by either +, -, ×, or \div in $2 \times 8 \times 4 + 2 = 6$ to make a correct statement.
- **7** List all the: **a** factors of 48
 - **b** prime numbers between 50 and 60
 - c multiples of 7 between 13 and 28.
- 8 Write 92 as a product of prime numbers in index form.
- **9** Convert $2^5 \times 3^2$ to a natural number.
- **10** What results when two odd numbers are:
 - **a** added **b** multiplied?

- **11** The four year 6 classes at a school each contain 27 students. An extra class will be created if a further 17 students arrive. What will the class sizes be then?
- **12** For the numbers of the form \Box 32, what values could \Box have so that the number is divisible by:
 - **a** 3 **b** 4 **c** 6?
- **13** Find the value of:
 - a 4^2

- **b** 3^3 **c** $\sqrt{81}$
- **d** $\sqrt[3]{125}$
- **14** Simplify: $(5 \times 10^5) + (3 \times 10^3) + (8 \times 10^2) + 6$
- **15** Find the prime factors of 392 and write 392 as a product of prime factors in index form.

PUZZLE


up to: a 57 1 In the eleven squares write each of the numbers from 1 to 11 so that every set of three numbers in a straight line adds up to 18.

3 Draw three triangles like the one shown. Using each number once only, place the numbers 11 to 19 in the triangles so that each side of the triangle adds

> b 59

NUMBER PUZZLES

Draw three triangles like the one shown. Using each number once only, place the numbers 2 to 7 in the squares so that each side of the triangle adds up to:

Draw three shapes as shown. Using each number once only, place the numbers 1 to 10 in the circles so that each line leading to the centre adds up to:

c 25

a 12 **b** 13 **c** 14

c 63

b 21

a 19

Chapter

Fractions

- A Representing fractions
- Fractions of regular shapes

6

- C Equal fractions
- D Simplifying fractions
- E Fractions of quantities
- F Comparing fraction sizes
- G Improper fractions and mixed numbers

OPENING PROBLEM

When Uncle Paulo died he left all his money to his sister's children, 3 of whom are girls and 4 are boys. They are each to get equal shares of the total amount of €350 000.

Things to think about:

- a What part of the inheritance does each child receive?
- **b** What part do the girls receive?
- How much do the boys receive in total?

The circle alongside is *divided* into three equal portions. The one whole circle is divided into three, so the one portion that is shaded represents $1 \div 3$ of the whole circle.

We commonly write this as the **fraction** $\frac{1}{3}$.

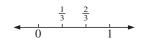
Two of the three portions are unshaded, so this is $2 \div 3$ or $\frac{2}{3}$ of the circle.

On a number line, we have divided the segment from 0 to 1 into three equal parts. We can then place $\frac{1}{3}$ and $\frac{2}{3}$ on the number line.

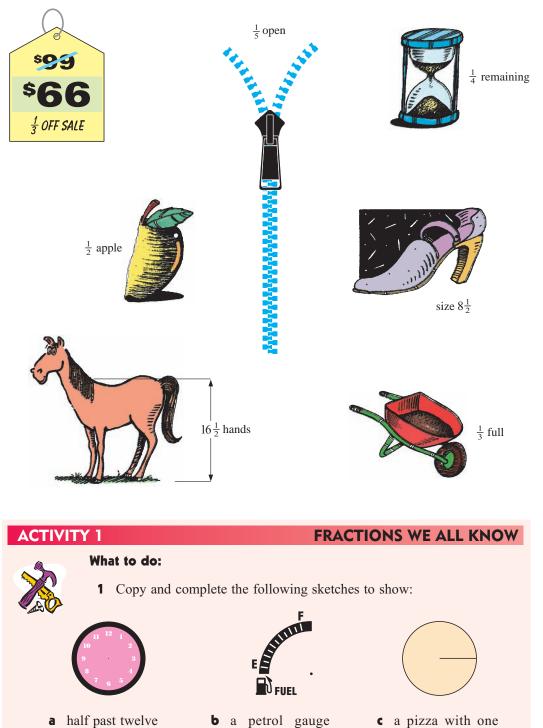
$$a \div b$$
 can be written as the **fraction** $\frac{a}{b}$.

 $\frac{a}{b}$ means we divide a whole into b equal portions, and then consider a of them.

the **numerator** is the number of portions considered $\frac{a}{b}$ the **bar** indicates division


In general,

the denominator is the number of portions we divide a whole into.


The denominator cannot be zero, as we cannot divide a whole into zero pieces.

Other denominators we describe using different words:

Denominator	Name of portions
2	half
3	third
4	quarter
5	fifth
6	sixth

FRACTIONS ARE EVERYWHERE

b a petrol gauge showing the tank is almost three quarters full

fifth of it missing.

REPRESENTING FRACTIONS

The fraction three eighths can be represented in a number of different ways:

Words	three eighths
Diagram	as a shaded region <i>or</i> as pieces of a pie
Number line	0 three eighths 1
Symbol	$\frac{3}{8}$ bar denominator

A fraction written in symbolic form with a bar is called a **common fraction**.

PRINTABLE WORKSHEET

EXERCISE 6A

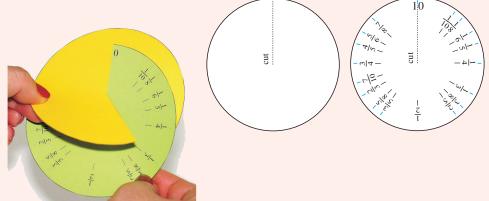
1 Copy and complete the following table:

	Symbol	Words	Numerator	Denominator	Meaning	Number Line
a		one half		2	One whole divided into two equal parts and one is being considered.	$\begin{array}{c} \bullet \\ 0 \\ \bullet \\ 0 \\ \bullet \\ 0 \\ \bullet \\ 1 \\ \bullet \\ 1 \\ \bullet \\ 0 \\ 0$
b	$\frac{3}{4}$	three quarters			One whole divided into four equal parts and three are being considered.	0 1 three quarters
c	$\frac{2}{3}$		2	3		0 1 two thirds
d		two sevenths		7		
e					One whole divided into nine equal parts and seven are being considered.	

	Symbol	Words	Numerator	Denominator	Meaning	Number Line
f			5	8		
9						→

ACTIVITY 2

ESTIMATING FRACTIONS



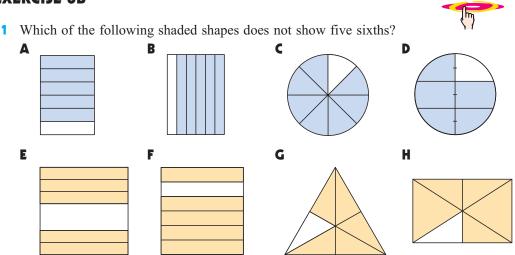
What to do:

- 1 Make your own fraction wheel as follows:
 - **a** Use a drawing compass to draw two identical circles on two different coloured pieces of cardboard.
- **b** Use your protractor to mark the fractions as shown on the second circle.

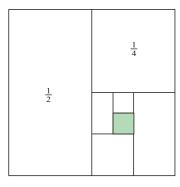
For example, $\frac{1}{10}$ is $(360^{\circ} \div 10) = 36^{\circ}$, $\frac{1}{8}$ is $(360^{\circ} \div 8) = 45^{\circ}$, $\frac{3}{8}$ is $(360^{\circ} \div 8 \text{ then } \times 3) = 135^{\circ}$.

- Cut out both pieces.
- **d** Mark and cut a radius on both circles as shown. Interlock the circles.

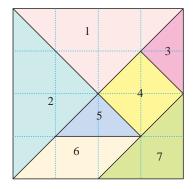
- **2** Challenge your partner to guess the fractions you make by looking at the reverse side which has no fractions written on it. Have your partner estimate the fraction which adds to yours to make one.
- **3** Click on the icon to load a game for estimating fractions. Play the game until you become good at recognising the size of different fractions.



FRACTIONS OF REGULAR SHAPES


A good way to learn about fractions is to divide regular two dimensional shapes.

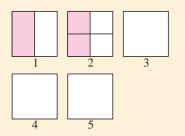
EXERCISE 6B

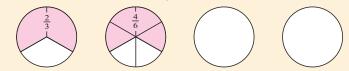

-

- **2** Copy the given shape exactly. Consider the large square to be a whole or 1.
 - a If each rectangle is half of the one before it, how much of the shape is unshaded?
 - Check your answer to a by drawing a grid within the large square. Use the boundaries of the shaded square as the dimensions of the smallest squares in your grid.
 - How many of the smallest squares fit into your large square?
 - **d** What fraction of the whole is the shaded square?
 - What fraction of the whole is the unshaded area?
- Using identical square pieces of paper, make 2 copies of this tangram. Number the pieces on both sheets. Cut one of the sheets into its seven pieces. Use the pieces to help you work out the following:
 - **a** How many triangles like piece 1 would fit into the largest square?
 - **b** What fraction of the largest square is piece 1?
 - What fraction of piece 1 is piece 3?
 - **d** What fraction of the largest square is each tangram piece?

DEMO

EQUAL FRACTIONS


EQUAL FRACTIONS


What to do:

1 Use grid paper to construct 6 identical squares with sides 4 cm long, or click on the icon to obtain a template. Use the grid lines on the paper to guide you.

- **a** Divide the first square into 2 equal parts. Each part is one half $\frac{1}{2}$. One half has been shaded. Divide the second square into quarters. Each half is now equivalent to two quarters or $\frac{2}{4}$. Shade in the same half as you did in the first square.
- **b** Divide the third square into eighths. Shade in the one half of the big square.
- Divide the fourth square into sixteenths. Shade in the one half of the big square.
- In the fifth square show that one half equals $\frac{16}{32}$. d
- **e** Copy and complete: $\frac{1}{2} = \frac{2}{4} = \dots = \frac{16}{32}$.
- 2 **a** Use a protractor to outline 4 identical circles.
 - **b** From the centre of the first circle, measure and rule 3 lines, 120° apart. Since $3 \times 120^{\circ} = 360^{\circ}$, you have divided the circle into thirds. Shade $\frac{2}{3}$.
 - **c** In the second circle draw 6 lines 60° apart. Since $6 \times 60^{\circ} = 360^{\circ}$, you have divided the circle into sixths. Shade $\frac{4}{6}$.

- **d** In the third circle draw 12 lines 30° degrees apart. Shade the appropriate equal area.
- Continue the pattern in the fourth circle.
- **f** Copy and complete: $\frac{2}{3} = \frac{4}{6} = \frac{...}{12} =$

In the investigation above, you should have found that:

 $\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \frac{8}{16} = \frac{16}{32}$ and $\frac{2}{3} = \frac{4}{6} = \frac{8}{12} = \frac{16}{24}$

Notice how these numbers are related:

$$\begin{array}{c} x_{2} \\ x_{2} \\ \frac{1}{2} \\ = \\ \frac{2}{4} \\ = \\ \frac{4}{8} \\ = \\ \frac{8}{16} \\ = \\ \frac{16}{32} \\ x_{2} \\ x_$$

This suggests that we can use **multiples** to find fractions that are equal.

For example:

$$: \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \dots$$

Multiplying or dividing both the numerator and the denominator by the same non-zero number produces an equal fraction.

For example:	$\frac{2}{5} = \frac{2 \times 2}{5 \times 2} = \frac{4}{10}$	and	$\frac{2}{5} = \frac{2 \times 12}{5 \times 12} = \frac{24}{60}$	and so	$\frac{2}{5} = \frac{4}{10} = \frac{24}{60}.$
	$\frac{12}{18} = \frac{12 \div 2}{18 \div 2} = \frac{6}{9}$	and	$\frac{6}{9} = \frac{6\div 3}{9\div 3} = \frac{2}{3}$	and so	$\frac{12}{18} = \frac{6}{9} = \frac{2}{3}.$

Example 1

Express with denominator 18:

a <u>7</u> 9	b $\frac{5}{6}$	
a $\frac{7}{9}$ = $\frac{7 \times 2}{9 \times 2}$ {as $9 \times 2 = 18$ } = $\frac{14}{18}$	$ b = \frac{5}{6} = \frac{5 \times 3}{6 \times 3} = \{as 6 \times 3 = 18\} = \frac{15}{18} $	

EXERCISE 6C

1	Express with denomin	ator	8:				DEMO
	a $\frac{1}{4}$ b	$\frac{1}{2}$		c	$\frac{3}{4}$		d 1
2	Express with denomin	ator	30:				
	a $\frac{1}{2}$ b	$\frac{4}{5}$		c	$\frac{5}{6}$		d $\frac{3}{10}$
	e $\frac{1}{5}$ f	$\frac{2}{3}$		9	1		h $\frac{3}{5}$
3	Express in sixteenths:						
	a $\frac{1}{8}$	b	$\frac{1}{4}$		c	1	d 0
	$\frac{2}{8}$	f	$\frac{3}{4}$		9	$\frac{5}{8}$	h 2
4	Express in hundredths	:					
	a $\frac{1}{2}$	b	$\frac{1}{4}$		c	$\frac{4}{5}$	d $\frac{9}{10}$
	$e \frac{7}{25}$	f	$\frac{13}{50}$		9	1	h $\frac{17}{20}$
5	Multiply to find equal	fra	ctions:				
	a $\frac{5}{6} = \frac{5 \times 2}{6 \times \Box} = \frac{10}{12}$		Ь	$\frac{8}{9} = \frac{8}{9} \times \frac{8}$	$\frac{\langle 3}{\langle \Box} =$	$\frac{24}{\Box}$	$ \frac{5}{7} = \frac{5 \times \Box}{7 \times 5} = \frac{25}{\Box} $
	$\mathbf{d} \frac{3}{4} = \frac{3 \times 8}{4 \times \Box} = \frac{\Box}{32}$		e	$\frac{4}{5} = \frac{4 \times 3}{5 \times 3}$	$\frac{\Box}{\Box} =$	$\frac{40}{50}$	f $\frac{7}{8} = \frac{7 \times \Box}{\Box \times \Box} = \frac{28}{32}$

Self Tutor

6 Divide to find equal fractions:

	a	$\frac{6}{8} = \frac{6 \div 2}{8 \div \Box} = \frac{3}{4}$		b $\frac{8}{10} =$	$=\frac{8\div\square}{10\div2}=\frac{4}{\square}$	c	$\frac{10}{15} = \frac{10 \div 5}{15 \div \Box} = \frac{\Box}{3}$
	d	$\frac{18}{21} = \frac{18 \div 3}{21 \div \Box} =$		$e \frac{15}{25} =$	$=\frac{\square\div5}{25\div\square}=\frac{\square}{5}$	f	$\frac{18}{20} = \frac{\square \div \square}{20 \div \square} = \frac{9}{\square}$
7	Fin	d □ if:					
	a	$\frac{\Box}{3} = \frac{7}{21}$	b	$\frac{\Box}{5} = \frac{12}{15}$	c $\frac{\Box}{11} = \frac{56}{77}$		d $\frac{15}{35} = \frac{\Box}{7}$
	e	$\frac{27}{63} = \frac{\Box}{7}$	f	$\frac{27}{81} = \frac{\Box}{3}$	g $\frac{\Box}{13} = \frac{9}{39}$		h $\frac{48}{72} = \frac{\Box}{12}$
8	Fin	$d \bigtriangleup if:$					
	a	$\frac{4}{5} = \frac{16}{\bigtriangleup}$	b	$\frac{5}{12} = \frac{50}{\triangle}$	$ \frac{6}{\bigtriangleup} = \frac{3}{4} $		d $\frac{15}{\triangle} = \frac{3}{5}$
	e	$\frac{7}{8} = \frac{35}{\triangle}$	f	$\frac{63}{\triangle} = \frac{7}{9}$	$\begin{array}{c} \mathbf{g} \frac{21}{23} = \frac{63}{\bigtriangleup} \end{array}$		$h \frac{48}{\triangle} = \frac{8}{11}$

D

SIMPLIFYING FRACTIONS

In **Chapter 5** we saw how there is a proper order in which the operations in an expression should be performed. We called this order **BEDMAS**.

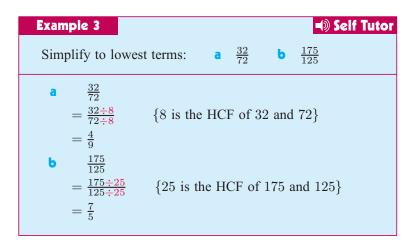
The division line of fractions behaves like a set of brackets. This means that the numerator and denominator must be found before doing the division.

Example 2		Self Tutor
Simplify:	a $\frac{28-4}{3\times 4}$	b $\frac{17+3}{12-2\times 4}$
	a $\frac{28-4}{3\times 4}$ = $\frac{24}{12}$ = 2	b $\frac{17+3}{12-2\times 4} = \frac{20}{12-8} = \frac{20}{4} = 5$

EXERCISE 6D.1

1	Simplify:				
	a $\frac{36}{9-5}$	b	$\frac{12+8}{2^2-2}$	c	$\frac{6\times 6}{8+4}$
	d $\frac{4+18\div 3}{5}$	e	$\frac{15-3\times 2}{2+1}$	f	$\frac{24}{2\times 6}$

g
$$\frac{4^2}{14-3\times 2}$$
 h $\frac{3^2+2^3}{17}$ **i** $\frac{(5-2)^2\times 4}{18\div 2}$


LOWEST TERMS

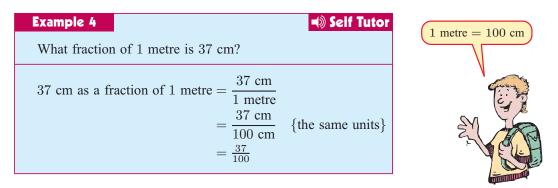
We can also **simplify** a fraction by writing it as an equal fraction where the numerator and denominator are as small as possible.

For example, $\frac{20}{40} = \frac{1}{2}$ in simplest form.

To write a fraction in **simplest** or **lowest terms**, we need to remove the common factors from the numerator and denominator.

For example, 12 and 30 have HCF = 6. So $\frac{12}{30} = \frac{12 \div 6}{30 \div 6} = \frac{2}{5}$.

EXERCISE 6D.2

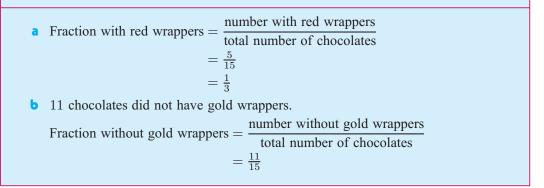

1	Sim	plify to lowe	est ter	rms:										
	a	$\frac{8}{10}$	b	$\frac{9}{36}$		c	$\frac{21}{28}$			d	$\frac{15}{35}$		e	$\frac{24}{42}$
	f	$\frac{55}{77}$	9	$\frac{48}{84}$		h	$\frac{6}{30}$			i	$\frac{123}{300}$		j	$\frac{625}{1000}$
2	Sim	plify to lowe	est ter	rms:										
	а	$\frac{12}{15}$	Ь	$\frac{18}{20}$		c	$\frac{72}{96}$			d	$\frac{35}{49}$		e	$\frac{49}{91}$
	f	$\frac{39}{52}$	9	$\frac{60}{80}$		h	$\frac{15}{55}$			i	$\frac{246}{600}$		j	$\frac{875}{1000}$
3	Sim	plify:												
	a	$\frac{56}{77}$	b	$\frac{45}{80}$		c	$\frac{12}{20}$			d	$\frac{15}{45}$		e	$\frac{250}{1000}$
	f	$\frac{3}{51}$	9	$\frac{24}{81}$		h	$\frac{45}{180}$			i,	$\frac{24}{360}$		j	$\frac{135}{360}$
4	Wh	ich of these	fracti	ons are in	n lo	west t	erms	?						
	a	$\frac{15}{20}$	b $\frac{1}{3}$		C	$\frac{13}{24}$		d	$\frac{132}{144}$		e	$\frac{6}{9}$		f $\frac{21}{28}$
	9	$\frac{22}{24}$	h $\frac{5}{6}$		i.	$\frac{75}{100}$		j	$\frac{14}{15}$		k	$\frac{9}{100}$		$\frac{39}{52}$

Е

FRACTIONS OF QUANTITIES

In this section we see how fractions are applied to the real world. They can describe a part of a quantity or a group of objects.

When writing fractions that involve measurements it is important that we use the **same units** in the numerator and the denominator.



Example 5

Self Tutor

Matthew was given a box of chocolates. 5 had red wrappers, 4 had blue, 4 had gold and 2 had green.

- a What fraction of the chocolates had red wrappers?
- **b** What fraction of the chocolates did not have gold wrappers?

EXERCISE 6E

1 What fraction of each of the following different quantities has been circled?

118 FRACTIONS (Chapter 6)

2 Use a full pack of 52 playing cards to work out the following questions. Click on the link if you need to see what all of the cards look like. Calculate what fraction of the full pack are:

Ь

- a red cards such as
- c aces such as
- **d** picture cards such as

45 minutes

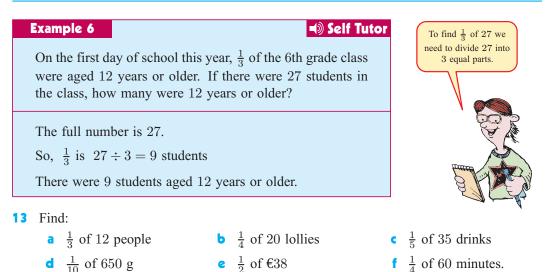
spades such as

- all the odd numbered cards
- f all the even numbered black cards
- **3** In simplest form, state what fraction of:
 - a 1 metre is 20 cm
 c 1 kg is 500 g
- b 2 metres is 78 cmd 1 week is 2 days
- 1 day is 5 hours
- g a decade is one year
- f November is two days
- r h 2 dollars is 27 cents

b 10 minutes

5 What fraction of one day is:

a 30 minutes


4 What fraction of one hour is:

- a 1 hour b 4 hours c 30 minutes d 1 minute ?
- **6** Gordon spent \$3 on a drink and \$4 on chocolates. What fraction of \$10 did he spend?
- 7 Jenny scored 27 correct answers in her test of 40 questions. What fraction of her answers were incorrect?
- 8 Linda had a bag of 9 apples. She ate 3 and she fed 2 others to her horse. What fraction of her apples remain?
- **9** James was travelling a journey of 420 km. His car broke down after 280 km. What fraction of his journey did he still have to travel?
- **10** What number is:

a $\frac{1}{2}$ of 10	b $\frac{1}{2}$ of 36	c $\frac{1}{3}$ of 12	d $\frac{1}{3}$ of 45
$\frac{1}{4}$ of 20	f $\frac{1}{4}$ of 44	g $\frac{1}{5}$ of 30	h $\frac{1}{5}$ of 120
$\frac{1}{6}$ of 30	$\frac{1}{6}$ of 126	k $\frac{1}{8}$ of 48	$\frac{1}{12}$ of 600?

- **11** Tran started his homework at 8.15 pm and completed it at 9.08 pm. If he had allowed one hour to do his homework, what fraction of that time did he use?
- 12 Vijay had 95 cm of rope. He cut 3 pieces from it, each 30 cm long. What fraction of the rope remained?

- 14 Viktor only won one third of the games of tennis that he played for his school team. If he played 15 games, how many did he win?
- **15** One fifth of the students at a school were absent because of chicken pox. If there were 245 students in the school, how many were absent?
- 16 One sixth of the cars from an assembly line were painted white. If 222 cars came from the assembly line, how many were painted white?
- 17 Ling spent one third of her money on a new badminton racket. If she had 936 RMB before she bought the racket, how much did the racket cost?
- 18 While Evan was on holidays, one eighth of the tomato plants in his greenhouse died. If he had 96 plants alive when he went away, how many were still alive when he came home?
- **19** There are 360° in 1 full revolution or turn.
 - a Find the number of degrees in:
 - i one quarter turn ii a half turn
 - iii three quarters of a turn
 - **b** What fraction of a revolution is:

```
30^{\circ} 60^{\circ} 240^{\circ}?
```


Example 7 $\stackrel{2}{3}$ of the birds in my aviary are finches.If there are 24 birds in my aviary, how many finches are there? $\frac{1}{3}$ of 24 is $\frac{24}{3} = 24 \div 3 = 8$ So, $\frac{2}{3}$ of 24 must be $2 \times 8 = 16$ There are 16 finches in my aviary.

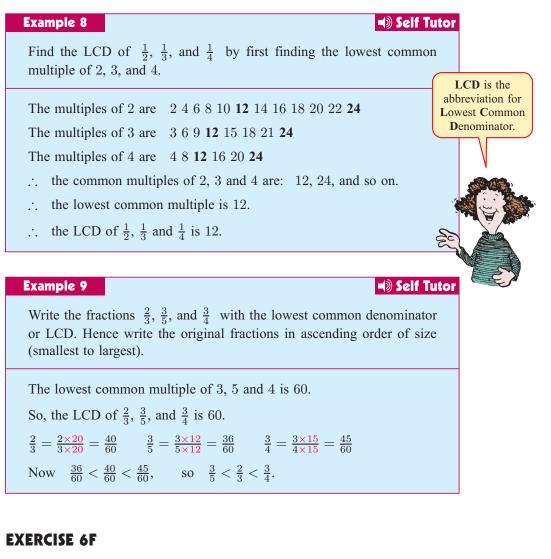
120 FRACTIONS (Chapter 6)

- **20** One morning two fifths of the passengers on my bus were school children. If there were 45 passengers, how many were school children?
- **21** Richard spent three quarters of his working day installing computers, and the remainder of the time travelling between jobs. If his working day was 8 hours, how much time did he spend travelling?
- 22 When Sasha played netball, she scored a goal with seven eighths of her shots for goal. If she shot for goal 16 times in a match, how many goals did she score?
- 23 A business hired a truck to transport boxes of equipment. The total weight of the equipment was 3000 kg, but the truck could only carry $\frac{5}{8}$ of the boxes in one load.
 - **a** What weight did the truck carry in the first load?
 - **b** If there were 80 boxes, how many did the truck carry in the first load?

24 Answer the questions in the **Opening Problem** on page **108**.

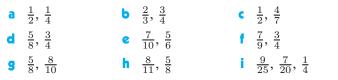
COMPARING FRACTION SIZES

We often wish to compare the size of two fractions. For example, would you rather have $\frac{3}{4}$ or $\frac{2}{3}$ of a block of chocolate?


The sizes of two fractions are easily compared when they have the same denominator.

For example, $\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$ and $\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$. Since 9 > 8, $\frac{9}{12} > \frac{8}{12}$ and so $\frac{3}{4} > \frac{2}{3}$.

We can show this on a number line.


To compare fractions we first convert them to equal fractions with a common denominator which is the lowest common multiple of the original denominators. This denominator is called the **lowest common denominator** or **LCD**.

1 Find the LCM of:

a	7, 3	b	5, 3	C	3, 6
e	6, 8, 9	f	10, 5, 6	9	5, 6, 11

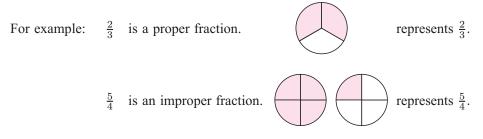
2 Write each set of fractions with the lowest common denominator and hence write the original fractions in ascending order (smallest to largest):

Ascending means going up. Descending means going down.

d 12, 18h 12, 4, 9

- **3** By writing each set of fractions with the lowest common denominator, arrange the fractions in descending order:
 - **a** $\frac{1}{2}, \frac{2}{5}, \frac{7}{10}$ **b** $\frac{1}{2}, \frac{5}{8}, \frac{3}{4}$ **c** $\frac{1}{2}, \frac{7}{12}, \frac{4}{6}$

С


IMPROPER FRACTIONS AND MIXED NUMBERS

IMPROPER FRACTIONS

All the fractions we have looked at so far have had values between zero and one. This means that their numerators were less than their denominators.

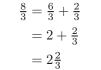
A fraction which has numerator less than its denominator is called a proper fraction.

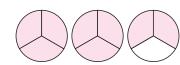
A fraction which has numerator greater than its denominator is called an improper fraction.

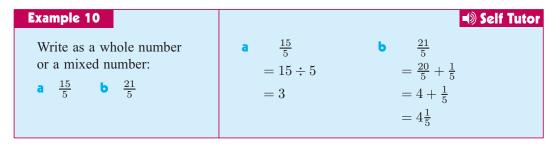
To obtain five quarters or $\frac{5}{4}$ we take *two* wholes, divide both into quarters, then shade 5 quarters. We can see from the diagram that $\frac{5}{4}$ is the same as $1\frac{1}{4}$, or 1 and $\frac{1}{4}$.

MIXED NUMBERS

When an improper fraction is written as a whole number and a fraction, it is called a **mixed number**.


For example, $1\frac{1}{4}$ is a mixed number.


It is often necessary to change a number from an improper fraction to a mixed number and vice versa.


For example, $\frac{8}{3} = 8 \div 3 = 2$ wholes and 2 equal parts (thirds) left over.

So,
$$\frac{8}{3} = 2\frac{2}{3}$$
.

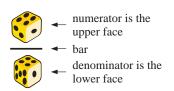
Another way of doing this is:

EXERCISE 6G

$e \frac{30}{6}$	$f \frac{30}{3}$
$\frac{125}{25}$	$\frac{63}{7}$
$e \frac{15}{2}$	f $\frac{17}{3}$
$\frac{41}{4}$	$\frac{109}{12}$
	k $\frac{125}{25}$ e $\frac{15}{2}$

Example 11		🔊 Self Tutor
Write $2\frac{4}{5}$ as an improper fraction.	$2\frac{4}{5} = 2 + \frac{4}{5} = \frac{10}{5} + \frac{4}{5} = \frac{14}{5}$	{split the mixed number} {write with common denominator}

3 Write as an improper fraction:

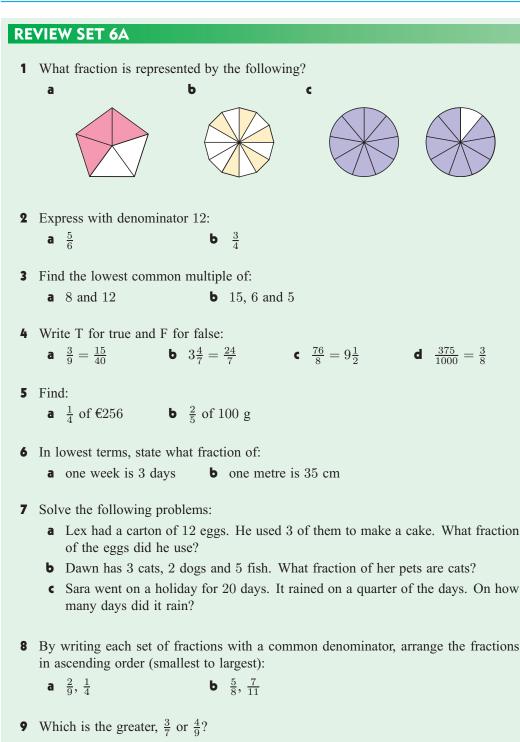

a	$3\frac{1}{2}$	b	$4\frac{2}{3}$	C	$2\frac{3}{4}$	d	$1\frac{2}{3}$
9	$1\frac{4}{5}$	h	$6\frac{1}{2}$	I	$4\frac{5}{9}$	j	$5\frac{7}{8}$

- 4 Suppose we have two dice. We roll one to give the numerator of a fraction and the other to give the denominator. Find:
 - **a** the smallest fraction it is possible to roll
 - **b** the largest *proper* fraction it is possible to roll
 - the largest *improper* fraction which is not a whole number that it is possible to roll
 - **d** the number of different fractions it is possible to roll.
 - e List the different combinations that can be simplified to a whole number.

KEY WORDS USED IN THIS CHAPTER

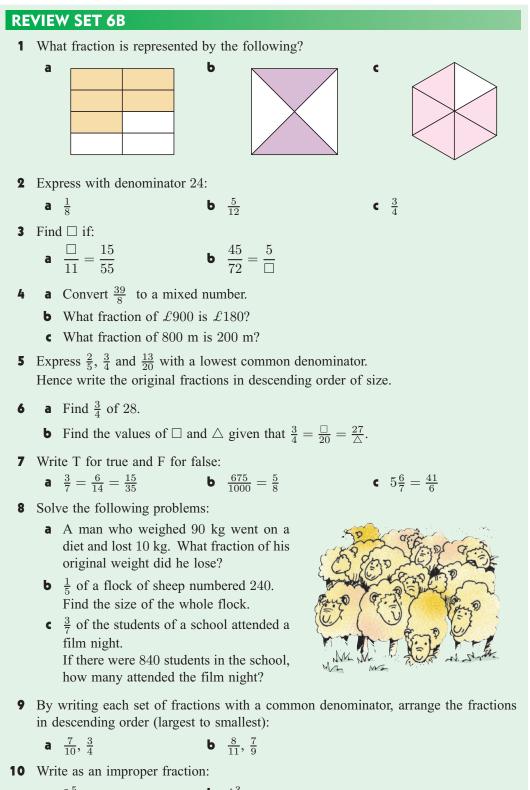
- common fraction
- equivalent fractions
- lowest common denominator
- lowest terms
- number line
- proper fraction

- denominator
- improper fraction
- lowest common multiple
- mixed number
- numerator
- simplest form



f $3\frac{3}{4}$

 $1\frac{11}{12}$


 $2 1\frac{1}{2}$

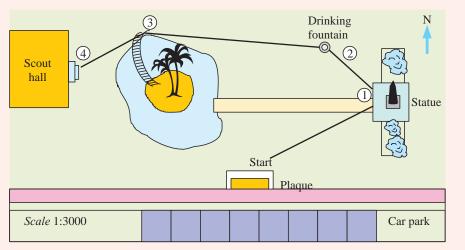
 $6\frac{6}{7}$

10 Write as a whole number or a mixed number:

a $\frac{32}{6}$ **b** $\frac{27}{3}$

a $2\frac{5}{6}$

b $4\frac{3}{7}$


ACTIVITY

MAKING AN ORIENTEERING COURSE

What to do:

- 1 Obtain a map of your school and its grounds, or a local park or playground. Divide your class into small groups and design a simple orienteering course leading from one point or landmark to another. The landmarks might include a distinctive tree, the corner of a building, or a sign.
- **2** Choose 3 or 4 landmarks and draw the course on your map. Number the landmarks in the order you want them visited. Each landmark must be clearly visible from the previous one.

3 Go to your starting location and use a compass to measure the bearing of the first landmark.

Measure the distances between landmarks using a trundle wheel, or if you do not have one you can estimate them by pacing them out.

Use the same person to pace out each leg and measure the length of a pace several times to make your estimate as accurate as possible.

Find the bearing of each landmark from the previous one on your course, and the distance between them.

4 Prepare a table of instructions that will enable others to follow your course.

Leg	Landmark	Compass bearing	Distance
start to 1			
1 to 2			
2 to 3			
3 to 4			

5 Swap your instructions with another group and test out each other's courses. Did you correctly identify each other's landmarks? How accurate were your bearings and distances?

Chapter

Polygons

- A Polygons
- **B** Triangles
- C Quadrilaterals
- D Euler's rule for plane figures

OPENING PROBLEM

There are four posts at the corners A, B, C and D of a paddock. In the middle is a raised mound, which means we cannot measure directly

from A to C. However, the distances between the posts are easily measured and are shown on the figure.

The angle at A is measured to be 110° .

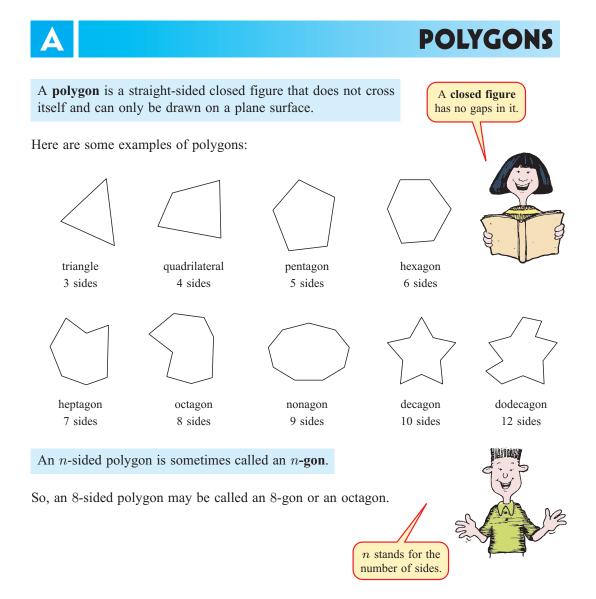
How can we find the distance from A to C to reasonable accuracy? Explain your answer.

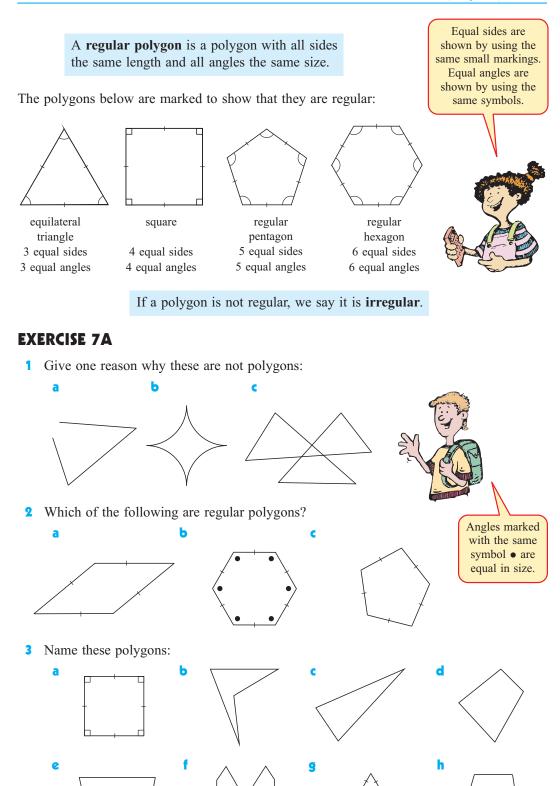
В

97 m

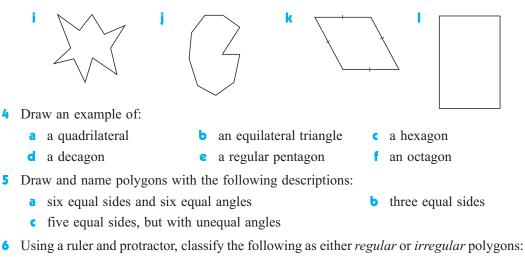
С

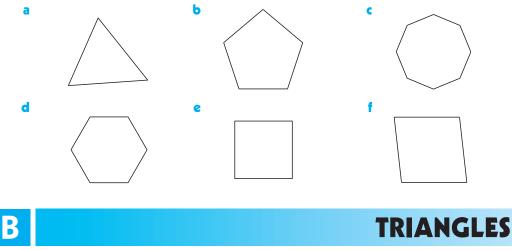
125 m

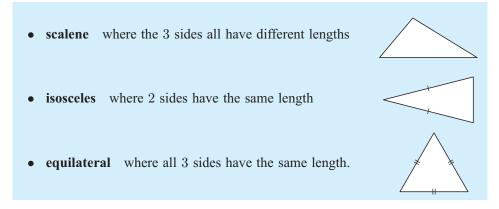

84 m


rough figure

110

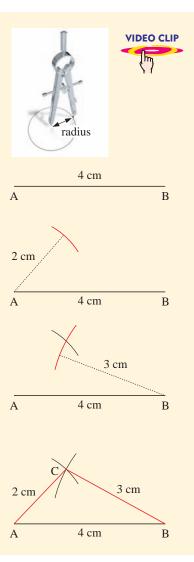

113 m


D



A **triangle** is a three-sided polygon.

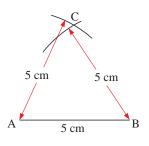
There are 3 types of triangles which can be classified according to the number of sides which are equal in length. These are:



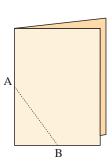
Notice that an equilateral triangle is also isosceles.

CONSTRUCTING A TRIANGLE

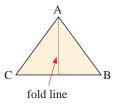
To accurately construct a triangle, we need a ruler and a **geometric compass**. The **radius** of a compass is the distance from the sharp point to the tip of your pencil. Construct a triangle with sides 4 cm, 3 cm and 2 cm long.


- Step 1: Draw a line segment the length of one of the sides. It is often best to choose the longest side. We will call the line segment [AB] and use it as the base of the triangle.
- Step 2: Open your compass to a radius equal to the length of one of the other sides. Using this radius draw an arc from one end A of the base line.
- Step 3: Now open the compass to a radius equal to the length of the other side. Draw another arc from B to intersect the first arc.
- Step 4: The point of intersection of the two arcs is the third vertex C of triangle ABC. Construct line segments [AC] and [BC] to complete the triangle.

EXERCISE 7B.1

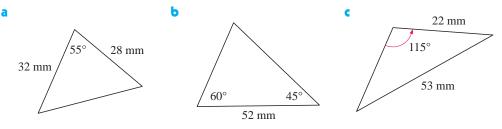

- 1 Accurately construct a triangle with sides:
 - **a** 4 cm, 5 cm and 6 cm

- \mathbf{b} 3 cm, 6 cm and 7 cm.
- 2 Draw [AB] of length 5 cm. Set the compass points 5 cm apart. With centre A, draw an arc of a circle above [AB]. With centre B draw an arc to intersect the other one. Let C be the point where these arcs meet. Join [AC] and [BC].
 - **a** What type of triangle is ABC? Explain your answer.
 - **b** Measure angles ABC, BCA, CAB using a protractor.
 - **c** Copy and complete: *"All angles of an equilateral triangle measure"*^o*"*

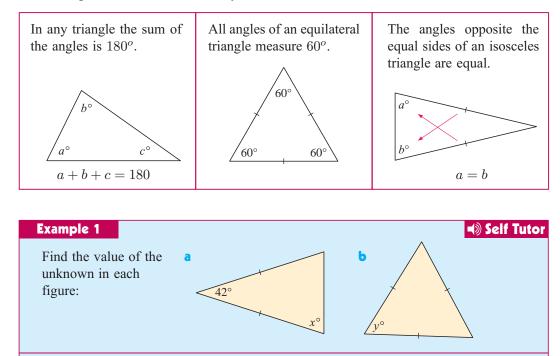


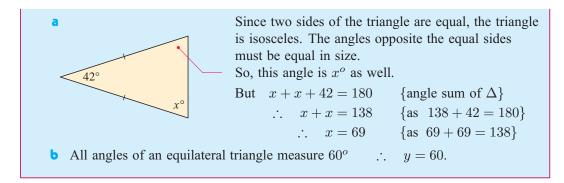
132 POLYGONS (Chapter 7)

 Obtain a clean sheet of paper and fold it down the middle. Draw a straight line [AB] as shown. Then with the two sheets pressed tightly together, cut along [AB] through both sheets.

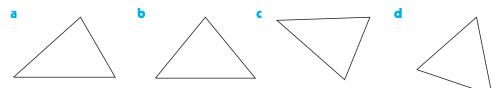

Keep the triangular piece of paper. When you unfold it, you should obtain the triangle ABC shown.

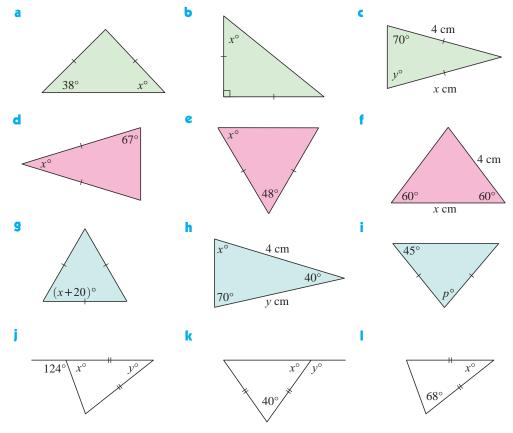
- **a** Explain why triangle ABC is isosceles.
- **b** Explain why the angles opposite the equal sides are equal in size.


You should not have to use a ruler and protractor.


4 Accurately construct these triangles using a protractor, compass and ruler:

TRIANGLE PROPERTIES

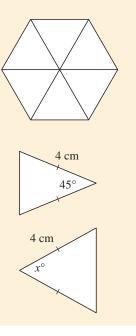

From Chapter 3 and Exercise 7B.1 you should have discovered that:



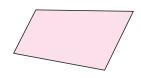
EXERCISE 7B.2

1 Measure the length of the sides of the triangles and use these measurements to classify each as equilateral, isosceles or scalene:

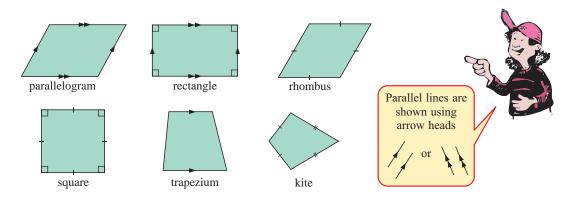
2 Find the unknowns in the following which are *not drawn to scale*:


INVESTIGATION 1

THE ANGLES OF REGULAR POLYGONS


What to do:

- 1 Six equilateral triangles are cut out and laid down to form a regular hexagon. Explain using this figure why:
 - the angles of an equilateral triangle are 60°
 - the angles of a regular hexagon are 120° .
- **2** Make eight isosceles triangles like the one illustrated. Put them together to form a regular octagon. What is the size of an angle of a regular octagon?
- What size should x be so that five triangles like the one shown can be put together to form a regular pentagon? What is the size of an angle of a regular pentagon?


QUADRILATERALS

A quadrilateral is a polygon with four sides.

There are six special quadrilaterals:

- A parallelogram is a quadrilateral which has opposite sides parallel.
- A rectangle is a parallelogram with four equal angles of 90°.
- A **rhombus** is a quadrilateral in which all sides are equal.
- A square is a rhombus with four equal angles of 90° .
- A trapezium is a quadrilateral which has a pair of opposite sides parallel.
- A kite is a quadrilateral which has two pairs of adjacent sides equal.

A **diagonal** of a quadrilateral is a straight line segment which joins a pair of opposite vertices.

INVESTIGATION 2

PROPERTIES OF QUADRILATERALS

What to do:

- 1 Print the worksheets obtained by clicking on the icon.
- 2 For each **parallelogram**:

- **a** measure the lengths of opposite sides and record them
- **b** measure the sizes of opposite angles and record them
- draw the diagonals and measure the distances from each vertex to the point of intersection. Record your results.
- **3** For each **rectangle**:
 - a measure the lengths of the opposite sides and record them
 - **b** measure the lengths of the diagonals and record them.
- 4 For each rhombus:
 - a check that opposite sides are parallel
 - **b** measure the sizes of opposite angles and record them
 - draw the diagonals and measure the distances from each vertex to the point of intersection. Record your results.
 - **d** At what angle do the diagonals intersect?
 - Fold each rhombus along each diagonal. What do you notice about the angles formed?
- 5 For each square:
 - **a** check that opposite sides are parallel
 - **b** Fold each square along each diagonal. What do you notice about the angle where the diagonals intersect.
 - What else do you notice about the diagonals?
- 6 For the **kite**:
 - a measure its opposite angles and record them
 - **b** Fold each kite about its diagonals and after taking measurements record any observations.

From the investigation, you should have discovered these properties of special quadrilaterals:

Parallelogram

- opposite sides are equal
- opposite angles are equal
- diagonals bisect each other (divide each other in half).

Rectangle

- opposite sides are equal in length
- diagonals are equal in length
- diagonals bisect each other.

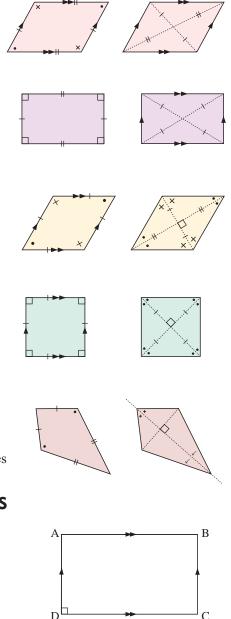
Rhombus

- opposite sides are parallel
- opposite angles are equal in size
- diagonals bisect each other at right angles
- diagonals bisect the angles at each vertex.

Square

- opposite sides are parallel
- diagonals bisect each other at right angles
- diagonals bisect the angles at each vertex.

Kite


- one pair of opposite angles is equal in size
- diagonals cut each other at right angles
- diagonals bisect one pair of angles at the vertices

PARALLEL AND PERPENDICULAR LINES

In the figure we notice that [AB] is parallel to [DC]. We write this as [AB] \parallel [DC].

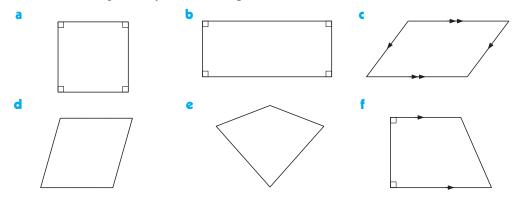
[AD] is at right angles or perpendicular to [DC].

We write this as [AD] \perp [DC].

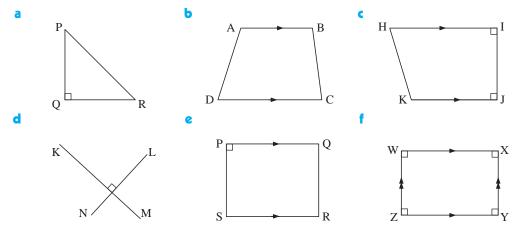
 \parallel reads is parallel to. \perp reads is perpendicular to.

EXERCISE 7C.1

1 Draw a fully labelled sketch of:

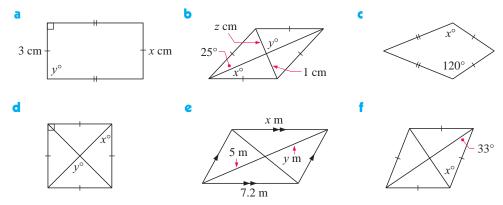

a a parallelogram

b a rhombus


c a kite.

2 There are 3 special parallelograms. Name each of them.

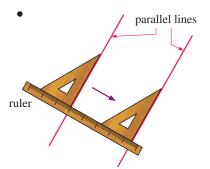
3 Use a ruler to help classify the following:

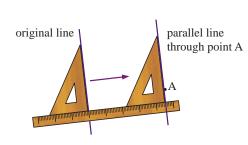


- 4 True or false?
 - a A parallelogram is a quadrilateral which has opposite sides parallel.
 - **b** A rectangle is a parallelogram with four equal angles of 90° .
 - **c** A rhombus is a quadrilateral in which all sides are equal.
 - **d** A square is a rhombus with four equal angles of 90° .
 - e A trapezium is a quadrilateral which has a pair of opposite sides parallel.
 - **f** A kite is a quadrilateral which has two pairs of adjacent sides equal.
 - **g** A quadrilateral with one pair of opposite angles equal is a kite.
 - **h** The diagonals of a rhombus bisect each other at right angles and bisect the angles of the rhombus.
- 5 Using \parallel and \perp , write statements about the following figures:

- **6** Draw the figures from these instructions. A freehand labelled sketch is needed in each case.
 - **a** [AB] is 4 cm long. [BC] is 3 cm long. [AB] \perp [BC].
 - **b** [PQ] is 5 cm long. [RS] is 4 cm long. [RS] \parallel [PQ] and [RS] is 3 cm from [PQ].
 - **c** ABCD is a quadrilateral in which [BC] \parallel [AD] and [AB] \perp [AD].
 - **d** ABCD is a quadrilateral where [AB] \parallel [DC] and [AD] \parallel [BC] and [AB] \perp [BC].

7 Find the values of the variables in these figures:

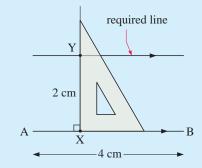



CONSTRUCTING QUADRILATERALS

A set square and a ruler can be used to construct parallel lines.

To do this, we slide the set square along the ruler.

For example:

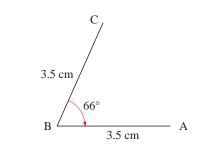

Here we see how to draw a parallel line through point A not on the original line.

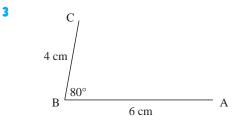
Example 2

Self Tutor

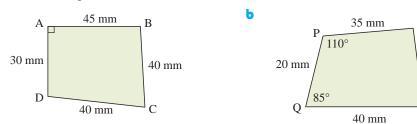
DEMO

[AB] is a line segment which is 4 cm long. Accurately construct a parallel line which is 2 cm from [AB].

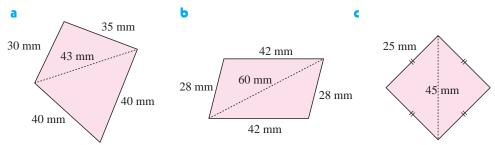



- Step 1: Use a ruler to draw [AB] exactly 4 cm long.
- Step 2: Through a point X on [AB], use a set square to draw a line which is perpendicular to [AB].
- Step 3: Mark point Y on the perpendicular 2 cm from X.
- *Step 4:* We replace the set square and use a ruler to slide it along to Y. We then construct a line through Y (parallel to [AB].)

EXERCISE 7C.2


2

1 [AB] is 5 cm long. Construct [CD] parallel to [AB] and 25 mm from it.



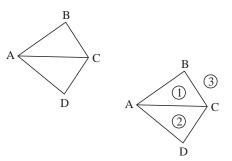
- **a** Use a ruler and protractor to reproduce the given figure.
- By sliding a set square, construct through A a line parallel to [BC].
- Through C, construct a line parallel to [BA].
- **d** If the lines from **b** to **c** meet at D, what type of quadrilateral is ABCD?
- What is the length of [AC] to the nearest mm?
- a Reproduce the given figure using a ruler and protractor.
- **b** Construct a parallelogram ABCD.
- Find the lengths of the diagonals [AC] and [BD] to the nearest mm.
- **4 a** Accurately construct a trapezium ABCD with the dimensions shown.
 - **b** Use your protractor to find the measure of angle ADC to the nearest degree.
 - Find the length of [AD] to the nearest mm.
- **5** Construct these quadrilaterals:

Hence find the lengths of [DB] and [RS].

6 Construct these quadrilaterals using only a ruler and compass:

 $\begin{array}{c} C \\ 2 \text{ cm} \\ B \\ \end{array} \begin{array}{c} 25 \text{ mm} \\ D \\ 4 \text{ cm} \\ \end{array} \begin{array}{c} D \\ A \\ A \end{array}$

S


R

EULER'S RULE FOR PLANE FIGURES

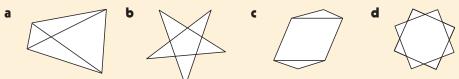
The figure alongside consists of 4 **vertices**: A, B, C and D.

It has 5 **edges** connecting the vertices: [AB], [BC], [AC], [AD], and [CD].

The edges divide the plane into 3 **regions**: inside triangle ABC, inside triangle ACD, and outside quadrilateral ABCD.

INVESTIGATION 3

VERTICES, EDGES AND REGIONS



In this investigation we seek a connection between the number of vertices, edges, and regions of any figure drawn in a plane.

For example, this figure has 5 vertices, 3 regions, and 6 edges. Outside the figure counts as 1 region.

What to do:

1 Consider the following figures:

Copy and complete the following table. **e** to **h** are for four diagrams of plane figures like those above, but of your choice.

Figure	Vertices (V)	Regions (R)	Edges (E)	V+R-2
Given example	5	3	6	6
a				
Ь				
c				
d				
e				
f				
9				
h				

2 Suggest a relationship or rule between V, R and E.

EULER'S RULE

From the previous Investigation you should have discovered Euler's Rule:

In any closed figure, the number of edges is always two less than the sum of the numbers of vertices and regions. E = V + R - 2.

IDENTIFYING SHAPES

EXERCISE 7D

- 1 Using Euler's Rule, determine the number of:
 - a edges for a figure with 5 vertices and 4 regions
 - **b** edges for a figure with 6 vertices and 5 regions
 - c vertices for a figure with 7 edges and 3 regions
 - **d** vertices for a figure with 9 edges and 4 regions
 - e regions for a figure with 10 edges and 8 vertices
 - f regions for a figure with 12 edges and 7 vertices.
- 2 Draw a possible figure for each of the cases in 1.
- 3 Draw two *different* figures which have 5 vertices and 7 edges.
- 4 Salvi has just drawn a plane figure. He says that the number of edges is 12, the number of vertices is 9, and the number of regions is 6. Can you draw Salvi's figure?

ACTIVITY 1

Look at the following photograph of a building.

What to do:

- 1 Make a list of all the different shapes you can see in the photograph.
- 2 Write sentences to describe where you see
 - a parallel lines **b** perpendicular lines.

ACTIVITY 2

Alongside is an example of Islamic art:

What to do:

- 1 Collect pictures of Islamic art from magazines, books or from the internet.
- 2 List shapes used in the designs.

ISLAMIC ART

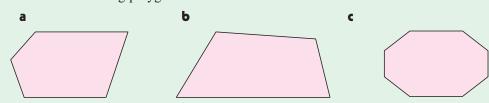
KEY WORDS USED IN THIS CHAPTER

- diagonal
- Euler's rule •
- isosceles triangle
- parallel lines
- perpendicular lines
- rectangle
- rhombus
- trapezium

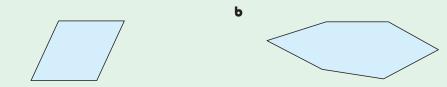
LINKS click here

- edge
- hexagon
- kite
- parallelogram •
- polygon
- region
- scalene triangle
- vertex

- equilateral triangle
- irregular polygon
- octagon
- pentagon •
- quadrilateral
- regular polygon
- square

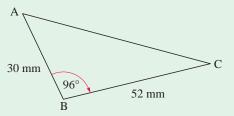

PROTECTING YOURSELF, THE OLD **FASHIONED WAY**

Areas of interaction: **Human ingenuity**

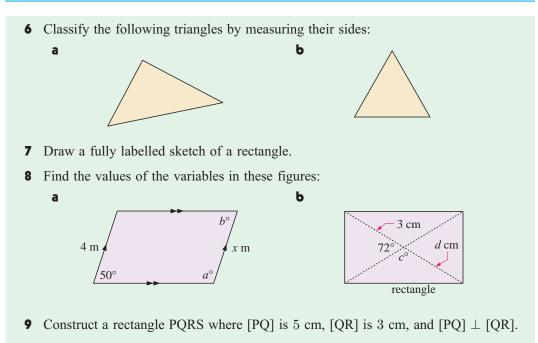

REVIEW SET 7A

а

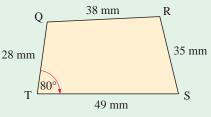
1 Name the following polygons:



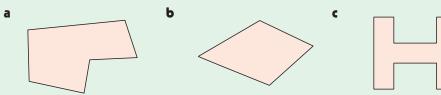
- **2** Draw the following polygons:
 - **a** isosceles triangle **b** regular hexagon
- **3** Using a ruler and protractor, classify the following shapes as regular or irregular polygons:

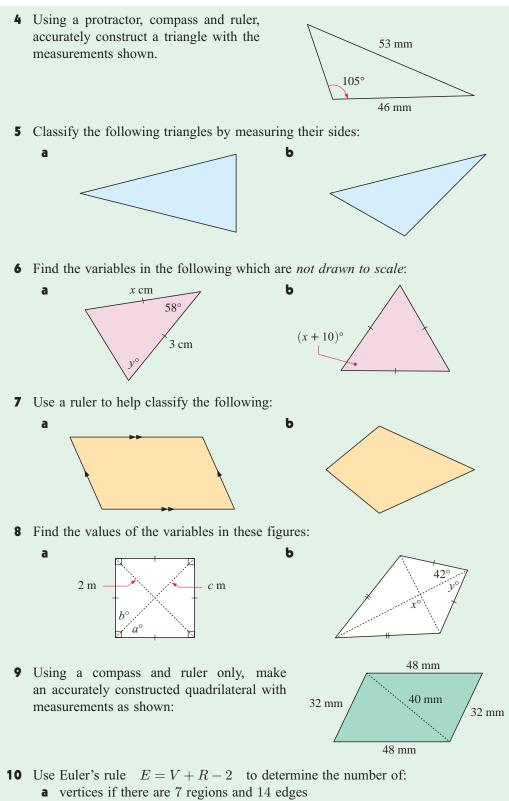


- 4 Using a compass and ruler only, construct a triangle with sides of length 3 cm, 4 cm and 6 cm.
- **5** Using a protractor and ruler, accurately construct a triangle with the measurements shown:


What is the length of [AC]?

c rhombus


10 Using a compass, protractor and ruler, accurately construct a quadrilateral with the measurements shown.Now measure the length of [RT] to the nearest mm.


- **11** Use Euler's rule E = V + R 2 to determine the number of:
 - a edges in a plane figure with 11 vertices and 5 regions
 - **b** regions in a plane figure with 9 vertices and 17 edges.

REVIEW SET 7B

1 Name the following polygons:

- 2 Draw and name polygons with the following descriptions:
 - **a** five equal sides and five equal angles
 - **b** four equal sides and opposite angles equal.
- **3** Using a compass and ruler only, construct an isosceles triangle with base length 5 cm and equal sides 4 cm.

b regions if there are 12 edges and 8 vertices.

Fraction operations

- **A** Adding fractions
- **B** Subtracting fractions

- C Multiplying fractions
- D Reciprocals
- **E** Dividing fractions
- F Problem solving

OPENING PROBLEMS

Problem 1:

Three friends go shopping to buy a DVD player for a birthday present. The electrical store is having a special sale, and offer it for $\frac{1}{2}$ price. If the three friends share the cost equally, what fraction of the original price does each of them contribute?

Problem 2:

A family have a bag containing rice. One day they eat $\frac{1}{2}$ of it and on the next day they eat $\frac{1}{3}$ of it. What fraction of the bag remains for the third day?

Mario serves pizzas cut into 8 pieces, so each piece is exactly $\frac{1}{8}$ of the pizza.

At one table Sam eats $\frac{3}{8}$ and Pam eats $\frac{2}{8}$ of their pizza.

We can see from the diagram that together Sam and Pam have eaten $\frac{5}{8}$ of the pizza, so $\frac{3}{8} + \frac{2}{8} = \frac{5}{8}$.

At another table Mark and Ming eat $\frac{3}{8}$ and $\frac{1}{2}$ of their pizza respectively.

Since only one piece remains we know that

$$\frac{3}{8} + \frac{1}{2} = \frac{7}{8}.$$

Notice that the $\frac{1}{2}$ can also be written as $\frac{4}{8}$.

So,
$$\frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{4}{8} = \frac{7}{8}$$

At another Pizza shop, pizzas are cut into 6 equal portions. Geetha and Grant eat $\frac{1}{2}$ and $\frac{1}{3}$ of their pizza respectively. Since only one piece remains, we know that $\frac{5}{6}$ was eaten.

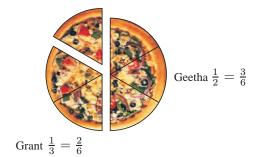
So,
$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
.

Geetha's $\frac{1}{2}$ can be written as $\frac{3}{6}$, while Grant's $\frac{1}{3}$ can be written as $\frac{2}{6}$.

Hence,
$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$
.

d Ming eat $\frac{3}{8}$ and $\frac{1}{2}$

Mark
$$\frac{3}{8}$$
 Ming $\frac{1}{2} = \frac{4}{8}$

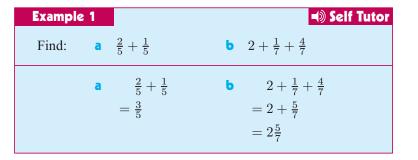

ADDING FRACTIONS

Sam $\frac{3}{8}$

Pam $\frac{2}{8}$

Each piece is one eighth

of the whole pizza.



As you can see, fractions are easily added if they have the same denominator.

RULE FOR ADDITION OF FRACTIONS

To add fractions:

- If necessary, change the fractions to equal fractions with the lowest common denominator.
- Add the fractions by adding the new numerators. The denominator stays the same.

Example 2	Self Tut	or
Find: $\frac{1}{2} + \frac{2}{3}$		Multiplying the numerator and the
$\frac{1}{2} + \frac{2}{3}$	$\{LCD = 6\}$	denominator by the same number produces
$= \frac{1 \times 3}{2 \times 3} + \frac{2 \times 2}{3 \times 2}$	{converting to 6ths}	an equal fraction!
$=\frac{3}{6}+\frac{4}{6}$	{simplifying}	
$=\frac{7}{6}$	{adding the numerators}	
$=1\frac{1}{6}$	{converting to a mixed number}	

EXERCISE 8A.1

2

1 Without showing any working, add the following:

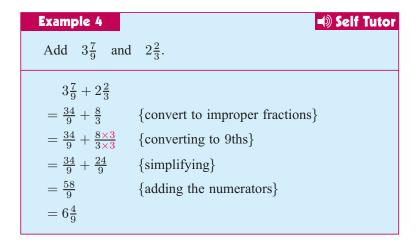
a $\frac{1}{3} + \frac{2}{3}$	b $\frac{3}{4} + \frac{1}{4}$
d $\frac{3}{11} + \frac{7}{11}$	$\frac{3}{8} + \frac{10}{8}$
g $3 + \frac{1}{5} + \frac{2}{5}$	h $4 + \frac{1}{3} + \frac{2}{3}$
$\frac{1}{7} + \frac{2}{7} + \frac{3}{7}$	$2 + \frac{3}{4} + \frac{5}{4}$
$\frac{3}{10} + \frac{1}{10} + 1$	n $6 + \frac{2}{3} + \frac{2}{3}$
10 10	0 0
Find:	
Find: a $\frac{1}{2} + \frac{1}{4}$	b $\frac{1}{3} + \frac{1}{5}$
	b $\frac{1}{3} + \frac{1}{5}$ e $\frac{1}{10} + \frac{1}{5}$
a $\frac{1}{2} + \frac{1}{4}$	0 0

	AT THE
c	$\frac{1}{6} + \frac{4}{6}$
f	$\frac{1}{8} + \frac{3}{8} + \frac{4}{8}$
I.	$\frac{3}{4} + \frac{5}{4}$
I.	$\frac{5}{9} + \frac{2}{9} + \frac{11}{9}$
0	$\frac{1}{8} + \frac{2}{8} + \frac{3}{8} + \frac{4}{8}$
C	$\frac{2}{3} + \frac{1}{4}$
f	$\frac{3}{10} + \frac{2}{5}$
I.	$\frac{5}{6} + \frac{1}{3}$
I.	$\frac{3}{8} + \frac{4}{9}$

3 Kris spends $\frac{2}{5}$ of his money on food and $\frac{1}{3}$ of his money on bills. What fraction of his money has been used?

Example 3		Self Tutor
Find: $\frac{1}{3} + \frac{3}{4} + \frac{3}{8}$	$\frac{1}{3} + \frac{3}{4} + \frac{3}{8}$	{have LCD of 24}
	$= \frac{1 \times 8}{3 \times 8} + \frac{3 \times 6}{4 \times 6} + \frac{3 \times 3}{8 \times 3}$	{converting to 24ths}
	$= \frac{8}{24} + \frac{18}{24} + \frac{9}{24}$	{simplifying}
	$=\frac{35}{24}$	{adding the numerators}
	$=1\frac{11}{24}$	{converting to a mixed number}

4 Find:


a	$\frac{1}{5} + \frac{1}{2} + \frac{1}{6}$	b	$\frac{1}{2} + \frac{1}{4} + \frac{2}{5}$	C	$\frac{1}{4} + \frac{1}{3} + \frac{1}{2}$
d	$\frac{2}{3} + \frac{1}{6} + \frac{1}{2}$	e	$\frac{2}{5} + \frac{3}{10} + \frac{1}{2}$	f	$\frac{3}{4} + \frac{1}{2} + \frac{7}{12}$

5 Carly eats $\frac{1}{8}$ of a pizza, Su-Lin eats $\frac{2}{5}$, and Terri eats $\frac{1}{4}$. How much of the pizza has been eaten?

ADDITION OF MIXED NUMBERS

When we add mixed numbers together, there are two possible methods we can use.

Method 1: Convert to improper fractions, then add, then convert back to a mixed number.

Method 2: Add the whole numbers and the fractions separately, then combine the results.

$3\frac{7}{9} + 2\frac{2}{3}$	
$=5+\frac{7}{9}+\frac{2}{3}$ {adding whole numbers toget	her first}
$=5+\frac{7}{9}+\frac{2\times3}{3\times3}\qquad {\text{(converting to 9ths)}}$	
$=5+\frac{7}{9}+\frac{6}{9}\qquad {simplifying}$	
$=5+\frac{13}{9}$ {adding the numerators}	
$=5+1\frac{4}{9}$ {converting back to mixed nu	imber}
$= 6\frac{4}{9}$ {simplifying}	

EXERCISE 8A.2

1 Find:

a $1\frac{1}{6} + 2\frac{1}{3}$	b $2\frac{1}{3} + \frac{7}{12}$	c $1\frac{1}{3} + 3\frac{5}{6}$
d $1\frac{7}{8} + \frac{4}{5}$	$2\frac{1}{4}+2\frac{3}{5}$	f $1\frac{1}{4} + 3\frac{2}{3}$
g $3\frac{1}{2} + 2\frac{2}{3}$	h $2\frac{2}{3} + 4\frac{1}{5}$	$5\frac{7}{8}+2\frac{1}{4}$

2 Sarah is an artist. She spends 3¹/₂ hours on Saturday painting a portrait and a further 2¹/₃ hours finishing it off on Sunday. How long did it take her to paint the portrait?

USING A CALCULATOR

When dealing with complicated fractions, a calculator may be used. Most calculators have a key for entering fractions which looks like $\boxed{a \frac{b}{c}}$.

Example 6		Self Tutor
Use a calculator to find: a $\frac{3}{7} + \frac{8}{19}$ b $2\frac{1}{6} + 3\frac{2}{13}$		
a $\frac{3}{7} + \frac{8}{19}$ would be keyed like this:		
3 a b/c 7 + 8 a b/c 19 =	Answer:	$\frac{113}{133}$
b $2\frac{1}{6} + 3\frac{2}{13}$ would be keyed like this:		
2 a b/c 1 a b/c 6 + 3 a b/c 2 a b/c 13 =	Answer:	$5\frac{25}{78}$

3 Use a calculator to find:

a	$\frac{3}{8} + \frac{5}{14}$	b	$\frac{7}{9} + \frac{5}{16}$	C	$3\frac{1}{12} + 4\frac{2}{15}$
d	$2\frac{1}{18} + 5\frac{9}{11}$	e	$\frac{15}{17} + \frac{23}{28}$	f	$\frac{3}{13} + 2\frac{5}{21}$
9	$4\frac{2}{11} + \frac{21}{23}$	h	$13\frac{3}{7} + 12\frac{2}{5}$	i,	$\frac{1}{8} + \frac{7}{9} + 3\frac{1}{10}$

B

SUBTRACTING FRACTIONS

At Mario's pizza parlour a half of a pizza has been eaten.

Matt eats $\frac{3}{4}$ of what remains.

What fraction remains for Michelle?

Suppose the pizza was originally cut into 8 equal portions.

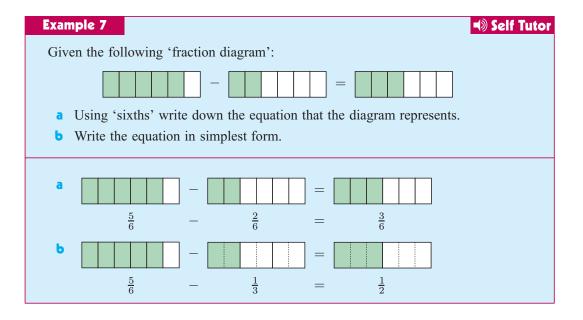
 $\frac{1}{2} = \frac{4}{8}$ has been eaten, leaving $\frac{4}{8}$ for Matt and Michelle.

We are told that Matt eats $\frac{3}{4}$ of the remaining pieces, so this is 3 pieces or $\frac{3}{8}$ of the original pizza.

Michelle is left with one piece or $\frac{1}{8}$ of the original pizza,

so
$$\frac{1}{2} - \frac{3}{8} = \frac{4}{8} - \frac{3}{8} = \frac{1}{8}$$

Matt's Michelle's

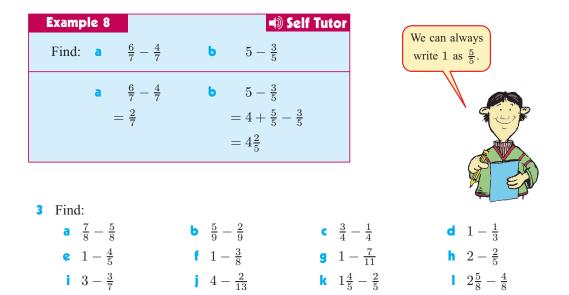

2 0 0 0 0

Fractions are easily subtracted if they have a common denominator.

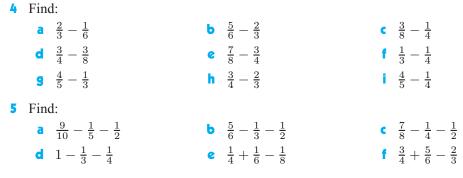
RULE FOR SUBTRACTION OF FRACTIONS

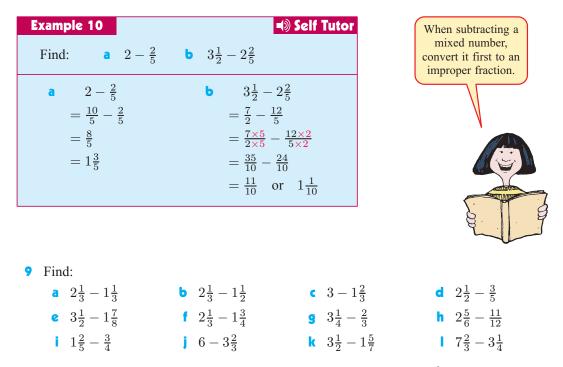
To subtract one fraction from another:

- If necessary, change the fractions to equal fractions with the lowest common denominator.
- Subtract the fractions by subtracting the new numerators. The denominator stays the same.


EXERCISE 8B

1 Consider the following 'fraction diagram':


- a Using 'sixths' write down the equation that the diagram represents.
- **b** Write the equation in simplest form.
- 2 Consider the following 'fraction diagram':


- a Using 'eighths' write down the equation that the diagram represents.
- **b** Write the equation in simplest form.

Example 9	Self Tutor
Find: a $\frac{3}{4} - \frac{1}{3}$ b	$\frac{5}{6} - \frac{1}{3} - \frac{2}{9}$
a $\frac{3}{4} - \frac{1}{3}$	$\{LCD = 12\}$
$= \frac{3\times3}{4\times3} - \frac{1\times4}{3\times4}$	{converting to 12ths}
$=\frac{9}{12}-\frac{4}{12}$	{simplifying}
$=\frac{5}{12}$	{subtracting the numerators}
b $\frac{5}{6} - \frac{1}{3} - \frac{2}{9}$	$\{LCD = 18\}$
$= \frac{5\times3}{6\times3} - \frac{1\times6}{3\times6} - \frac{2\times2}{9\times2}$	{converting to 18ths}
$=\frac{15}{18}-\frac{6}{18}-\frac{4}{18}$	{simplifying}
$=\frac{5}{18}$	{subtracting the numerators}

- Shaggy leaves $\frac{1}{3}$ of his fortune to Scooby, $\frac{2}{5}$ to Josie, and the rest to Ian. What fraction does Ian get?
- 7 Answer the **Opening Problem** question 1 on page 146.
- 8 Bob owns $\frac{3}{4}$ of a business, Kim owns $\frac{1}{6}$, and Mark owns the rest. What fraction does Mark own?

- 10 Pia estimates it will take her 8 hours to make a dress. She spends $5\frac{1}{4}$ hours on one day and finishes it in another $1\frac{2}{3}$ hours the next day. How much under her estimate was she?
- **11** Use a calculator to find:
 - **a** $\frac{9}{11} \frac{3}{8}$ **b** $\frac{15}{19} - \frac{6}{13}$ **c** $\frac{23}{24} - \frac{2}{15} - \frac{1}{4}$ **d** $5\frac{3}{13} - 2\frac{1}{17}$ **e** $3\frac{1}{4} - \frac{8}{21}$ **f** $5\frac{1}{18} - 2\frac{1}{4} - 1\frac{3}{22}$

EGYPTIAN FRACTIONS

INVESTIGATION

Part A

An important Egyptian archaeological find now called the **Rhind Papyrus** was written by **Ahmes** around 1650 BC. It contains the first recorded organised list of fractions.

The Ancient Egyptians had special symbols for the common fractions $\frac{1}{2}$, $\frac{1}{4}$, $\frac{2}{3}$, and $\frac{3}{4}$.

 $\frac{1}{2} = \begin{bmatrix} & & \frac{1}{4} = \end{bmatrix} X \qquad \qquad \frac{2}{3} = \textcircled{2} \qquad \qquad \frac{3}{4} = \textcircled{2}$

All other fractions were written as **unit fractions** with a numerator of one, or as sums of unit fractions.

The \bigcirc symbol was used to represent a **reciprocal**. This means that if we have some number x then \bigcirc_x means 1 divided by x, or $\frac{1}{x}$.

For example:

What to do:

- 1 Can $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$ be written as sums of unit fractions? Avoid repetition of one fraction, such as $\frac{1}{4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$.
- **2** Can all unit fractions be written as a sum of two different unit fractions?

Hint: Examine the difference between unit fractions with consecutive denominators, for example $\frac{1}{3} - \frac{1}{4}$.

- 3 Can unit fractions be written as sums of three unit fractions?
- 4 Can you write these fractions as the sums of unit fractions:

b $\frac{5}{6}$

 $\frac{7}{9}$

d

Part B

a $\frac{2}{3}$

The Egyptians recorded most of their fractions as sums of unit fractions. How the Ancient Egyptians worked out their unit fraction representations was of interest to **Fibonacci** (1202) and later **J G Sylvester** (in the 1800's).

 $C = \frac{4}{7}$

Fibonacci proposed a method for representing fractions between 0 and 1.

- Step 1: Find the largest unit fraction (the one with the smallest denominator) which is less than the given fraction. If we divide the numerator of the given fraction into its denominator, then add one to the quotient, this will be the denominator we need.
- Step 2: Subtract the new fraction from the given fraction.

Step 3:Find the largest unit fraction less than the difference in Step 2.Step 4:Subtract again and continue until the difference is a unit fraction.For example, consider $\frac{5}{17}$:

Step 1: $17 \div 5 = 3 \text{ r } 2$ so the new denominator = 3 + 1 = 4But $\frac{5}{17} - \frac{1}{4} = \frac{20 - 17}{68} = \frac{3}{68}$ $\therefore \quad \frac{5}{17} = \frac{1}{4} + \frac{3}{68}$ $68 \div 3 = 22 \text{ r } 2$ so the new denominator = 22 + 1 = 23But $\frac{3}{68} - \frac{1}{23} = \frac{69 - 68}{1564} = \frac{1}{1564}$ $\therefore \quad \frac{5}{17} = \frac{1}{4} + \frac{1}{23} + \frac{1}{1564}$

What to do:

- **1** Use Fibonacci's method on the following fractions:
 - **a** $\frac{2}{35}$ **b** $\frac{4}{5}$ **c** $\frac{13}{20}$ **d** $\frac{4}{13}$ **e** $\frac{2}{9}$
- **2** How do you think the Ancient Egyptians added their fractions?

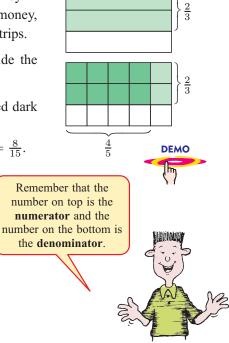
MULTIPLYING FRACTIONS

We can demonstrate the multiplication of fractions by dividing up a rectangle.

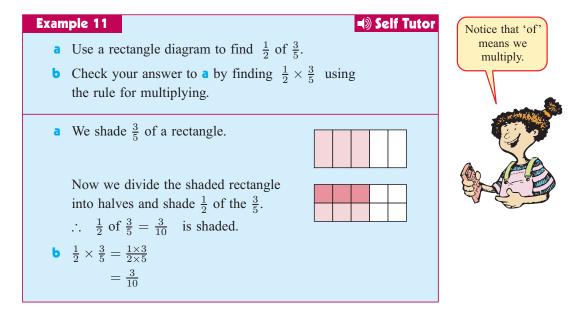
Marni's father has some money in his wallet. He gives $\frac{2}{3}$ of it to Marni. She keeps $\frac{4}{5}$ of the money and spends the rest. Marni keeps $\frac{4}{5}$ of $\frac{2}{3}$, which means she keeps $\frac{4}{5} \times \frac{2}{3}$ of the money.

We start with a rectangle which represents all of the money in Marni's father's wallet. Marni receives $\frac{2}{3}$ of her father's money, so we divide the rectangle into 3 and shade 2 of the 3 strips.

Marni keeps $\frac{4}{5}$ of the money given to her, so we divide the rectangle cross-wise into 5 then shade $\frac{4}{5}$ of the $\frac{2}{3}$.

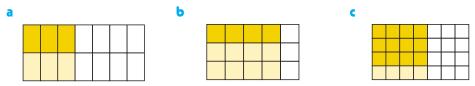

Overall we have 15 equal sections of which 8 are shaded dark green.

So, Marni keeps $\frac{8}{15}$ of the money, and $\frac{4}{5} \times \frac{2}{3} = \frac{4 \times 2}{5 \times 3} = \frac{8}{15}$.


RULE FOR MULTIPLYING FRACTIONS

To multiply two fractions, we multiply the two numerators to get the new numerator, and multiply the two denominators to get the new denominator.

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$



f $\frac{2}{43}$

EXERCISE 8C.1

- **1 a** Use a rectangle diagram to find $\frac{1}{2}$ of $\frac{3}{4}$.
 - **b** Check your answer to **a** by finding $\frac{1}{2} \times \frac{3}{4}$ using the rule for multiplying.
- **2 a** Use a rectangle diagram to find $\frac{2}{3}$ of $\frac{2}{3}$.
 - **b** Check your answer to **a** by finding $\frac{2}{3} \times \frac{2}{3}$ using the rule for multiplying.
- 3 Write down the fraction multiplication and the answer for the following shaded rectangles:

	Example 12	Self Tutor	
	Find: a $\frac{3}{2}$	$\frac{3}{4} imes \frac{1}{5}$ b $\left(\frac{3}{5}\right)^2$	
	a $\frac{3}{4} \times \frac{1}{5}$ = $\frac{3 \times 1}{4 \times 5}$ = $\frac{3}{20}$	b $\left(\frac{3}{5}\right)^2$ = $\frac{3}{5} \times \frac{3}{5}$ = $\frac{9}{25}$	
4 Find:			• (4)2
a $\frac{3}{4} \times \frac{1}{5}$ e $(\frac{1}{2})^2$	b $\frac{2}{3} \times \frac{5}{7}$ f $(\frac{2}{3})^2$	c $(\frac{3}{4})^2$ g $\frac{2}{3} \times \frac{4}{5} \times \frac{2}{7}$	d $(\frac{4}{5})^2$ h $\frac{4}{11} \times \frac{2}{5} \times \frac{6}{7}$

Example 13 Find: $\frac{2}{3} \times$	$1\frac{4}{5}$ Self Tutor	Mixed numbers must be converted to improper fractions
$\frac{\frac{2}{3} \times 1\frac{4}{5}}{= \frac{2}{3} \times \frac{9}{5}}$	{converting to improper fraction}	before you multiply!
$-\frac{3}{3} \wedge \frac{5}{5}$ $=\frac{18}{15}$ $=\frac{18 \div 3}{15 \div 3}$	{using the rule for multiplying} {HCF = 3 }	A City
$= \frac{6}{5}$ $= 1\frac{1}{5}$	{simplifying} {converting to a mixed number}	

5 Find the following products, giving your answers in simplest form:

a $\frac{1}{2}$ of $1\frac{3}{5}$	b $\frac{1}{4} \times 3\frac{1}{3}$	$\frac{3}{5} \times 2$	d $\frac{5}{4} \times 1\frac{1}{5}$
$e \frac{1}{3} \times 2\frac{1}{2}$	f $1\frac{1}{2} \times 2\frac{1}{4}$	$(1\frac{1}{4})^2$	h $2\frac{1}{2} \times 3\frac{1}{3}$

CANCELLATION

In the questions above, some of your answers needed to be simplified. This means that in the original fractions being multiplied, there were **common factors** in the numerator of one fraction and the denominator of the other fraction.

These common factors can be **cancelled before multiplication**. This keeps the numbers smaller and easier to handle, and removes the need to simplify at the end.

Example 14					🔊 Self Tutor
Find:	a	$\frac{2}{3} \times \frac{5}{6}$		b $\frac{2}{7}$ of 210	$\frac{2}{3} \times 1\frac{1}{4}$
$a \qquad \frac{2}{3} > \\ = \frac{12}{3} > \\ = \frac{5}{9}$	< <u>5</u> < <u>5</u> & <u>3</u>		b	$\begin{aligned} & \frac{\frac{2}{7} \times 210}{= \frac{2}{7} \times \frac{240}{1}^{30}} \\ &= 60 \end{aligned}$	$ \begin{array}{c} \begin{array}{c} \frac{2}{3} \times 1\frac{1}{4} \\ = \frac{12}{3} \times \frac{5}{\cancel{4}_2} \\ = \frac{5}{6} \end{array} \end{array} $

EXERCISE 8C.2

1 Find:

a $\frac{1}{3} \times \frac{6}{7}$	b $\frac{3}{4} \times \frac{1}{6}$	c $\frac{2}{3}$ of $\frac{3}{4}$	d $\frac{1}{2}$ of $\frac{4}{3}$
$e \frac{3}{4} \times 24$	f $\frac{2}{5}$ of 30	g $\frac{1}{2} \times 4$	h $\frac{2}{3}$ of 12
$5 \times \frac{2}{3}$	$15 \times \frac{3}{5}$	$\frac{1}{7}$ of 35	$2 \times \frac{1}{4}$

- m
 $3 \times \frac{11}{3}$ n
 $1\frac{1}{4} \times 8$ o
 $\frac{4}{5}$ of 25
 p
 $20 \times \frac{3}{4}$

 q
 $\frac{5}{8} \times 24$ r
 $64 \times \frac{3}{8}$ s
 $\frac{7}{10}$ of 30
 t
 $\frac{5}{12}$ of 600
- 2 Francesca drinks $\frac{1}{4}$ of a 600 mL cola. How much does she drink?
- 3 Suzi needs 4 pieces of wood that are all $2\frac{3}{5}$ m long. What is the total length required?
- 4 Amanda eats $\frac{3}{4}$ of half a cake. What fraction of the total does she eat?
- **5** Use your calculator to evaluate:

D

RECIPROCALS

Two numbers are **reciprocals** of each other if their product is one.

For example, $\frac{2}{3}$ and $\frac{3}{2}$ are reciprocals since $\frac{2}{3} \times \frac{3}{2} = 1$.

Whole numbers have reciprocals also.

For example, 2 and $\frac{1}{2}$ are reciprocals since $2 \times \frac{1}{2} = 1$.

So, the reciprocal of a whole number is 1 divided by the number. This was the definition of reciprocal used by the Ancient Egyptians which we saw on page **153**.

More generally,
$$\frac{a}{b}$$
 and $\frac{b}{a}$ are reciprocals since $\frac{a}{b} \times \frac{b}{a} = 1$.

EXERCISE 8D

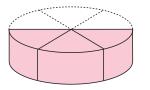
- **1** Find \Box if: **a** $\frac{2}{3} \times \Box = 1$ **b** $3 \times \Box = 1$ **c** $\Box \times \frac{4}{3} = 1$ **d** $\Box \times 5 = 1$
- **2** Find the reciprocal of: **a** $\frac{3}{4}$ **b** $\frac{5}{4}$ **c** $\frac{1}{7}$ **d** 5 **e** $2\frac{1}{3}$
- **3** Find, without showing any working:

a $\frac{3}{4} \times \frac{4}{3}$	b $3 \times \frac{2}{5} \times \frac{5}{2}$	$\frac{5}{7} \times 100 \times \frac{7}{5}$
d $\frac{3}{8} \times 87 \times \frac{8}{3}$	$\bullet 913 \times 8 \times \frac{1}{8}$	f $\frac{4}{11} \times 400 \times \frac{11}{4}$

DIVIDING FRACTIONS

To find $6 \div 2$ we ask the question: How many twos are there in six?

The answer is 3, so $6 \div 2 = 3$.


We can divide fractions in the same way.

For example, $3 \div \frac{1}{2}$ may be interpreted: *How many halves are there in 3*?

so $3 \div \frac{1}{2} = 6.$

The answer is clearly 6,

However, we know that $3 \times 2 = 6$ to multiplying by its *reciprocal*, 2.

Now consider dividing half a cheese equally between 3 people.

also, which suggests that dividing by $\frac{1}{2}$ is equivalent

Each person would get $\frac{1}{6}$ of the whole, so $\frac{1}{2} \div 3 = \frac{1}{6}$ But $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ also.

This also suggests that dividing by a number is equivalent to multiplying by its reciprocal.

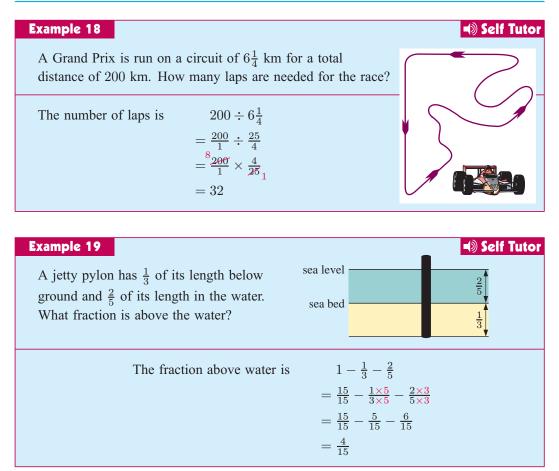
RULE FOR DIVIDING FRACTIONS

To divide by a number, we multiply by its reciprocal.

Example 15	Self Tutor
Find:	
a $\frac{2}{3} \div \frac{5}{7}$	b $\frac{3}{4} \div 5$
a $\frac{2}{3} \div \frac{5}{7}$	
	{multiplying by the reciprocal}
$=\frac{14}{15}$	
b $\frac{3}{4} \div 5$	
$=\frac{3}{4}\div\frac{5}{1}$	
$=\frac{3}{4}\times\frac{1}{5}$	
$=\frac{3}{20}$	

EXERCISE 8E			
1 Find:			
a $\frac{3}{4} \div \frac{2}{3}$	b $\frac{1}{3} \div \frac{2}{3}$	$\frac{1}{4} \div \frac{1}{2}$	d $\frac{1}{2} \div \frac{1}{3}$
e $\frac{1}{2} \div 2$	f $\frac{2}{3} \div 4$	g $\frac{1}{2} \div 3$	h $\frac{1}{5} \div 2$
$6 \div \frac{2}{3}$	j $1 \div \frac{1}{4}$	k $10 \div \frac{1}{7}$	$\frac{1}{7} \div 10$
m $3 \div \frac{1}{10}$	n $\frac{1}{10} \div 3$	• $\frac{1}{5} \div 100$	p $100 \div \frac{1}{5}$
Example 16			Self Tutor
Find: a $\frac{1}{4} \div 1\frac{2}{3}$	b $1\frac{3}{4} \div 2$	$\frac{1}{2}$	
a $\frac{1}{4} \div 1\frac{2}{3}$	b $1\frac{3}{4} \div 2\frac{1}{2}$		
$=\frac{1}{4}\div\frac{5}{3}$	$=rac{7}{4} \div rac{5}{2}$	{converting to an impro	per fraction}
$=\frac{1}{4}\times\frac{3}{5}$	$=\frac{7}{4}\times\frac{2}{5}^{1}$	{multiplying by the reci	procal and cancel}
$=\frac{3}{20}$	$=\frac{7}{10}$		
2 Find:			
	b $1\frac{2}{3} \div 2\frac{1}{2}$	$2\frac{1}{2} \div 1\frac{1}{3}$	d $3\frac{1}{5} \div 1\frac{1}{2}$
0 0	f $3\frac{3}{4} \div \frac{7}{12}$	2 0	h $\frac{1}{5} \div 2\frac{1}{3}$
$\overline{\mathbf{v}}$ $1\overline{2} \div 3\overline{5}$	$5\overline{4} \cdot \overline{12}$	$2\overline{12} \cdot \overline{4}$	$\overline{5} - 2\overline{3}$

Roger takes ¹/₅ of an hour to jog around the park.
 How many laps of the park can he complete in 1¹/₂ hours?


4 Kylie's stride length is $1\frac{1}{3}$ m. How many strides does it take her to walk 24 m?

PROBLEM SOLVING

Many realistic problems involve fractions in their solution.

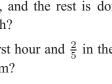
If the answer involves a fraction, give your answer in **simplest form** by *cancelling any common factors* from the numerator and denominator.

Example 17		Self Tutor
Sally's sister gave her $\frac{2}{3}$ of a p fraction of the original pie did		e $\frac{1}{4}$ of this amount to her daughter. What receive?
She received	$\frac{\frac{1}{4} \text{ of } \frac{2}{3}}{\frac{1}{2}4} \times \frac{2}{3}^{1}}$ $= \frac{1}{6}$	{of is replaced by \times }

EXERCISE 8F

- 1 Find the sum of $\frac{2}{3}$ and $\frac{3}{4}$.
- 2 Find $\frac{7}{12}$ of my investment of €180 000.
- 3 What number must $\frac{3}{4}$ be multiplied by to get an answer of 15? **Hint:** Find $15 \div \frac{3}{4}$.
- 4 By how much does $\frac{4}{5}$ exceed $\frac{7}{12}$?
- **5** In a pig pen containing 36 piglets, 16 are female. What fraction are male?
- 6 Which is the better score in a mathematics test, 17 out of 20 or 21 out of 25?
- 7 Find $\frac{2}{5}$ of £245.
- 8 How many $2\frac{1}{3}$ m lengths of rope can be cut from a rope of length 21 m?
- 9 Five pieces of material are required to make some curtains, each of length $3\frac{3}{4}$ m. Find the total length required.
- **10** On consecutive days you eat $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ of a lasagne.
 - a What fraction has been eaten? b What fraction remains?
- **11** What is the difference between $\frac{3}{7}$ and $\frac{2}{5}$?

- 12 $\frac{2}{5}$ of a cake remains and is shared equally by 4 children. What fraction of the original cake does each child get?
- **13** A race track is $3\frac{3}{4}$ km long. How many circuits are needed to complete a 100 km race?
- 14 Abel leaves $\frac{1}{3}$ of his money to his son, $\frac{3}{8}$ of it to his wife, and the rest is donated to fund cancer research. What fraction is left to cancer research?
- **15** A marathon swimmer swims $\frac{3}{7}$ of the race distance in the first hour and $\frac{2}{5}$ in the second hour. What fraction of the race has the swimmer left to swim?
- 16 If I used $\frac{3}{5}$ of a 4 litre can of petrol and $\frac{3}{4}$ of a 10 litre can, how much petrol did I use altogether?
- 17 A man has \$480 to take home each week. He banks $\frac{1}{8}$ of it, gives $\frac{1}{3}$ of it to his wife, and pays \$100 rent out of what remains. How much of his weekly pay is left?
- **18** Joel owns $\frac{2}{3}$ of a business and Pam owns $\frac{1}{4}$. Fred owns the remainder.
 - a What fraction does Fred own?
 - **b** If Joel and Pam are to have equal shares, what fraction of the business must Joel give to Pam?
- 19 As many $\frac{3}{5}$ m lengths as possible are cut from a 16 m length of rope. What length remains?


KEY WORDS USED IN THIS CHAPTER

- common factor
- equal fractions
- lowest common denominator
- numerator

- denominator
- improper fraction
- mixed number
- reciprocal

REVIEW SET 8A

- **1** a Find $2 + \frac{3}{9} + \frac{5}{9}$ without showing any working.
 - **b** Add $4\frac{3}{8}$ and $2\frac{3}{4}$.
 - Use a calculator to find $\frac{13}{19} + \frac{7}{11}$.
 - **d** State the reciprocal of $\frac{2}{3}$.
 - e Simplify $(1\frac{1}{3})^2$.
 - f If $\Box \times \frac{7}{11} = 1$, find \Box .
 - **g** Show using a diagram how to obtain $\frac{2}{3}$ of $\frac{3}{5}$.
 - **h** Find $\frac{1}{3} \div 2\frac{1}{2}$.
- **2** Find: **a** $\frac{3}{8} + \frac{2}{3}$ **b** $\frac{5}{6} + 1\frac{3}{4}$

c $\frac{3}{4} - \frac{3}{8} + \frac{5}{12}$

- **3** Find:
 - **a** $2\frac{1}{4} \times 1\frac{3}{4}$ **b** $2\frac{3}{4} \div 1\frac{1}{4}$

c
$$\frac{7}{8}$$
 of 56

- 4 Find without any working:
 - **a** $\frac{5}{4} \times \frac{4}{5}$ **b** $126 \times \frac{3}{8} \times \frac{8}{3}$
- **5** Solve the following problems:
 - **a** Twelve pieces of wire mesh, each $4\frac{2}{3}$ metres long, are required to go around a tennis court. Find the total length to be purchased.
 - **b** An athlete runs $\frac{2}{5}$ of a race in the first hour and $\frac{1}{3}$ in the second hour.

What fraction of the race does he have left to run?

• Jon bought 27 m of metal piping and cut it into $\frac{3}{4}$ m lengths.

How many lengths did he obtain?

- 6 If a greengrocer sells $\frac{2}{3}$ of his apples on Monday and $\frac{1}{2}$ of the remainder on Tuesday, what fraction of the apples are still unsold?
- **7** Simplify:
 - **a** $2\frac{5}{8} 1\frac{3}{4}$ **b** $3\frac{1}{2} + 5\frac{3}{4}$ **c** $\frac{3}{5} \times 15$

REVIEW SET 8B

1 a Find $3 + \frac{2}{7} + \frac{4}{7}$ without showing any working.

- **b** Use a calculator to find $\frac{4}{7} + \frac{11}{16}$.
- **c** Find $5 1\frac{1}{3}$.
- **d** Use a diagram to find $\frac{1}{3}$ of $\frac{2}{5}$.
- e Find \Box if $\frac{8}{9} \times \Box = 1$.
- **f** Find $\frac{2}{5} \times 37 \times \frac{5}{2}$ without showing any working.
- **g** Find $2\frac{3}{4} \div \frac{5}{12}$.
- **h** What is the difference between $\frac{2}{9}$ and $\frac{4}{7}$?
- **2** Find:

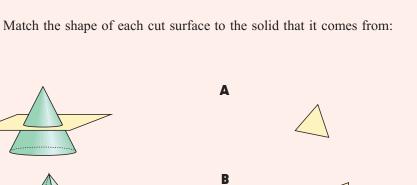
	a $2\frac{2}{3} - \frac{3}{4}$	b	$3\frac{1}{3} + 1\frac{3}{8}$	c	$\frac{3}{4} - \frac{2}{5}$
3	Find:				
	a $2\frac{1}{2} \times 3\frac{1}{2} \times \frac{4}{7}$	b	$5\frac{1}{3} \div 1\frac{1}{3}$	c	$3 \div \frac{3}{4}$
4	Find:				
	a $\frac{7}{12}$ of 8400	b	$8-5\frac{2}{3}$		

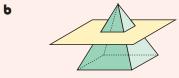
- **5** Find:
 - **a** $\frac{4}{5} \times \frac{1}{2} \times 2\frac{1}{2}$ **b** $\frac{5}{8}$ of 400
- c $(3\frac{1}{2})^2$

- **6** Solve the following problems:
 - **a** How many $3\frac{1}{2}$ m lengths of rope can be cut from a length of 35 m?
 - **b** I give $\frac{5}{8}$ of my fortune to my wife. If she divides this amount equally between our six children, what fraction of my fortune will each child receive?
 - A cyclist completes $\frac{2}{5}$ of her training ride in the first hour and $\frac{3}{7}$ in the second hour. What fraction of her ride still remains?
- **7** Find:

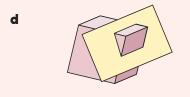
a
$$\frac{3}{4} + \frac{1}{8} - \frac{1}{2}$$
 b $3\frac{1}{4} \div 1\frac{1}{3}$

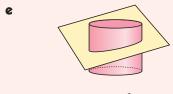
- Solve the following problems: 8
 - **a** A race track is $2\frac{1}{4}$ km long. How many laps are needed to complete a 90 km race?
 - **b** Davinia Liew earned \$45000 last year. She lost $\frac{1}{3}$ of the amount in tax and $\frac{2}{5}$ of the remainder was needed to pay her home loan. How much did Davinia have left?

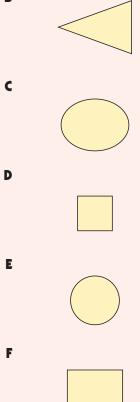




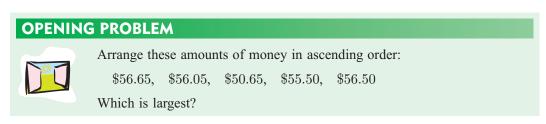



ACTIVITY


a



CUTTING THROUGH SOLIDS


Decimals

A Constructing decimal numbers

9

- **B** Representing decimal numbers
- C Decimal currency
- **D** Using a number line
- E Ordering decimals
- F Rounding decimal numbers
- **G** Converting decimals to fractions
- H Converting fractions to decimals

DECIMAL NUMBERS ARE EVERYWHERE

A

CONSTRUCTING DECIMAL NUMBERS

We have seen previously how whole numbers are constructed by placing digits in different **place values**.

For example, 384 has place value table

hundreds c
tens
$$\infty$$

units h

since $384 = 3 \times 100 + 8 \times 10 + 4 \times 1$.

Numbers like 0.37 and 4.569 are called **decimal numbers**. We use them to represent numbers *between* the whole numbers. The **decimal point** or dot separates the whole number part to the left of the dot, from the fractional part to the right of the dot.

If the whole number part is zero, we write a zero in front of the decimal point. So, we write 0.37 instead of .37.

0.37 is a short way of writing $\frac{3}{10} + \frac{7}{100}$, and 4.569 is really $4 + \frac{5}{10} + \frac{6}{100} + \frac{9}{1000}$ So, the **place value** table for 0.37 and 4.569 is:

		Decimal	number	· units		tenths	hundredths	thousandths	Expanded j	form]
		0.3	7	0		3	7		$\frac{3}{10} + \frac{7}{10}$	0	
		4.56	69	4		5	6	9	$4 + \frac{5}{10} + \frac{6}{100}$		
Example 1 Self Tutor Express in written or oral form: Oral form a 0.9 b 3.06 c 11.407 a 0.9 is 'zero point nine'. means how you would say it. b 3.06 is 'three point zero six'. or 11.407 c 11.407 is 'eleven point four zero seven'. or 11.407											
		2 a place value undredths	table:		b	23 -	$+\frac{4}{10}$	+ -	4)) Self Tuto		
a	-	$\frac{Number}{hundredths} + \frac{4}{10} + \frac{9}{1000}$	tens 7		0 tenths	0 4 hundredths	thousandths	Wi	ritten Numeral 0.07 23.409		

EXERCISE 9A

1 Express the following in written or oral form:

a	0.6	b	0.45	C	0.908	d	8.3	e	6.08
f	96.02	9	5.864	h	34.003	i,	7.581	j	60.264

- **2** Convert into decimal form:
 - a eight point three seven
 - nine point zero zero four
- **b** twenty one point zero five
- d thirty eight point two zero six

3 Write in a place value table and then as a decimal number:

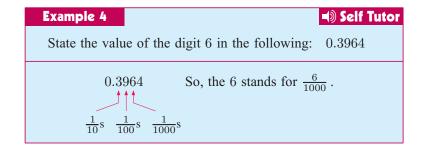
Write in a place value table and then as a decimal number:
 PRINTABLE WORKSHEET

 a
$$\frac{8}{10} + \frac{3}{100}$$
 image: state of the state

- Write in a place value table and then as a decimal number: 4
 - **a** 8 tenths

6

- 3 thousandths Ь
- 7 tens and 8 tenths C
- d 9 thousands and 2 thousandths
- 2 hundreds, 9 units and 4 hundredths e
- 8 thousands, 4 tenths and 2 thousandths f
- 5 thousands, 20 units and 3 tenths 9
- **h** 9 hundreds, 8 tens and 34 thousandths
- 6 tens, 8 tenths and 9 hundredths
- 36 units and 42 hundredths


If a word for a digit ends in ths then the number follows the decimal point.

Example 3	Self Tutor
Express 5.706 in expanded	form:
$5.706 = 5 + \frac{7}{10} + \frac{0}{100}$ $= 5 + \frac{7}{10} + \frac{6}{1000}$	

5 Express the following in expanded form:

a	5.4	Ь	14.9	c	2.03		d 32.86
e	2.264	f	1.308	9	3.002		h 0.952
- i	4.024	j	2.973	k	20.816		7.777
m	9.008	n	154.45	1 •	808.808		p 0.064
Wri	te the following in d	leci	imal for	m:			
a	$\frac{6}{10}$		Ь	$\frac{9}{100}$		c	$\frac{4}{10} + \frac{3}{100}$
d	$\frac{8}{10} + \frac{9}{1000}$		e	$\frac{7}{1000}$		f	$\frac{5}{100} + \frac{2}{1000}$
9	$\frac{5}{10} + \frac{6}{100} + \frac{8}{1000}$		h	$\frac{2}{1000} + \frac{3}{10000}$		i	$\frac{9}{100} + \frac{4}{1000}$
j	$\frac{1}{10} + \frac{1}{1000}$		k	$4 + \frac{3}{10} + \frac{8}{100}$	$+\frac{7}{1000}$	I	$\frac{3}{100} + \frac{8}{10000}$
m	$\frac{3}{10} + \frac{3}{1000} + \frac{3}{10000}$		n	$\frac{2}{10} + \frac{5}{100000}$		0	$5 + \frac{5}{10} + \frac{5}{100} + \frac{5}{1000}$

7 State the value of the digit 3 in the following:

a	4325.9	Ь	6.374	C	32.098	d	150.953
e	43.4444	f	82.7384	9	24.8403	h	3874.941

8 State the value of the digit 5 in the following:

a 18.945	b 596.08	c 4.5972	d 94.8573
e 75 948.264	f 275.183	g 358 946.843	h 0.0005

Example 5	Self Tutor
Write $\frac{39}{1000}$ in decimal form.	$\frac{39}{1000} = \frac{30}{1000} + \frac{9}{1000}$ $= \frac{3}{100} + \frac{9}{1000}$ $= 0.03 + 0.009$ $= 0.039$

9 Write in decimal form:

a	$\frac{23}{100}$	b	$\frac{79}{100}$	c	$\frac{30}{100}$	d	$\frac{117}{1000}$	e	$\frac{469}{100}$
f	$\frac{703}{1000}$	9	$\frac{600}{1000}$	h	$\frac{540}{1000}$	i.	$\frac{4672}{10000}$	j	$\frac{3600}{10000}$

- **10** Convert the following to decimal form:
 - a seventeen and four hundred and sixty five thousandths
 - **b** twelve and ninety six thousandths
 - c three and six hundred and ninety four thousandths
 - d four and twenty two hundredths
 - e 9 hundreds, 8 tens and 34 thousandths
 - f 36 units and 42 hundredths

11 State the value of the digit 2 in the following:

B REPRESENTING DECIMAL NUMBERS

DECIMAL GRIDS

Decimals can also be represented on 2-dimensional grids.

Suppose this grid represents one whole unit.

This shaded part is $\frac{27}{100}$ or 0.27 of the whole unit.

This shaded part is $\frac{4}{10}$ or $\frac{40}{100}$ of the whole unit.

This is 0.4 or 0.40.

Example 6	Self Tutor
What decimal number is represented by:	units0tenths·hundredths9

MULTI ATTRIBUTE BLOCKS

Multi Attribute Blocks or MABs are a practical 3-dimensional way to represent decimals.

represents a unit or whole amount.

represents a tenth or 0.1 of the whole. represents a hundredth or 0.01 of the whole.

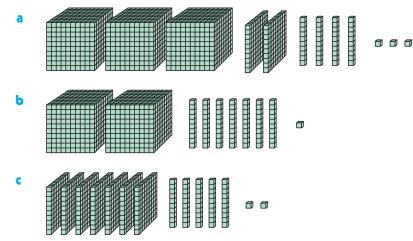
and \Box represents a thousandth of 0.001 of the whole.

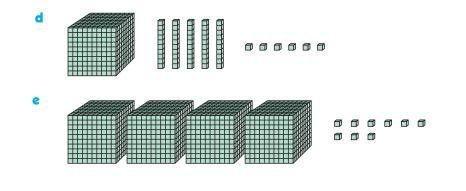
The smaller the decimal number, the more zeros there are after the decimal point.

1 Write the decimal that represents the shaded area:

b

_	-	_			-			
-	-	-	_	_	-		Н	
-		-					Η	
							H	


a


_	_	 _			

d

Write the decimal value represented by the MABs if the largest block represents one 2 unit:

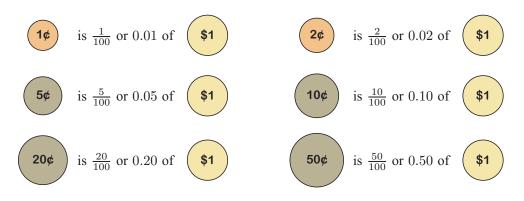
C

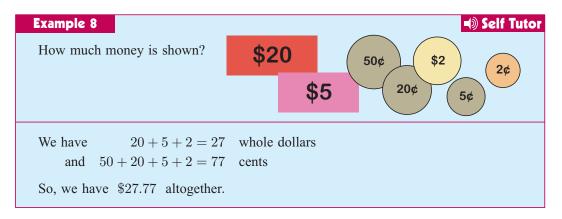
DECIMAL CURRENCY

The decimal point

separates whole numbers from the fractions.

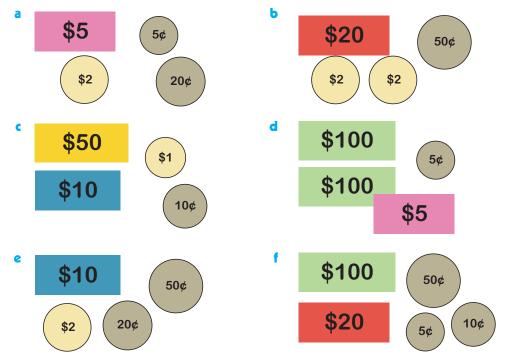
Decimal currency is one of the most practical ways to bring meaning to decimals.


When talking about and using money we are also using decimal numbers.


For example: $\notin 27.35$ is $\notin 27$ plus $\frac{35}{100}$ of one \notin .

Suppose a country has the following coins and banknotes:

The currency is called **decimal** because it uses the base 10 system.



Example 9		Self Tutor
Using one euro (€) as the unit, change t	to a dec	imal value:
a seven euros, 45 euro cents	b	275 euro cents
a €7.45	ь	275 euro cents
		= 200 euro cents $+ 75$ euro cents
		= 62 + 60.75
		=€2.75

EXERCISE 9C

1 Change these currency values to decimals of one dollar:

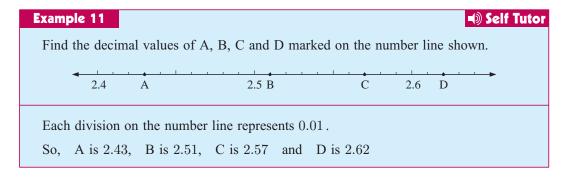
174 DECIMALS (Chapter 9)

- 2 Write each amount as dollars using a decimal point:
 - a 4 dollars 47 cents
 - c seven dollars fifty five cents
 - 150 dollars
 - **9** 85 dollars 5 cents

- b 15 dollars 97 cents
- d 36 dollars
- f thirty two dollars eighty cents
- h 30 dollars 3 cents
- **a** Change these amounts to decimals using the euro as the unit:
 - i 35 cents ii 5 cents
 - 405 cents
 487 cents
- **iv** 3000 cents
- ts vi 295 cents
- vii 3875 cents
- viii $638\,475$ cents
- Starting with the top row, what is the sum of each row above in euros?
- What is the sum of each column above in euros?

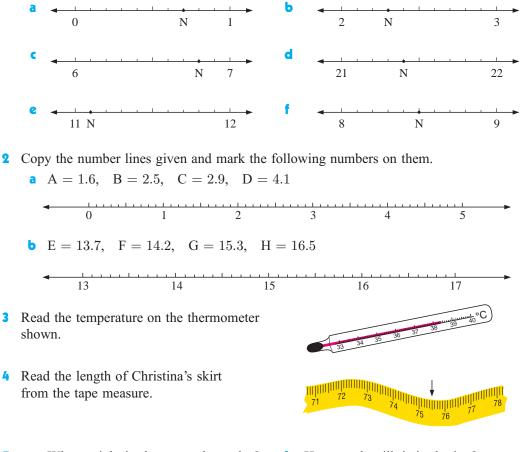
Make sure the amounts have their decimal point exactly below the other.

USING A NUMBER LINE


Just as whole numbers can be marked on a number line, we can do the same with decimal numbers. Consider the following number line where each whole number shown has ten equal divisions.

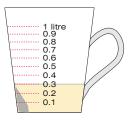
Each division on this number line represents $\frac{1}{10}$ or 0.1 0.3 0.1 0 0.2 0.4 0.6 2 0.8 1 1.2 1.4 1.6 1.8 2.2 2.4 Example 10 Self Tutor Find the decimal values of A, B, C and D marked on the number line shown. 0 0.5 А 1 B 1.5 2 C 2.5 3 D Each division on the number line represents 0.1 So, A is 0.7, B is 1.3, C is 2.1 and D is 3.2

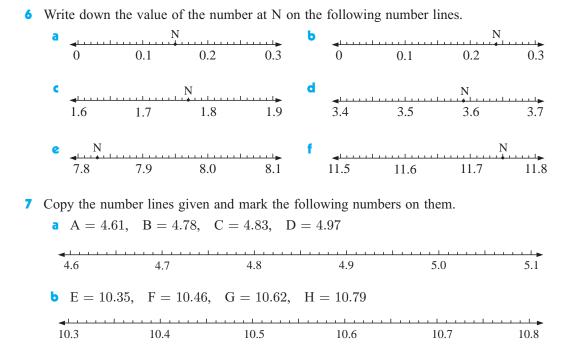
We can divide our number line into smaller parts than tenths.


Suppose we divide each of the parts which represent $\frac{1}{10}$ into 10 equal parts. Each unit is now divided into 100 equal parts and each division is $\frac{1}{100}$ or 0.01 of the unit.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

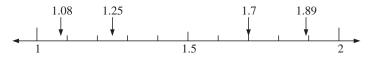
EXERCISE 9D


1 Write down the value of the number at N on the following number lines.



5 a What weight is shown on the scales?

b How much milk is in the jug?



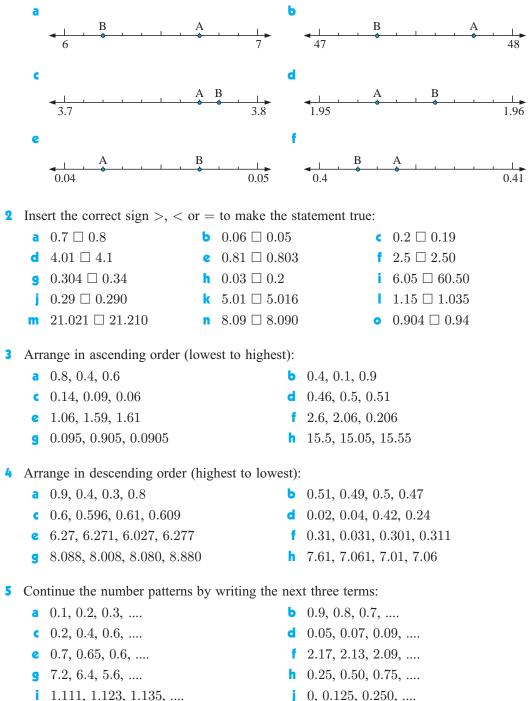
ORDERING DECIMALS

We can use a number line to help compare the sizes of decimal numbers.

For example, consider the following number line:

As we go from left to right, the numbers are increasing.

So, 1.08 < 1.25 < 1.7 < 1.89


To compare decimal numbers without having to construct a number line, we place zeros on the end so each number has the same number of decimal places.

We can do this because adding zeros on the end does not affect the place values of the other digits.

Example 12	🔊 Self Tutor
Put the correct sign $>$, $<$ or $=$, in the box to	o make the statement true:
a 0.305 □ 0.35	b 0.88 □ 0.808
We start by writing the numbers with the san	ne number of decimal places.
a 0.305 🗆 0.350	b 0.880 □ 0.808
So, $0.305 < 0.350$	So, $0.880 > 0.808$

EXERCISE 9E

 Write down the values of the numbers A and B on the following number line, and determine whether A > B or A < B:

F

ROUNDING DECIMAL NUMBERS

We are often given measurements as decimal numbers. For example, my bathroom scales tell me I weigh 59.4 kg. In reality I do not weigh *exactly* 59.4 kg, but this is an *approximation* of my actual weight. Measuring my weight to greater accuracy is not important.

We round off decimal numbers in the same way we do whole numbers. We look at values on the number line either side of our number, and work out which is closer.

For example, consider 1.23. 1.2 1.23 1.3

1.23 is closer to 1.2 than it is to 1.3, so we round down.

1.23 is approximately 1.2.

Consider	5716		Likewise,	0.5716	
	≈ 5720	(to the nearest 10)		pprox 0.572	(to 3 decimal places)
	≈ 5700	(to the nearest 100)		pprox 0.57	(to 2 decimal places)
	≈ 6000	(to the nearest 1000)		≈ 0.6	(to 1 decimal place)

RULES FOR ROUNDING OFF DECIMAL NUMBERS

- If the digit after the one being rounded is less than 5, i.e., 0, 1, 2, 3 or 4, then we round down.
- If the digit after the one being rounded is **5 or more**, i.e., 5, 6, 7, 8 or 9, then we round **up**.

Example 1	3 Self Tutor
Round:	 a 3.26 to 1 decimal place b 5.273 to 2 decimal places c 4.985 to 2 decimal places
So,	is closer to 3.3 than to 3.2, so we round up. $3.26 \approx 3.3$.
	is closer to 5.27 than to 5.28, so we round down. $5.273 \approx 5.27$.
	lies halfway between 4.98 and 4.99, so we round up. $4.985 \approx 4.99$.

EXERCISE 9F

Write these nun	nbers correct to 1	decimal place:		
a 2.43	b 3.57	c 4.92	d 6.38	e 4.275
Write these nun	nbers correct to 2	decimal places:		
a 4.236	b 2.731	c 5.625	d 4.377	€ 6.5237
	a 2.43 Write these num	a 2.43 b 3.57 Write these numbers correct to 2	Write these numbers correct to 2 decimal places:	a 2.43 b 3.57 c 4.92 d 6.38 Write these numbers correct to 2 decimal places:

- **3** Write 0.486 correct to: a 1 decimal place
 - **b** 2 decimal places.
- 4 Write 3.789 correct to:
 - **a** 1 decimal place
- 5 Write 0.18375 correct to:
 - **a** 1 decimal place
 - **d** 4 decimal places.

C

- **6** Find decimal approximations for:
 - **a** 3.87 to the nearest tenth
 - 6.09 to one decimal place
 - \mathbf{c} 2.946 to 2 decimal places

- **b** 2 decimal places.
- **b** 2 decimal places **c** 3 decimal places
 - **b** 4.3 to the nearest integer
 - **d** 0.4617 to 3 decimal places
 - f 0.17561 to 4 decimal places.

CONVERTING DECIMALS TO FRACTIONS

Decimal numbers can be easily written as fractions with powers of 10 as their denominators.

Example 14		Self Tutor
Write as a fraction	or as a mixed number:	
a 0.7	b 0.79	c 2.013
a 0.7	b 0.79	c 2.013
$=\frac{7}{10}$	$=\frac{79}{100}$	$=2+\frac{13}{1000}$
		$=2\frac{13}{1000}$

We have seen previously how some fractions can be converted to simplest form or lowest terms by dividing both the numerator and denominator by their highest common factor.

Example 15		Self Tutor
Write as a fraction in	simplest form:	
a 0.4	b 0.72	c 0.275
a 0.4	b 0.72	c 0.275
$=\frac{4}{10}$	$=\frac{72}{100}$	$=\frac{275}{1000}$
$=\frac{4\div 2}{10\div 2}$	$=\frac{72\div4}{100\div4}$	$=\frac{275\div25}{100\div25}$
$=\frac{2}{5}$	$=\frac{18}{25}$	$=\frac{11}{40}$

EXERCISE 9G

2

1 Write the following as fractions in simplest form:

	e 1		
a 0.1	b 0.7	c 1.5	d 2.2
e 3.9	f 4.6	g 0.19	h 1.25
0.18	0.65	k 0.05	0.07
m 2.75	n 1.025	• 0.04	p 2.375
Write the foll	lowing as fractions in simpl	est form:	
a 0.8	b 0.88	c 0.888	d 3.5
€ 0.49	f 0.25	9 5.06	h 3.32

I.	0.085	j	3.72	k	1.096	Т	4.56
m	0.064	n	0.625	0	0.115	p	2.22

Example 16		Self Tutor
Write as a fraction:	a 0.45 kg	b 3.40 m
	a 0.45 kg	b 3.40 m
	$=rac{45}{100}$ kg	$= 3 \text{ m} + \frac{40 \div 20}{100 \div 20} \text{ m}$
	$=\frac{45\div5}{100\div5}$ kg	$= 3 m + \frac{2}{5} m$
	$=\frac{9}{20}$ kg	$=3\frac{2}{5}$ m

3 Write these amounts as fractions or mixed numbers in simplest form:

a 0.20 kg	b 0.25 hours	c 0.85 kg	d 1.50 km
ℓ 1.75 g	f 2.74 m	9 4.88 tonnes	h 6.28 L
€1.25	€ 1.76	k €3.65	€4.21
m €8.40	n €5.125	• £3.08	p £4.11
q £18.88	f £52.25		

Н

CONVERTING FRACTIONS TO DECIMALS

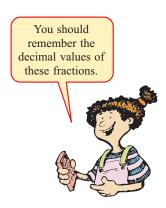
We have already seen that it is easy to convert fractions with denominators 10, 100, 1000, and so on into decimal numbers.

Sometimes we can make the denominator a power of 10 by multiplying the numerator and denominator by the same numbers.

For example,

$$\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10} = 0.6$$
$$\frac{7}{25} = \frac{7 \times 4}{25 \times 4} = \frac{28}{100} = 0.28$$

We need to multiply the numerator and denominator by the same amount so we do not change the value of the fraction.

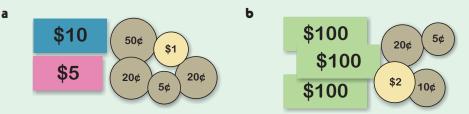

Example 17		Self Tutor
Convert to decimal	numbers:	
a <u>3</u>	b $\frac{7}{20}$	$\frac{23}{125}$
a $\frac{3}{4}$	b $\frac{7}{20}$	c $\frac{23}{125}$
$=\frac{3\times25}{4\times25}$	$=\frac{7\times5}{20\times5}$	$=\frac{23\times 8}{125\times 8}$
$=\frac{75}{100}$	$=\frac{35}{100}$	$=\frac{184}{1000}$
= 0.75	= 0.35	= 0.184

EXERCISE 9H

1 By what whole number would you multiply the following, to obtain a power of 10?

	-				-			-		-		
	a	2	b	5	c	4	d	8	e	20	f	25
9	9	50	h	125	i,	40	j	250	k	500	I	400
2 C	on	vert to deci	imal	l numbers:								
i	a	$\frac{3}{20}$	b	$\frac{17}{20}$	c	$\frac{9}{25}$	d	$\frac{21}{25}$	e	$1\frac{1}{2}$	f	$2\frac{1}{5}$
9	9	$\frac{13}{50}$	h	$\frac{138}{500}$	i	$\frac{6}{250}$	j	$\frac{91}{250}$	k	$\frac{1}{4}$	I	$\frac{9}{125}$
n	n	$\frac{68}{125}$	n	$\frac{117}{125}$	0	$\frac{11}{500}$	P	$\frac{51}{250}$	q	$\frac{3}{8}$	r	$\frac{71}{400}$

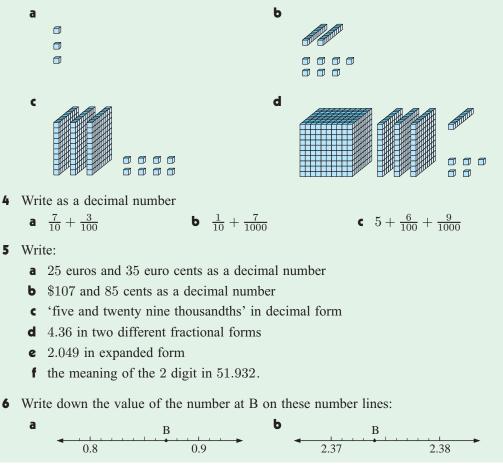
- **3** Copy and complete these conversions to decimals:
 - a $\frac{1}{2} = \dots$ b $\frac{1}{5} = \dots$, $\frac{2}{5} = \dots$, $\frac{3}{5} = \dots$, $\frac{4}{5} = \dots$, c $\frac{1}{4} = \dots$, $\frac{2}{4} = \dots$, $\frac{3}{4} = \dots$ d $\frac{1}{8} = \dots$, $\frac{2}{8} = \dots$, $\frac{3}{8} = \dots$, $\frac{4}{8} = \dots$, $\frac{5}{8} = \dots$, $\frac{6}{8} = \dots$, $\frac{7}{8} = \dots$

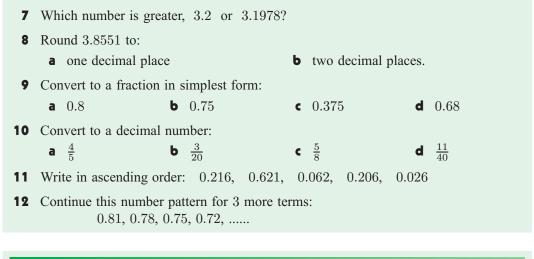

KEY WORDS USED IN THIS CHAPTER

- decimal
- fraction
- mixed numbers
- simplest form
- decimal currency
- highest common factor
- place value
- tenth

- decimal point
- hundredth
- round off
- thousandth

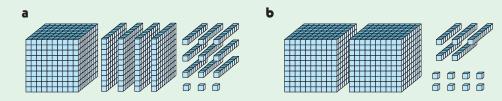
REVIEW SET 9A


1 If the dollar represents the unit, what are the decimal values of the following?



2 If each 10×10 grid represents one unit, what decimals are represented by the following grids?

_																
a											D					


3 If \square represents one thousandth, write the decimal numbers for:

REVIEW SET 9B

a

2 If each 10×10 grid represents one unit, what decimal numbers are represented by:

b

					Γ
					Г
					Г

										L
										Г
										Γ
										Γ
										F
										Γ
										Γ
										F

3 Write as a decimal number:

a $\frac{4}{10} + \frac{4}{100}$

b $\frac{3}{100} + \frac{3}{1000}$ **c** $1 + \frac{2}{1000}$ **d** $4 + \frac{1}{10} + \frac{5}{1000}$

- a Convert 'sixteen point five seven four' to decimal form. 4
 - **b** Write 0.921 in two different non-decimal forms.
 - State the value of the digit 3 in 41.039.

d Write $\pounds 12$ and 35 pence as a decimal.

5 Write down the value of the number at A on the following number lines:

- **6** Write the following decimal numbers in descending order: 0.444, 4.04, 4.44, 4.044, 4.404
- 7 Continue the number pattern by writing the next three terms: 0.3, 0.7, 1.1,

 8
 Which number is smaller, 2.3275 or 2.3199?

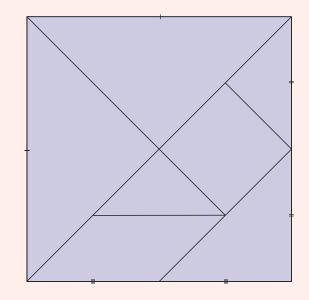
 9
 Round 3.995 to: a 1 decimal place b 2 decimal places

 10
 Convert to a fraction in simplest form: a 0.62 b 0.45 c 0.875 d 10.4

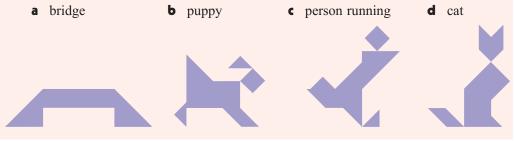
 11
 Convert to a decimal number: a $\frac{3}{50}$ b $1\frac{1}{5}$ c $\frac{17}{25}$ d $\frac{1}{8}$

 12
 Copy and complete: $\frac{1}{8} = 0.125$, $\frac{2}{8} = \dots$, $\frac{3}{8} = \dots$, $\frac{4}{8} = \dots$, $\frac{5}{8} = \dots$.

ACTIVITY


PRINTABLE TEMPLATE

TANGRAMS



What to do:

1 On a piece of card mark out a 20 cm by 20 cm square. Then copy the following lines onto it and cut along each line. You should have seven different pieces.

2 Each of the following shapes can be made using all seven pieces of your tangram. See how many you can complete.

Problem solving

- A Trial and error
- B Making a list
- C Modelling or drawing a picture
- Making a table and looking for a pattern
- E Working backwards

OPENING PROBLEM

Suppose a group of people have gathered for a conference, and each person shakes hands with every other person.

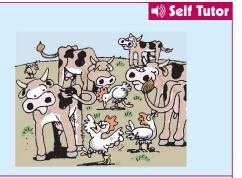
Things to think about:

- **a** How many handshakes will take place if the group consists of:
 - i 2 people
- ii 3 people
- iii 4 people iv 5 people?

- **b** Can you find a pattern in your answers to **a**?
- Can you find a rule connecting the *number of people* P with the *number of* handshakes H?
- **d** How many possible handshakes take place when all 192 representatives of the United Nations countries shake hands with each other?

You need to become familiar with a variety of problem solving techniques so you can feel confident when confronted by new problem situations.

You need to be aware that any one problem can be solved in a variety of ways. The following examples show possible problem solving techniques.


A

TRIAL AND ERROR

This is the most common method used by students at your level. It is self-explanatory in its name, but when you use trial and error you must always remember to **check** your answer.

Example 1

On a farm there are some chickens and some cows. An observer counts 19 heads and 62 feet. Assuming each creature has only one head, cows have 4 feet and chickens have 2 feet, how many chickens and how many cows are on the farm?

We first guess the number of chickens to be 5. In this case the number of cows must be 14 since 5 + 14 = 19.

With 5 chickens and 14 cows, the total number of feet is: $5 \times 2 + 14 \times 4 = 10 + 56 = 66$.

This does not equal the required 62 so another guess is needed. Since we require less feet, more chickens are needed and fewer cows.

So, we guess the number of chickens to be 7. The number of cows must be 12 since 7 + 12 = 19.

The total number of feet is: $7 \times 2 + 12 \times 4 = 62$.

This is the required number of feet, so there are 7 chickens and 12 cows on the farm.

EXERCISE 10A

Solve these problems using the trial and error method. Write your final answers in clear sentences.

- 1 Find consecutive whole numbers that add up to 51.
- **2** In a jar there are some spiders and beetles. If there are 13 creatures in total and the total number of legs is 86, how many of each creature are in the jar?
- Using the digits 2, 3, 4 and 5 in that order, and the symbols ×, -, + in any order, write a mathematical expression that equals 9. You may need to use brackets.
- 4 Hera paid for a €69 picture frame with coins she had saved. She used only €2 and €1 coins and noticed she was able to pay using the same number of each coin. How many €1 coins did she use to pay for her picture frame?
- 5 The sum on the right is not correct. Change *one* of the digits to make it correct.
- 6 If $a \times b = 24$, $b \times c = 12$ and $c \times a = 18$, find whole number values for a, b, and c.
- 7 Brothers Stephen, Kevin and Neil each own a collection of baseball cards. Kevin owns twice as many cards as Stephen, and Neil owns three times as many cards as Stephen. They own 72 cards between them. How many cards does Stephen own?
- 8 When a positive whole number is squared, the result is 90 more than the original number. Find the original number.
- 9 Jelena has three times as many brothers as sisters. Her brother Milan has two more brothers than he has sisters. How many boys and how many girls are there in the family?
- **10** Kristina is two years older than Fredrik, who is 6 years younger than Frida. Together their ages total 41 years. How old is each child?

Spiders have 8 legs.

Beetles have 6 legs.

386

 $\frac{125}{521}$

B

MAKING A LIST

Many problems involve finding the number of possibilities which satisfy a certain condition, or finding the number of possible ways to achieve a certain outcome.

As long as the number of possibilities is not too large, we can list them and then find the size of the list.

It is important to list the possibilities in a systematic order to ensure that all the possibilities are found.

How many two digit numbers contain a 7?

The two digit numbers which contain a 7 are, in order:

17, 27, 37, 47, 57, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 87, 97

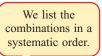
So, there are 18 two digit numbers which contain a 7.

Example 3

Example 2

Self Tutor

A captain and vice captain are to be chosen from a squad of 5 players. In how many ways can this be done?


Suppose the 5 players are A, B, C, D and E.

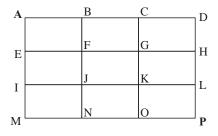
We let AB denote selecting A as the captain and B as the vice-captain.

The possible combinations are: AB, BA, AC, CA, AD, DA, AE, EA, BC, CB,

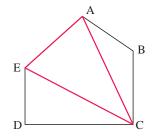
BD, DB, BE, EB, CD, DC, CE, EC, DE, ED

So, the captain and vice captain can be chosen in 20 different ways.

Self Tutor


EXERCISE 10B

Solve these problems by listing the possibilities:


- 1 How many two digit numbers contain a 1 or a 2?
- 2 As part of their Physical Education course, year 6 students must select one indoor sport and one outdoor sport from the list given. How many possible combinations of sports are there to choose from?

Indoor	Outdoor
Basketball	Tennis
Squash	Football
Netball	Rugby
	Hockey

- 3 An icecream van offers four flavours of icecream: chocolate, vanilla, strawberry, and lemon. Donna is allowed to pick two different flavours for her icecream. How many possible flavour combinations could she choose?
- 4 Alex is travelling from A to his friend Peter's house at P. How many different routes are there from A to P, assuming Alex always moves towards P?

- 5 In how many ways can four friends Amy, Beth, Christine, and Deb sit in a row if Amy and Christine insist on sitting next to each other?
- In his pocket Wei has a 5 cent coin, a 10 cent coin, a 20 cent coin and a 50 cent coin. How many different sums of money can he make using these four coins?
- 7 How many two digit numbers are there in which the tens digit is less than the ones digit?
- 8 How many triangles can be formed by joining three of the vertices of a pentagon? One such triangle is illustrated.

- 9 How many two digit numbers can be made using the digits 5, 6, 7, 8 and 9 at most once each?
- **10** Scott, Elizabeth and Richard are all trying to remember the 4 digit combinations for their school lockers.
 - **a** Scott remembers that his combination contains a 4, 5, 7 and 9, but cannot remember the order. How many possible combinations will he need to try?
 - Elizabeth remembers that her combination contains two 5s, a 7, and an 8. How many possible combinations will she need to try?
 - Richard remembers that his combination contains three 2s and a 6. How many possible combinations will he need to try?

C MODELLING OR DRAWING A PICTURE

To solve some problems it is useful to act out the problem, draw pictures, or use equipment to model the situation.

Example 4

Self Tutor

Masumi has three different coloured tops: red, green, and white. She has two different coloured skirts, yellow and pink which she can wear with them. How many different combinations of skirts and tops can she wear?

EXERCISE 10C

Solve these problems by modelling or drawing pictures.

- 1 A square table has four seats around it. In how many different ways can four people sit around the table?
- **2** Year 6 and 7 students are doing the same orienteering course. A year 6 student leaves every 6 minutes and a year 7 student leaves every 3.5 minutes. The event begins at 9 am with one student from each year group leaving together. When is the next time a student from each year level will leave together?
- 3 Minh numbered the pages of his art folder using a packet of stickers. On each sticker there was one digit from 0 to 9. He started with page 1. When he finished he noticed he had used 77 stickers. How many pages were in his art folder?
- 4 What is the largest number of pieces you can cut a round pizza into using four straight cuts?
- **5** When Eduardo and Elvira went to a basketball game they had tickets for seats 93 and 94. They saw that the seat numbers followed the pattern:

Row 3	11	12	13	14	15	16	17	18
Row 2		5	6	7	8	9	10	
Row 1			1	2	3	4		

In what row were their seats?

When Phil put 10 counters in his bag it was ¹/₃ full.
When James put 13 in his bag it was ¹/₂ full.
When Blair put 7 in his bag it was ¹/₄ full.
Who had the biggest bag?

- 7 How many squares are present in the figure alongside?
- 8 Runners A, B, C, D and E competed in a cross-country race. You are given the following details about the race:
 - E finished ahead of D, but behind C.
 - A finished ahead of B, but behind E.
 - D finished 4th.

Find the order in which the runners completed the race.

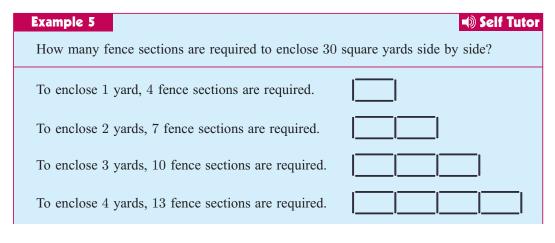
9 Lisa, Martin, Natalie, Owen, and Patel decided to paint the rooms of the house they share. The colours to be used were red, white, blue, green, and yellow. Each person was given a different colour to paint with.

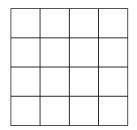
The lounge was painted by Lisa, Martin and Owen, and was painted yellow, green and blue.

The kitchen was painted by Martin and Patel, and was painted blue and white.

The bathroom was painted by Lisa and Natalie, and was painted red and yellow.

The bedroom was painted by Natalie, Owen and Patel, and was painted white, red and green.


Match each person with the colour they were using.


10 Benita needs to measure 4 litres of water for cooking pasta. However, she only has a 3 litre bowl and a 5 litre bowl, and they have no measurements on their sides. Explain how Benita can use these two bowls to measure exactly 4 litres of water.

MAKING A TABLE AND LOOKING FOR A PATTERN

A good way to solve problems which involve large numbers is to consider simpler versions of the problem using smaller numbers.

We put the results of these simpler problems into a table, and try to find a pattern. The pattern is then used to predict the answer to the original problem.

We summarise the results in a table.

Yards	1	2	3	4
Fence Sections	4	7	10	13
	+	3 +	3 +	-3

The pattern is *the number of fence sections increases by 3 for each additional yard*. We can use this pattern to continue the table up to 30 yards:

Yards	1	2	3	4	5	6	 28	29	30
Fence Sections	4	7	10	13	16	19	 85	88	91
	+	3 -	+3 +	+3 H	+3 +	-3	+	-3 +	.3

So, we require 91 fence sections to enclose 30 yards.

Alternatively, we notice that	$4 = 3 \times 1 + 1$	${for 1 yard}$
	$7 = 3 \times 2 + 1$	${for 2 yards}$
	$10 = 3 \times 3 + 1$	${for 3 yards}$
	$13 = 3 \times 4 + 1$	${for 4 yards}$
In general, the number of fen	ce sections = $3 \times$	(number of yards)

So, for 30 yards, the number of fence sections $= 3 \times 30 + 1$

= 91

Example 6

Self Tutor

+ 1

A captain and vice-captain are to be chosen from a squad of 20 players. In how many ways can this be done?

We could list the possibilities as in **Example 3**, but this would take a very long time as there are now 20 players to choose from. We will instead consider smaller cases and look for a pattern.

For 2 players A and B, there are 2 ways: AB or BA.

For 3 players A, B and C, there are 6 ways: AB, BA, AC, CA, BC, or CB.

For 4 players A, B, C and D, there are 12 ways: AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, or DC.

For 5 players we know from **Example 3** that there are 20 ways.

We summarise the results in a table.

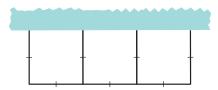
Number of Players	2	3	4	5	
Ways	2	6	12	20	
	+	4 +	6 +	8	

The pattern is each time we increase the number of players, we increase the number of ways by two more than the previous increase.

Number of Players	2	3	4	5	6	7	 18	19	20
Ways	2	6	12	20	30	42	 306	342	380
	+	4 -	+6 +	-8 +	10 +	12	+3	36 +	38

So, the captain and vice-captain can be chosen in 380 different ways.

Alternatively, notice that $2 = 2 \times 1$ {for 2 players} $6 = 3 \times 2$ {for 3 players} $12 = 4 \times 3$ {for 4 players} $20 = 5 \times 4$ {for 5 players}In general, the number of ways = (number of players) × (number of players - 1)So, for 20 players, the number of ways $= 20 \times 19$ = 380


EXERCISE 10D

Solve these problems by solving simpler problems and then looking for a pattern.

1 How many different two course meals can I make given a choice of eight main courses and 16 desserts?

Hint: Try with a choice of two mains and one dessert, then two mains and two desserts, and so on. Make a table of your findings and look for a pattern.

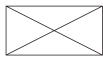
- 2 A club rugby team has five different shirt colours and four shorts colours. How many different uniforms are possible?
- **3** Fences are used to divide land into square blocks as shown. One side of each block faces the river and is unfenced. How many fence lengths are required to make 45 blocks?

- 4 How many top and bottom rails would be needed to complete a straight fence with 55 posts?
- 5 How many 27 digit numbers have digits which sum to 2?
- A rectangular piece of paper is folded in half 7 times. When the paper is unfolded, how many sections will it be divided into?
- 7 How many diagonals does a 12-sided polygon have? Remember that a diagonal is a straight line that joins two vertices of a polygon but is not a side of the polygon.

For example:

A rectangle has 2 diagonals.

A pentagon has 5 diagonals.


- 8 The pizza problem in **Exercise 10C** question 4 can also be solved by this method of patterns. Use this method to find how many pieces you can cut a pizza into with ten straight cuts. Each piece does not have to be the same size!
- 9 Answer the questions in the **Opening Problem** on page **186**.

194 PROBLEM SOLVING (Chapter 10)

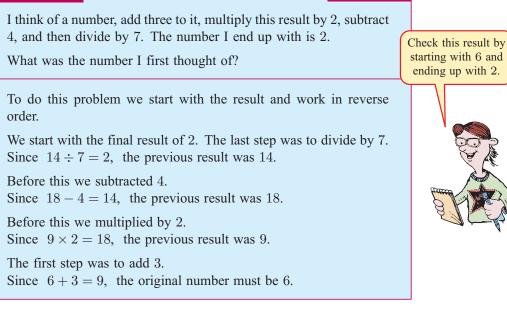
10 a How many lines are required to join each vertex of a 30-sided polygon to every other vertex?

For example:

For a triangle 3 lines are needed.

For a rectangle 6 lines are needed.

b Explain the connection between the problem in part **a** and the **Opening Problem**.


E

WORKING BACKWARDS

In many problems we are given the final result, and need to work out the initial situation. In cases like this we need to work backwards through the problem.

Example 7

Self Tutor

Example 8

Self Tutor

Sally cycles $\frac{1}{3}$ of the way to school and then is driven the remaining 6 km by a friend's family. How far does she live from school?

She cycles $\frac{1}{3}$ and so is driven $\frac{2}{3}$ of the way.

- \therefore 6 km is $\frac{2}{3}$ of the way
- \therefore 3 km is $\frac{1}{3}$ of the way.
- \therefore 9 km is all of the way.

Sally lives 9 km from school.

EXERCISE 10E

Solve these problems using the working backwards method.

- 1 The number of rabbits in my rabbit farm doubles each month. At the end of last month there were 24000 rabbits. When were there 1500 rabbits?
- 2 I think of a number and multiply it by 2, then subtract 8. This result is then divided by 4. I end up with 4. What number did I think of originally?

- 3 I bought some apples from the supermarket. I used $\frac{1}{3}$ of them to make a pie, and then my brother ate three of them. There are now 7 left. How many apples did I buy originally?
- 4 Ying started the day with a certain amount of money in her purse. She spent \$30 on a shirt, and then half the money remaining in her purse was spent on lunch. She borrowed \$40 from a friend, and spent half the money remaining in her purse on a book. Ying now has \$30 left in her purse. How much did she have in her purse at the start of the day?
- 5 Nima and Kelly each own a collection of marbles. While playing during the day, Nima lost 3 marbles and Kelly lost 4. At the end of the day, Nima gave a third of her remaining marbles to Kelly, so that each of them had 22 marbles. How many marbles did each girl own at the start of the day?

6	Todd is trying to lose weight. For 6 weeks he keeps a
	record of his weight loss or gain for the week.
	At the end of the 6 weeks, Todd weighs 85 kg. Find:

- a Todd's weight at the end of week 3
- **b** Todd's initial weight.

Week	Result
1	lose 2 kg
2	lose 1 kg
3	gain 2 kg
4	lose 2 kg
5	gain 1 kg
6	lose 2 kg

- 7 Two years ago, my mother was 7 times older than me. In one year's time, my father will be 5 times older than me. My father is currently 39 years old. How old is my mother now?
- 8 Nikora left home at a certain time. He rode his bike for 20 minutes, then walked for a further 15 minutes. He rested there for half an hour before continuing on to Sam's house, which was a further 25 minutes walk away. Nikora played at Sam's house for 45 minutes before moving on to his grandmother's home which took him another 20 minutes. He arrived at his grandmother's home, at noon, just in time for lunch. What was the time he left his home that morning?

KEY WORDS USED IN THIS CHAPTER

• list

• model

• pattern

• table

• trial and error

REVIEW SET 10A

- Daniel has only £10 notes and £20 notes in his wallet. In total he has 11 notes with value £150. How many of each note does Daniel have in his wallet?
- Claire has 12 oranges. She wants to divide them into 3 piles so that each pile contains a different number of oranges. In how many ways can this be done?
 Note: 5, 4, 3 is the same as 5, 3, 4.
- **a** How many games are played in a knockout tennis tournament with 16 players?Hint: Draw a diagram and count the number of games played.
 - **b** Explain a quicker method you could have used to solve **a**.
 - How many games are played in a knockout tennis tournament with 256 players?
- **4** Sergio does weights training once every 5 days and fitness training once every 7 days. If he did weights training on January 1st and fitness training on January 3rd, when will Sergio next have weights training and fitness training on the same day?
- **5** I think of a number, add 7, divide the result by 3, then subtract 4. The result is 1. Find the original number.

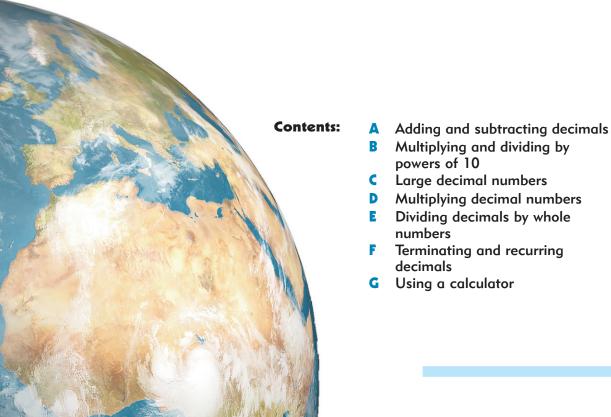
REVIEW SET 10B

- **1** A quadrilateral is formed by joining 4 of the vertices of a hexagon. How many quadrilaterals can be formed?
- **2** There are 4 trees in my garden. The pine tree is 3 m taller than the apple tree. The crepe myrtle tree is 3 m shorter than the oak tree. The oak tree is twice as tall as the apple tree. If the crepe myrtle tree is 7 m tall, how tall is the pine tree?
- **3** Start with a 2 digit number. The next number in the sequence is found by multiplying the digits together. This process continues until a single digit number is reached.

For example, starting with 68: 68 $\xrightarrow{6\times8}$ 48 $\xrightarrow{4\times8}$ 32 $\xrightarrow{3\times2}$ 6 or starting with 53: 53 $\xrightarrow{5\times3}$ 15 $\xrightarrow{1\times5}$ 5.

Notice that starting with 68 produces a sequence of length 4, and starting with 53 produces a sequence of length 3.

There is only one 2 digit number which produces a sequence of length 5. Which number is it?


- **4** A chairperson and secretary are to be chosen from a committee of 4 men and 3 women. In how many ways can this be done if the chairperson and secretary must be of different genders?
- 5 A house of cards is formed by balancing playing cards on top of one another:

How many cards are needed to produce a house of cards 10 levels high?

Chapter

Operations with decimals

OPENING PROBLEM

Andy caught 5 lobsters when scuba diving. They weighed 0.76 kg, 1.23 kg, 0.85 kg, 0.97 kg and 1.19 kg.

Thinks to think about:

- **a** What is the total weight of Andy's catch?
- **b** If Andy caught this weight of lobster each day for a week, what would be the total weight of his catch?

ADDING AND SUBTRACTING DECIMALS

When adding or subtracting decimal numbers, we write the numbers under one another so the decimal points are vertically underneath each other.

When this is done, the digits in each place value will also lie under one another. We then add or subtract as for whole numbers.

Examp	ole 1	Self Tutor
Find	3.84 + 0.372	
Ĭ	.840 .372	
1	$\frac{.372}{1}$.212	

Examp	ple 2	Self Tutor
Find:	a 3.	652 - 2.584 b $6 - 0.637$
a 	$ \begin{array}{r} 5 & 14 \\ 3 & \cancel{6} & \cancel{5} \\ - & 2 & .5 & 8 \\ \hline 1 & .0 & 6 & 3 \end{array} $	2 Place the decimal points vertically under one another and 4 subtract as for whole numbers.
ь 	$ \begin{array}{r} 5 & 9 & 9 \\ \emptyset . \emptyset & \emptyset \\ - & 0.6 & 3 \\ \hline 5.3 & 6 \\ \end{array} $	

EXERCISE 11A

- 1 Find:
 - **a** 0.4 + 0.5
 - **d** 0.17 + 0.96
 - 0.4 + 0.8 + 4
 - 30 + 0.007 + 2.948
- **b** 0.6 + 2.7
- **2** 23.04 + 4.78
- **h** 0.009 + 0.435
- 0.0036 + 0.697
- 0.9 + 0.23
- f 15.79 + 2.64
- 0.95 + 1.23 + 8.74
- 0.071 + 0.677 + 4

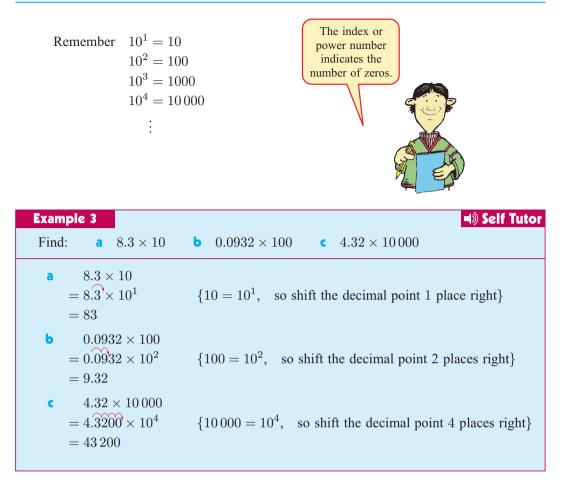
- **2** Find: DEMO a 1.7 - 0.9**b** 2.3 - 0.84.2 - 3.8m 2 - 0.64 - 1.73 - 0.74d 4.5 - 1.831 - 0.9910 - 0.98٥ 5.6 - 0.0071 - 0.9990.18 + 0.072 - 0.251k 3 **a** Add 2.094 to the following: 36.918 0.04 0.982 **v** 5.906 **b** Subtract 1.306 from the following: 2.407 1.405 **v** 24 13.06 4 Add: **a** 31.704, 8.097, 24.2 and 0.891 **b** 3.56, 4.575, 18.109 and 1.249 **d** 3.0975, 1.904, 0.003 and 16.2874 **c** 1.001, 0.101, 0.011, 10.101 and 1 **e** 4, 4.004, 0.044 and 400.44 f 0.76, 10.4, 198.4352 and 0.149. 5 Subtract: **a** 29.712 from 35.693 **b** 6.089 from 7.1 **c** 19 from 23.481 **d** 3.7 from 171.048 **e** 9.674 from 68.3 **f** 8.0096 from 11.11 **g** 3.333 from 22.2 **h** 38.018 + 17.2 from 63 (47.64 - 18.79) from 33.108 \$109.75 from \$115.05
 - **k** €24.13 from €30.10 **£**38.45 and £16.95 from £60.
- 6 Add:
 - a three point seven nine four two, eleven point zero five zero nine, thirty six point eight five nine four, and three point four one three eight
 - **b** seventeen and four hundred and twenty five thousandths, twelve and eighty five hundredths, three and nine hundred and seven thousandths, and eight and eighty four thousandths
 - c thirteen hundredths and twenty seven thousandths, and one and four hundredths
 - d fourteen dollars seventy eight, three dollars forty, six dollars eighty seven, and ninety three dollars and five cents.
- **7 a** By how much is forty three point nine five four greater than twenty eight point zero eight seven?
 - **b** How much less than five and thirty eight hundredths is two and six hundred and forty nine thousandths?
 - What is the difference between nine and seventy two hundredths and nine and thirty nine thousandths?
 - **d** How much remains from my sixty four pounds seventy five if I spend fifty seven pounds ninety?
- 8 John gets €5.40 pocket money, Pat gets €3.85, and Jill €7.85. How much pocket money do they get altogether?
- **9** Helena is 1.75 m tall and Fred is 1.38 m tall. How much taller is Helena than Fred?

- 10 I weigh myself every week. At the beginning of the month I weighed 68.4 kg. In the first week I put on 1.2 kg, while in the second week I lost 1.6 kg. Unfortunately I put on another 1.4 kg in the third week. How much did I weigh at the end of the three week period?
- 11 At a golf tournament two players hit the same ball, one after the other. First Jeff hit the ball 132.6 m. Janet then hit the ball a further 104.8 m. How far did the ball travel altogether?
- 12 Shin is trying to save \$62.50 for a computer game. He had \$16.40 in his bank to start with and earned the following amounts doing odd jobs: \$2.45, \$6.35, \$19.50, \$14.35. Does he have enough money? If he does not, how much more does he need to earn?
- 13 Our class went trout fishing and caught five fish weighing the following amounts: 10.6 kg, 3.45 kg, 6.23 kg, 1.83 kg and 5.84 kg. What was the total weight of all five fish?
- 14 In a fish shop, four large fish weigh 4.72, 3.96, 3.09 and 4.85 kg. If a customer wants a minimum of 20 kg of fish, what extra weight is needed?
- **15** Find the total length of these three pieces of timber: 2.755 m, 3.084 m and 7.240 m.

How much change from €100 is left after I buy items for €10.85, €37.65, €19.05 and €24.35?

MULTIPLYING AND DIVIDING BY POWERS OF 10

MULTIPLICATION


B

Consider multiplying 3.57 by 100:
$$3.57 \times 100 = \frac{357}{100} \times \frac{100}{1}^{1}$$

= 357
and by 1000: $3.57 \times 1000 = \frac{357}{1000} \times \frac{1000}{1}^{10}$
= 357 × 10
= 357 × 10
= 3570

When we multiply by 100, the decimal point of 3.57 shifts 2 places to the **right**. 3.57 becomes 357.

When we multiply by 1000, the decimal point shifts 3 places to the **right**. 3.570 becomes 3570.

When multiplying by 10^n we shift the decimal point *n* places to the **right**. The number becomes 10^n times **larger** than it was originally.

EXERCISE 11B.1

1 Multiply the numbers to complete the table:

	Number	$\times 10$	$\times 100$	×1000	$\times 10^4$	$\times 10^{6}$
a	0.0943					
Ь	4.0837					
C	0.0008					
d	24.6801					
e	\$57.85					

2 Find:

- a 43×10
- **d** 0.6×10
- **g** 3.09×100
- 3.24×100
- $\textbf{m} \quad 0.24 \times 1000$
- **p** 0.053×1000
- e 4.6×10 h 2.5×100

b 8×1000

- k 0.9×1000
- **n** 2.085×10^2
- **q** 0.0094×10^{1}
- c 5×10^{6} f 0.58×100 i 0.8×100 l 0.845×1000 o 8.94×10^{3}
- $0.718 \times 100\,000$

202 OPERATIONS WITH DECIMALS (Chapter 11)

- **3** Write the multiplier to complete the equation:
 - a $5.3 \times \Box = 530$ b $0.89 \times \Box = 890$ c $0.04 \times \Box = 400$ d $38.094 \times \Box = 3809.4$ e $70.4 \times \Box = 704$ f $38.69 \times \Box = 386.9$ g $65.871 \times \Box = 6587.1$ h $0.0006 \times \Box = 600$ i $0.003\,934 \times \Box = 3.934$

DIVISION

Consider dividing 5.2 by 100: $5.2 \div 100 = \frac{52}{10} \div \frac{100}{1}$ $= \frac{52}{10} \times \frac{1}{100}$ $= \frac{52}{1000}$ = 0.052and by 1000: $5.2 \div 1000 = \frac{52}{10} \times \frac{1}{1000}$ $= \frac{52}{10000}$ = 0.0052

When we divide by 100, the decimal point in 5.2 shifts 2 places to the left. 005.2 becomes 0.052.

When we divide by 1000, the decimal point in 5.2 shifts 3 places to the left. 0005.2 becomes 0.0052.

When dividing by 10^n we shift the decimal point *n* places to the left.

The number becomes 10^n times **smaller** than it was originally.

Example 4	Self Tutor
Find: a $0.6 \div 10$	b $0.37 \div 1000$
a $0.6 \div 10$ = $0.6 \div 10^{1}$ = 0.06	$\{10 = 10^1$, so shift the decimal point 1 place left $\}$
b $0.37 \div 1000$ = 000.37 ÷ 10 ³ = 0.000 37	$\{1000 = 10^3$, so shift the decimal point 3 places left $\}$

EXERCISE 11B.2

1 Divide the numbers to complete the table:

	Number	÷10	÷100	÷1000	$\div 10^5$
a	647.352				
Ь	93 082.6				
c	42870				
d	10.94				

2 Find:

a $2.3 \div 10$	b 3.6 ÷ 100	c 42.6 ÷ 100
d $3 \div 10$	€ 58÷10	f 58÷100
g 394 ÷ 10	h $7 \div 100$	$45.8 \div 100$
8.007÷10	k $24.05 \div 1000$	$632 \div 10000$
m 579 \div 100	n $579 \div 1000$	• 579 ÷ 10 000
p 0.03 ÷ 10	q $0.03 \div 100$	r $0.046 \div 1000$

3 Write the divisor to complete the equation:

- **a** $9.6 \div \Box = 0.96$
- **c** $6.3 \div \Box = 0.063$
- \bullet 15.95 \div \Box = 1.595
- **g** $3016.4 \div \Box = 30.164$

b $38.96 \div \Box = 0.3896$

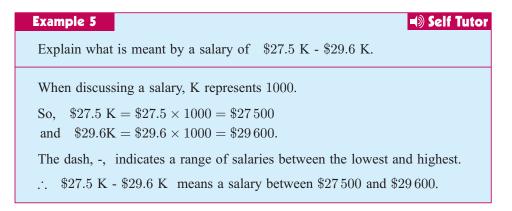
- **d** $5.8 \div \Box = 0.0058$
- f $386 \div \Box = 0.0386$
- **h** 874.86 $\div \Box = 0.84786$

LARGE DECIMAL NUMBERS

Very large numbers are often shortened using letters and decimals.

THOUSANDS

Older computers often have memory chips which hold thousands of bits or bytes of information.


The letters k or K are used to represent thousands.

For example, 512 kb is approximately 512000 bytes of information.

In the employment section of most newspapers you will find annual salaries offered in thousands of dollars.

If Justin is paid an annual salary of \notin 46.2K then he is paid $46.2 \times 1000 = \notin$ 46.200 each year.

MILLIONS

The letters m or M are used to shorten amounts to decimals of a million.

Example 6	■) Self Tuto
Round off	\$2378425 to 2 decimals of a million.
\$2378425	= $(2378425 \div 1000000)$ m
:	= \$2.378 425 m
:	\$2.38 m {rounded to 2 decimal places}

BILLIONS

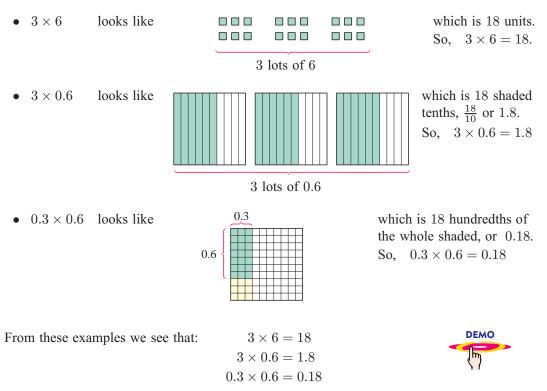
Large companies often give their profits or losses in decimals of billions of dollars.

Distances in space, world population, insect, animal and plague numbers, crops, and human body cells are some of the large numbers that are presented in decimals of a billion.

We use the letters bn to represent one billion.

Example	7	Self Tutor
Round	37425679420	to 2 decimal places of a billion.
374256'	79420 = (37425)	$679420 \div 1000000000)$ bn
	= 37.425	679 420 bn
	pprox 37.43 b	n {rounded to 2 decimal places}

EXERCISE 11C


1 Write these salary ranges in thousands of dollars, correct to 1 decimal place:

	a \$56345 - \$61840	b \$32 475 - \$34 885	c \$23159 - \$24386
	d \$70839 - \$73195	e \$158650 - \$165749	f \$327890 - \$348359
2	Explain what is meant by a	a salary of:	
	a \$38.7 K - \$39.9 K	b \$43.2 K - \$44.5 K	c \$95.5 K - \$98.9 K
3	Round these figures to 2 d	ecimals of a million:	
	a 3179486	b 91 734 598	c 23 456 654
	d 1 489 701	2 30 081 896	f 9475962
4	Expand these to whole nur	nbers:	
	a 21.65 million	b 1.93 million	c 16.03 million
5	Expand the following to w	hole numbers:	
	a 3.86 bn b	375.09 bn c 21.95 bn	d 4.13 bn
6	Round these figures to 2 d	ecimals of a billion:	
	a 3867900000 b	2 713 964 784 c 97 055 84	d 2 019 438 421

MULTIPLYING DECIMAL NUMBERS

We have previously used shaded diagrams to help understand the multiplication of fractions. In this section we do the same thing to help understand the multiplication of decimals.

Consider the following multiplications:

We observe that:

- if we multiply two numbers that are both *greater than* 1, the result will be greater than the two original numbers.
- if we multiply two numbers that are both *less than* 1, the result will be less than the two original numbers.
- the number of decimal places in the original numbers affect the number of decimal places in the final answer.

ACTIVITY

ESTIMATING DECIMAL PRODUCTS

Before we learn to multiply decimals, it is important to learn what sort of answers to expect. In particular, an estimate can warn us of an error we may have made using our calculator.

For example, $8.19 \times 4.87 \approx 8 \times 5$, so we expect the actual answer to be somewhere near 40.

What to do:

1 Choose the correct answer and then **check** using your calculator:

a $4.387 imes 6$	i	263.22	ii	26.322	iii	2.6322	iv	2632.2
b 18.71×19	i	355.49	ii	35.549	iii	35549	iv	3554.9
c 0.028×11	i	3.080	ii	0.0308	iii	0.308	iv	30.800

2 Estimate the following using 1 figure approximations. For example, $19.8 \times 41.89 \approx 20 \times 40 \approx 800$

a	8.6×5.1	Ь	9.8×13.2	C	12.2×11.9
	1 0 0 0 0 0		15 00 0 100		20.04 2.00

f 39.04×2.08 **d** 1.96×3.09 e 15.39×8.109

Find the actual answers using your calculator.

INVESTIGATION

DECIMAL PLACES IN THE PRODUCT

In this investigation we will look at the number of decimal places in a product like 0.67×0.8 and the number of decimal places in the final answer. You may use a calculator to do the multiplication.

What to do:

1 Write the number of decimal places in each of the following:

а	36.42	b	12.8	C	0.095	d	1.805	e	29.0908
---	-------	---	------	---	-------	---	-------	---	---------

2 Copy and complete the following table.

	Product	Number of decimal places in question	Estimate of product		Number of decimal places in product
	2.91×3.04	2 + 2 = 4	$3 \times 3 = 9$	8.8464	4
a	42.8×2.16				
b	5.072×1.9				
c	69.1×20.05				
d	0.87 imes 0.96				
e	9.84×3.092				
f	6.094×2.837				

3 Write the number of decimal places you would expect in the following products:

- a 0.8×0.9
- **b** 2.07 × 1.93
- **d** 9×0.45

- $e 0.6 \times 0.06$
- **h** $2 \times 0.2 \times 0.02$ g 2.5×4.03

Find the actual answers using your calculator.

From the **Investigation** we notice that:

When **multiplying by decimals**, the number of decimal places in the question equals the number of decimal places in the answer.

- c 0.3×0.04
- f 0.857×3
- i $0.5 \times 0.05 \times 0.005$

We can show why this is so using fractions:

$$\begin{array}{l} 0.3 \times 0.4 = \frac{3}{10} \times \frac{4}{10} \\ = \frac{12}{100} \\ = 0.12 \end{array}$$

This suggests that to find 0.3×0.4 we multiply 3×4 and then divide the result by 10^2 to account for the decimal places.

Dividing by 10^2 involves shifting the decimal point two places to the left.

Example 8		Self Tutor
Find: a 3×0.6	b $0.5 imes 0.07$	c $0.05 imes 0.08$
a $3 imes 0.6$	b $0.5 imes 0.07$	c $0.05 imes 0.08$
$= 3 \times \frac{6}{10}$	$=\frac{5}{10}\times\frac{7}{100}$	$=\frac{5}{100}\times\frac{8}{100}$
$=\frac{18}{10}$	$=\frac{35}{10^3}$	$=\frac{40}{10^4}$
=1.8	= 0.035.	= 0.0040.
= 1.8	= 0.035	= 0.004
EXERCISE 11D		
1 Find these products:		
a $0.2 imes 4$	lacksquare $0.3 imes 8$	$ extsf{5} imes0.7$
d $6 imes 0.8$	\bullet 0.4 $ imes$ 0.7	f $0.4 imes 0.5$
g 0.03×0.6	h $0.02 imes 0.9$	0.03×11
15×0.04	k $0.07 imes 0.09$	0.006×0.05
2 Find the value of:		
a $2.4 imes 3$	b 6.5 × 4	c 2.7 × 5
d $7 imes 0.005$	ℓ 1.2 × 0.12	f 2.03×0.04
$(0.6)^2$	h $(0.04)^2$	0.4 imes 0.3 imes 0.2
3 Given that $34 \times 28 = 952$,	find the value of the follo	wing:
a $34 imes 2.8$	b 3.4×2.8	34 imes 0.028
d $0.34 imes2.8$	● 0.034 × 28	f $0.34 imes 0.28$
g 0.034×2.8	h 0.034×0.028	i 340×0.0028
4 Given that $57 \times 235 = 133$	95, find the value of the	following:
a $5.7 imes235$	b 5.7×23.5	≤ 5.7 × 2.35

a 0.1 × 200	\bigcirc 0.7 \times 20.0	5.7 × 2.55
d $5.7 imes 0.235$		f $0.57 imes2.35$
g 0.57×0.235	h $5.7 imes 0.000235$	570×0.235
Find the value of:		
a $0.4 imes 6$	b 0.11 × 8	0.5 imes5.0
d 0.03×9		f 3.8×4

5

- **g** 0.9×0.8 **h** 0.007×0.9
- 0.16×0.5

6

- $(0.2)^2$
- **m** 1.2×0.06 **n** $(1.1)^2$
- a Find the cost of 45 litres of petrol at 87.8 pence per litre.
 - **b** Find the cost of 9.6 metres of pipe at \$3.85 per metre.
 - Find the total capacity of 6 dozen 1.25 litre bottles.
- 7 Jennifer bought 6 iceblocks each costing 55 cents. How much did she pay for them in total?
- 8 Large clay pavers weighing 5.6 kg each are used to pave a driveway. If Duncan was able to push 8 of these pavers in his wheelbarrow at a time, how much weight can he push?
- 9 Matthias is concreting a small fish pond. He needs 0.4 m^3 of concrete which costs $\pounds 72.50 \text{ per m}^3$. How much will the concrete for the pond cost Matthias?
- 10 I need 4.5 m of hose to water my garden. If hose costs me \$3.40 per metre, how much will it cost me to buy my hose?
- 11 Manuel needs at least 25 metres of timber. He has found 6 pieces of timber in his shed, each 3.9 m long. Does he have enough? How much extra does he have, or how much more does he still need to find?

 0.04×0.04

• 2.5×0.004

 $(0.03)^2$

- **12** A caterer orders 5700 pies and 3600 pasties to sell at a football match. The pies and pasties each have a mass of 0.26 kg. What is the total mass of the:
 - a pies **b** pasties **c** pies and pasties?
 - **d** How many heated vans, each capable of carrying 500 kg, are needed to deliver the pies and pasties?
 - If the caterer makes a profit of 29.7 cents on each pie or pasty and she sells them all, what is her total profit?

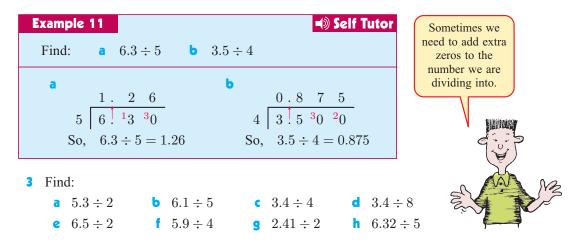
E

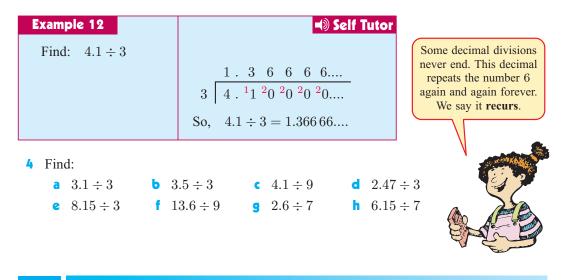
DIVIDING DECIMALS BY WHOLE NUMBERS

Follow these steps to divide decimal numbers by whole numbers:

- *Step 1:* Put a decimal point in the answer directly above the decimal point of the question.
- Step 2: Carry out normal division ignoring the decimal point.

Example 9	Self Tutor
Find: a $4.64 \div 4$ b	$5.28 \div 8$
a $1, 1, 6$ 4 4 6 24	b $0, 6, 6$ 8 5 2 48
So, $4.64 \div 4 = 1.16$	So, $5.28 \div 8 = 0.66$


EXERCISE 11E


1 Find:

a	$3.2 \div 4$	b	$7.5 \div 5$	C	$1.26 \div 3$	d	$3.57 \div 7$
e	$24.16 \div 8$	f	$2.46 \div 6$	9	$0.72 \div 9$	h	$81.6\div4$

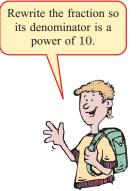
Example 10	Self Tutor
A 6.4 m length of How long is each	f timber is cut into four equal lengths. piece?
$4 \overline{\smash{\big } 6 \frac{2}{4}}$	Each piece is 1.6 m long.

- 2 a How much money would each person get if €76.50 is divided equally among 9 people?
 - **b** A 10.75 kg tub of icecream is divided equally among 5 people. How much icecream does each person receive?
 - A 3.5 m length of timber is cut into five equal pieces. How long is each piece?
 - d How many 7 kg bags of potatoes can be filled from a bag of potatoes weighing 88.2 kg?
 - If $\pounds 96.48$ is divided equally among six people, how much does each person receive?

TERMINATING AND RECURRING DECIMALS

In the previous exercise we saw that when we divide a decimal by a whole number, the result may either end or **terminate**, or else the division will continue forever repeating or **recurring**.

In this section we look at fractions with whole number numerator and denominator.


Every fraction of this type can be written as either a terminating or a recurring decimal.

TERMINATING DECIMALS

Terminating decimals result when the rational number has a denominator which has no prime factors other than 2 or 5.

For example: $\frac{3}{4} = 0.75$ and the only prime factor of 4 is 2 $\frac{14}{25} = 0.56$ and the only prime factor of 25 is 5 $\frac{13}{40} = 0.325$ as the prime factors of 40 are 2 and 5.

Example 13		Self Tutor
Write the follow: a division:	ing in decimal form	without carrying out
a $\frac{4}{5}$	b $\frac{9}{25}$	c <u>7</u> 8
a $\frac{4}{5}$	b $\frac{9}{25}$	c <u>7</u> /8
$=\frac{4\times 2}{5\times 2}$	$=\frac{9\times4}{25\times4}$	$= \frac{7 \times 125}{8 \times 125}$
$=\frac{8}{10}$	$=\frac{36}{100}$	$=\frac{875}{1000}$
= 0.8	= 0.36	= 0.875

Some decimals take a long time to recur.

For example,

 $= 0.0\overline{588\,235\,294\,117\,647}$

Example 14		Self Tutor
Use division to write the following fi	actions as decimals: a	$\frac{2}{5}$ b $\frac{5}{8}$
a 0.4 5 2.0 So, $\frac{2}{5} = 0.4$	b $0.6 \ 2 \ 5$ 8 $5.0^2 0^4 0$ So,	$, \frac{5}{8} = 0.625$

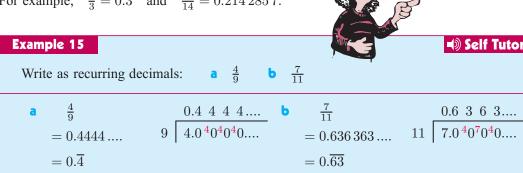
EXERCISE 11F.1

1	Write as decimals using the method of Example 13:											
	a	$\frac{7}{10}$	Ь	$\frac{1}{2}$	¢	$\frac{2}{5}$		d	$\frac{3}{10}$			DEMO
	e	$\frac{4}{5}$	f	$\frac{1}{4}$	9	$\frac{4}{25}$		h	$\frac{3}{4}$			
	i	$\frac{1}{8}$	j	$\frac{5}{8}$	k	$\frac{7}{20}$		I	$\frac{6}{25}$			N/
2	Use	division to wr	rite as	s a decimal:								
	a	$\frac{3}{5}$		b $\frac{9}{5}$		c	$\frac{3}{8}$			d	$\frac{9}{8}$	
	e	$\frac{11}{4}$		f $\frac{29}{5}$		9	$\frac{39}{8}$			h	$\frac{43}{8}$	

RECURRING DECIMALS

Recurring decimals repeat the same sequence of numbers without stopping.

The fractions $\frac{1}{3}$ and $\frac{2}{3}$ provide the simplest examples of recurring decimals.


By division, $\frac{1}{3} = 0.333\,333\,33...$ which we write as $0.\overline{3}$ and read as "point 3 recurring" and $\frac{2}{3} = 0.666\,666\,66...$ which we write as $0.\overline{6}$ and read as "point 6 recurring".

Recurring decimals result when the denominator of a rational number has one or more prime factors other than 2 or 5.

For example, $\frac{3}{14} = 0.214\,285\,714\,285\,714\,285\,7...$

We indicate a recurring decimal by writing the full sequence once with a line over the repeated section.

For example, $\frac{1}{3} = 0.\overline{3}$ and $\frac{3}{14} = 0.2\overline{14\,285\,7}$.

EXERCISE 11F.2

1	Cor	Convert the following fractions to decimals. Use a bar to show the recurring digits.												
	a	$\frac{1}{3}$	Ь	$\frac{2}{3}$		¢	$\frac{1}{6}$		•	$\frac{1}{7}$			$\frac{2}{7}$	
	f	$\frac{1}{12}$	9	$\frac{2}{9}$		h	$\frac{5}{6}$			$\frac{3}{11}$			$\frac{7}{12}$	
2	a	Copy and	complet	the the	foll	owing	patte	rn:						
			Fractio	n:	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{4}{9}$	$\frac{5}{9}$	$\frac{6}{9}$	$\frac{7}{9}$	$\frac{8}{9}$	$\frac{9}{9}$	
			Decima	ıl:	$0.\overline{1}$	$0.\overline{2}$								
	b	Comment	on the v	alue	of 0	.9.								
3	Wri	te as decin	nals:											
	a	$\frac{23}{32}$	b	$\frac{11}{16}$		¢	$\frac{17}{80}$		•	$\frac{11}{25}$			$e 1\frac{3}{1}$	<u>3</u> .6
	f	$\frac{3}{14}$	9	$\frac{2}{15}$		h	$\frac{9}{11}$			$2\frac{7}{30}$	0		$\frac{97}{50}$	
	k	$\frac{6}{13}$	1	$\frac{49}{160}$		m	$3\frac{5}{12}$	Ī	I	$\frac{31}{123}$	3		• $\frac{23}{45}$	
							110	IN/	~ ^		A I 4	CIII		

USING A CALCULATOR

Suppose you were asked to write $\frac{2}{3}$, $\frac{3}{4}$, $\frac{13}{16}$, $\frac{7}{10}$, $\frac{8}{11}$ and $\frac{9}{13}$ in ascending order.

Converting all of these fractions to a common denominator would be long and tedious.

It would be better to convert each fraction to a decimal and use the decimals to write the fractions in order.

$$\frac{2}{3} \approx 0.666, \quad \frac{3}{4} = 0.750, \quad \frac{13}{16} \approx 0.813, \quad \frac{7}{10} = 0.700, \quad \frac{8}{11} \approx 0.727, \quad \frac{9}{13} \approx 0.692$$

$$\frac{2}{3}, \quad \frac{9}{13,10}, \quad \frac{8}{11}, \quad \frac{3}{4}, \quad \frac{13}{16}, \quad \frac{13}$$

So, the ascending order is: $\frac{2}{3}, \frac{9}{13}, \frac{7}{10}, \frac{8}{11}, \frac{3}{4}, \frac{13}{16}$

EXERCISE 11G

- 1 Write in ascending order using a calculator:
 - **a** $\frac{3}{10}, \frac{7}{22}, \frac{7}{20}, \frac{5}{17}, \frac{1}{3}$ **b** $\frac{4}{7}, \frac{3}{8}, \frac{5}{9}, \frac{5}{12}, \frac{7}{16}$
 - **c** $\frac{8}{9}, \frac{7}{8}, \frac{9}{11}, \frac{10}{13}, \frac{11}{12}$ **d** $\frac{11}{20}, \frac{12}{23}, \frac{10}{19}, \frac{6}{11}, \frac{8}{15}$
- 2 Write in descending order using a calculator:

a	$\frac{2}{3}, \frac{5}{8}, \frac{7}{11}, \frac{11}{17}, \frac{15}{23}$	Ь	$\frac{8}{21}$,	$\frac{3}{8}$,	$\frac{5}{13}$,	$\frac{6}{17}$,	$\frac{4}{11}$
C	$\frac{7}{20}, \frac{1}{3}, \frac{5}{16}, \frac{8}{23}, \frac{9}{25}$	d	$\frac{14}{17}$,	$\frac{16}{19}$	$, \frac{17}{20}$	$, \frac{20}{23}$	$, \frac{3}{4}$

3 The distance around the boundary of a square is 12.66 metres. Find the length of each side of the square.

The heights of the girls in the Primary School Basketball team were measured in metres and the results were:

1.56, 1.43, 1.51, 1.36, 1.32, 1.45, 1.39, 1.38

- a Find the sum of the girls' heights.
- **b** Divide the sum in **a** by the number of girls to find their *average* height.
- 5 A piece of wood is 6.4 m long and must be cut into short lengths of 0.36 m.
 - a How many full lengths can be cut?
 - **b** What length is left over?
- How many 2.4 metre lengths of piping are needed to make a drain 360 metres long?
- 7 21 DVDs cost \$389.55. How much does one DVD cost?

KEY WORDS USED IN THIS CHAPTER

ascending order

terminating decimal

• decimal number

index

• power

- descending order
- recurring decimal

BODY MASS INDEX Areas of interaction:

a 3.018 + 20.9 + 4.836

Areas of interaction: Health and social education

REVIEW SET 11A

- 1 Evaluate:
- c 4.2×1.2

b 423.54 - 276.49

d 0.96×0.08

- **2** Add fourteen point nine eight one, three point six five nine, one point zero nine eight, and twenty two point five.
- **3** Solve the following problems:
 - **a** Determine the total cost of 14 show bags at \$7.85 each.
 - **b** Share €5885.25 equally amongst 5 people. How much does each person get?
 - How much change from \$100.00 would you receive if items costing \$27.55, \$18.30, \$22.05 and \$3.75 were bought?
- **4** In 3 seasons a vineyard produces: 638.17, 582.35 and 717.36 tonnes of grapes respectively. What was the total harvest of grapes for the 3 years?
- 5 Answer the **Opening Problem** on page **198**.

6 Find: **a** 6.2×10 **b** 2.158×100 **c** $5.6 \div 10$ **d** $4.2 \div 100$

7 Given that $26 \times 53 = 1378$, evaluate: a 2.6×5.3 **b** 2.6×0.053 8 Convert the following into decimal numbers using division: $\frac{5}{9}$ $1\frac{1}{6}$ a $\frac{1}{7}$ Ь **9** Find \square if: **a** $203 \div \Box = 2.03$ **b** $2.03 \times \Box = 2030$ **c** $0.203 \div \Box = 0.00203$ **10** A golf shop buys 10000 golf balls from a manufacturer at €1.15 each. It sells them all for €2.40 each. **a** What is the total payment that the manufacturer receives? **b** How much total profit does the golf shop make? **REVIEW SET 11B b** 28.6×0.09 **1** Evaluate: a 31.426 - 29.527 **d** $4.62 \div 3$ c 4.4 + 4.04 + 0.444**2** By how much is fifty six point two five one greater than eighteen point nine three seven? **3** The first horse in a 1000 metre sprint finished in 56.98 seconds. The second and third horses were 0.07 seconds and 0.23 seconds behind the winner. What were the times of the: **a** second horse **b** third horse? **4** Three people with weights 56.270 kg, 94.025 kg and 68.498 kg step into a lift. How much weight is the lift carrying? **5** Find: **b** 5.98×10^3 **d** $0.942 \div 10^2$ a 0.63×100 c $76 \div 1000$ **6** Write the divisor to complete the equation: **a** $409.6 \div \Box = 4.096$ **b** $3.512 \div \Box = 0.003512$ 7 Given that $58 \times 47 = 2726$, evaluate: a 5.8×47 **b** 5.8×0.47 c 5.8×4.7 8 **a** Find the difference between 246 and 239.84. **b** Find: 4.8×0.2 0.03×0.5 • A square has sides of length 3.7 m. Find the total distance around its boundary. d How much does each person get if \$82.40 is divided equally between four people? **9** A marathon runner stops for a drink $\frac{1}{3}$ of the way on his 42.195 km race. How far has he: a run **b** still got to run?

10 Convert the following fractions to decimals:

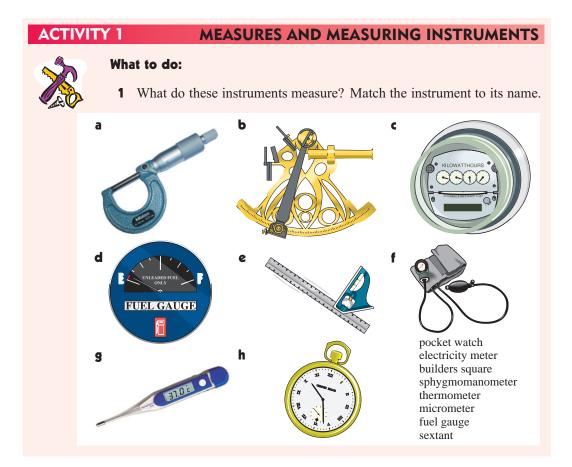
a $\frac{14}{25}$ c $4\frac{19}{40}$ **b** $\frac{8}{11}$

Chapter

Measurement

- **A** Units of measurement
- **B** Reading scales
- C Length conversions
- D Perimeter
- E Scale diagrams
- F Mass
- G Problem solving

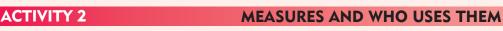
In our everyday life we measure many things.


Measurement gives an indication of the size of a quantity.

The more common types of measurement are:

Measurement	Example					
Distance or length	How far we have travelled.					
Mass or weight	How heavy we are.					
Time	How long a tennis match will last.					
Temperature	How hot it is going to be tomorrow.					
Area	The size of the block of land I need to buy.					
Volume	How much concrete I need for the driveway.					
Speed	How fast I travel if I get there in 2 hours.					

However, in everyday life, people measure a whole range of different things and different characteristics. For instance there are measures for energy, sound, diamonds, power, elasticity, gravity, colour, smell, typing rate, and pollen count.


Some things like art, beauty, taste, desire, ambition, success, attitude and intelligence are much harder to measure.

Callipers

Calorimeter

Barometer

What to do:

1 Find out what is measured by the following instruments and what caused their development.

Seismometer

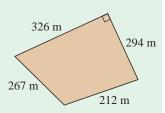
Hydrometer

• Theodolite

- Geiger counter
 - Altimeter
- Dynamometer
- Tachometer
- 2 Find what sort of measuring tools would be used by:
 - architects
- doctors pilots
- scientists
- farmers
- weather forecasters
- computer engineers mechanics
- builders
- surveyors
- sports officials
- teachers

- **3** How would you measure the following?
 - angles

- electricity
- location

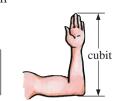

- tides
- reading speed

OPENING PROBLEM

• typing speed

A farmer has a field with the dimensions shown. The farmer needs to replace the fence around the field as the current wire fence is very rusty. The existing posts will remain, but 4 strands of wire need to be attached to the posts.

- How far is it around the field?
- What length of wire is needed given that an extra 15 m is needed for tying the wire to posts?
- What will be the total cost of the wire if its price is \$0.12 per metre?



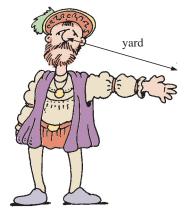
UNITS OF MEASUREMENT

The earliest units of measurement were lengths related to parts of the body. Two of these are illustrated below: the **span** and the **cubit**. Two others in common use were the **yard**, which was the distance from

your nose to your fingertip, and the **pace**, which was the length of your stride. There were 1000 paces in a Roman mile.

All of these measurements were inaccurate because people are different sizes.

span



INTERNATIONAL SYSTEM OF UNITS

In order to make these lengths more standard, King Henry VIII of England said that a yard would be the distance from *his* nose to his fingertips. This led to the British Imperial System of units which uses inches, feet, yards and miles for length, and ounces, pounds and tons for mass.

This system is still used in a few countries but the Metric System, developed in France in 1789, is now used more commonly throughout the world. The advantage of this system is that it uses powers of ten for different sizes. The basic unit for length is the **metre** (m) and for mass it is the **kilogram** (kg). Other smaller and larger units are named by using prefixes. This system of units is now known as Le Système International d'Unités or **SI** system.

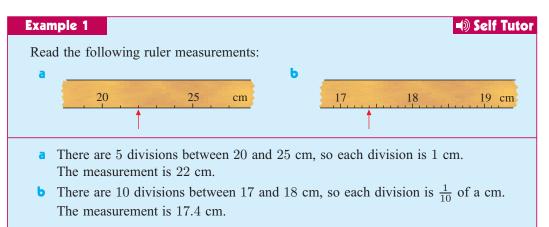
LENGTH UNITS

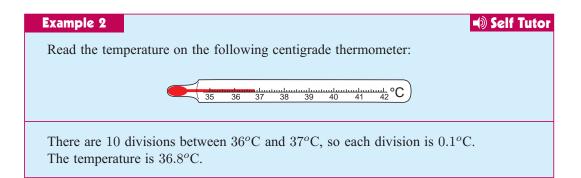
- 1 millimetre (mm) = $\frac{1}{1000}$ m = 0.001 m
- 1 centimetre (cm) = $\frac{1}{100}$ m = 0.01 m
- 1 kilometre (km) = 1000 m

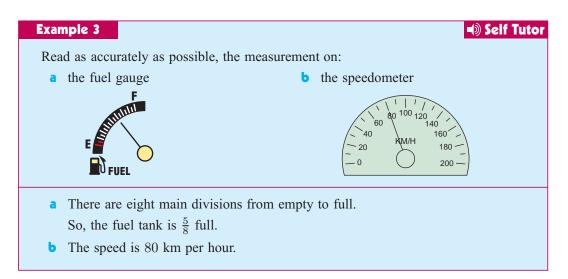
EXERCISE 12A

- 1 State what units you would use to measure the following:
 - a the mass of a person
 - **b** the distance between two towns
 - the length of a sporting field
 - d the mass of a tablet

- the length of a bus
- f the mass of a car
- **g** the width of this book
- h the mass of a truck

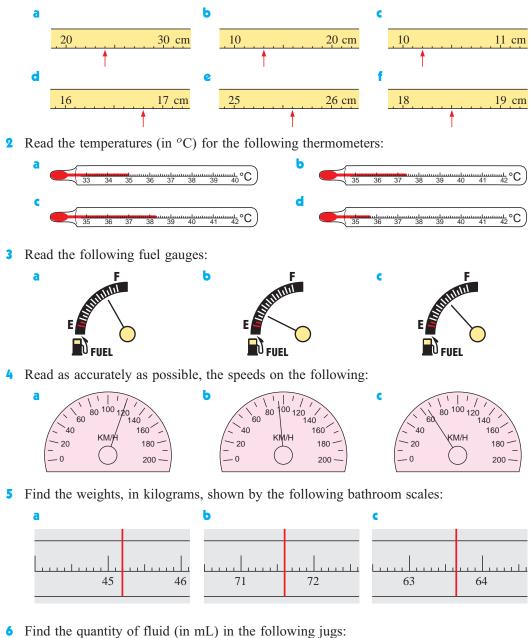

MASS UNITS

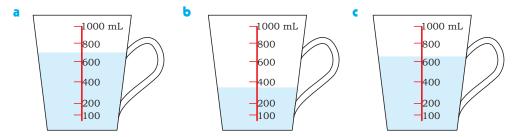

1 milligram (mg) = $\frac{1}{1000}$ g = 0.001 g 1 gram (g) = $\frac{1}{1000}$ kg = 0.001 kg 1 tonne (t) = 1000 kg


B

READING SCALES

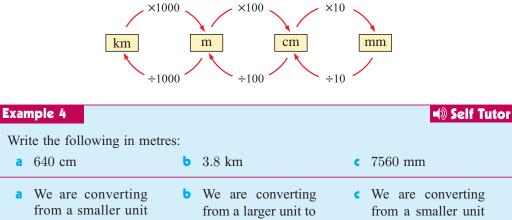
There are many instruments which are used for measuring. They usually have a **scale** marked on them. We are all familiar with a **ruler** for measuring lengths. Rulers have a scale marked in both millimetres and centimetres.





EXERCISE 12B

1 Read the following ruler measurements:


С

LENGTH CONVERSIONS

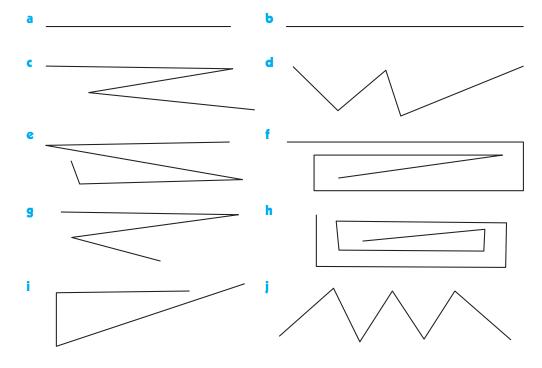
When we convert from one unit to a **smaller** unit, there will be more smaller units and so we must **multiply**.

When we convert from one unit to a **larger** unit, there will be less larger units and so we must **divide**.

CONVERSION DIAGRAM

0 40 0 11	9.0 Km	
a We are converting	• We are converting	• We are converting
from a smaller unit	from a larger unit to	from a smaller unit
to a larger one, so	a smaller one, so we	to a larger one, so
we divide.	multiply.	we divide.
640 cm	3.8 km	7560 mm
= (640 ÷ 100) m	= (3.8 × 1000) m	= $(7560 \div 1000)$ m
= 6.4 m	= 3800 m	= 7.56 m

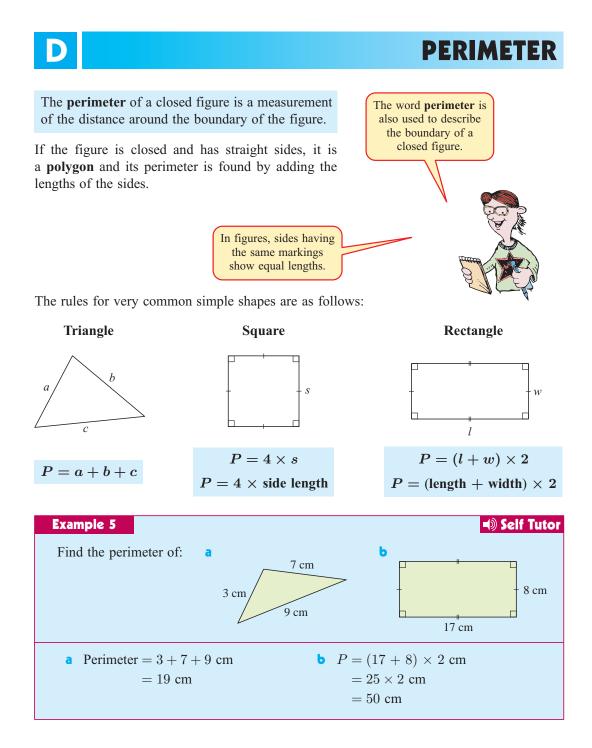
EXERCISE 12C


1	Convert these	metres int	o centimetres:						
	a 4	b 34	c 2.5	d	15.6	e	2.45	f	0.46
2	Convert these	metres int	o millimetres:						
	a 3	b 45	c 3.6	d	16.2	e	5.46	f	0.09
3	Convert these	centimetro	es into millimetres:						
	a 5	b 23	c 2.7	d	12.5	e	5.78	f	0.25
4	Convert these	centimetro	es into metres:						
	a 200	b 3000	c 35	d	950.5	e	28492	f	0.4
5	5 Convert these millimetres into centimetres:								
	a 20	b 400	c 450	d	45.6	e	7500	f	0.3
6	Convert these	kilometre	s into metres:						
	a 3	b 75	c 6.5	d	2000	e	78.2	f	0.2

222 MEASUREMENT (Chapter 12)

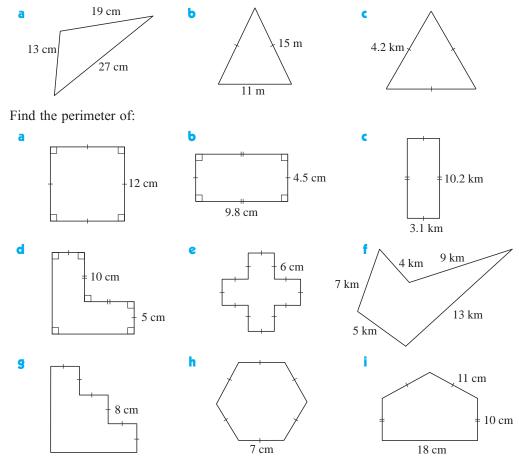
7 Convert these metres into kilometres: **a** 2000 **b** 35 000 **c** 234.5 **2** 3900 **1** 2.4 **d** 34567 8 Write the following in metres: **a** 920 cm **b** 643 cm **4**753 cm 5000 mm d f 13500 mm h 13.5 km e 9743 mm **9** 6.2 km **9** Write the following in centimetres: **a** 720 m **b** 13.8 m **c** 6.3 m **d** 134 mm **e** 85 mm f 1328 mm **h** 0.43 km **9** 5.2 km **10** Write the following in millimetres: **a** 7 m **b** 3.4 cm **d** 0.46 m **c** 78 cm **11** Write the following in kilometres: **a** 4562 m **b** 17 458 m **d** 16 400 cm € 653 000 cm

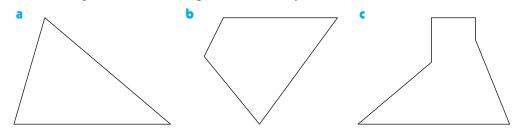
12 For each of the following lines:


- i estimate the length by looking at it carefully
- ii measure the length to the nearest mm using a ruler
- find the error in your estimation.

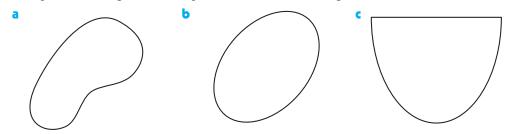
13 Convert all lengths to metres and then add:

- **a** 3 km + 110 m + 32 cm
- **c** 153 m + 217 cm + 48 mm
- 23 m + 47 cm + 338 mm
- **b** 72 km + 43 m + 47 cm + 16 mm
- **d** 15 km + 348 m + 63 cm + 97 mm
- f 23 km + 76 m + 318 cm + 726 mm


- 14 Write the following in the same units and hence write them in ascending order:
 - **a** 37 mm, 4 cm
 - **c** 1250 m, 1.3 km
 - **e** 3500 mm, 347 cm, 3.6 m
 - **g** 4.82 m, 512 cm, 4900 mm
- **b** 750 cm, 8 m, 7800 mm
- **d** 0.005 km, 485 cm, 5.2 m
- f 0.134 km, 128 m, 13000 cm
- **h** 7.2 m, 7150 cm, 71800 mm


EXERCISE 12D

2


1 Find the perimeter of each of the following triangles:

3 Estimate the perimeter of each figure, then check your estimate with a ruler.

4 Use a piece of string to find the perimeter of the following:

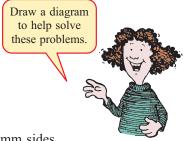
- 5 A rectangular paddock 120 m by 260 m is to be fenced. Find the length of the fence.
- 6 How far will a runner travel if he runs 5 times around a triangular block with sides 320 m, 480 m and 610 m?
- 7 Find the cost of fencing a square block of land with side length 75 m if the fence costs \$14.50 per metre.
- 8 a Find the perimeter of an equilateral triangle with 35.5 mm sides.
 - **b** The perimeter of a regular pentagon is 1.35 metres. Find the length of each side.
 - One half of the perimeter of a regular hexagon is 57 metres. What is the length of one of its sides?
 - **d** Find the length of the sides of a rhombus which has a perimeter of 72 metres.
 - The perimeter of 2 identical regular octagons joined exactly along one side is 98 cm. What is their combined perimeter when they are separated?
- A rectangle has a length of 18 cm and a perimeter of 66 cm. What is the rectangle's width?

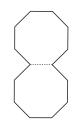
ACTIVITY 3

Some of us are short and others are tall. This means that when we walk, our step lengths vary from one person to another.

Knowing your step length can enable you to estimate, with reasonable accuracy, some quite long distances.

Seani set up two flags which she measured to be 100 m apart. Using her usual walking step, she took $128\frac{1}{2}$ steps to walk between them.


100 m \div 128.5 is about 0.78 m, so Seani's *average* usual step length is about 0.78 m.


When Seani walked around the school's boundary, she took 2186 steps.

Since $2186 \times 0.78 = 1705$, she said her best estimate of the school's perimeter is 1705 metres.

What to do:

- 1 Use a long tape measure to help place two flags exactly 100 m apart.
- 2 Walk with your usual steps from one flag to the other. Count the steps you take.
- **3** Using Seani's method, calculate your usual step length to 2 decimal places.
- **4** Choose *three* suitable distances around the school to estimate. Use Seani's method to estimate them.

STEP ESTIMATION

5 Compare your estimates with other students. You could organise a competition to find the best distance estimator in your class.

E

SCALE DIAGRAMS

A **scale diagram** is a drawing or plan either smaller or larger than the original, but with all sizes in the correct proportion.

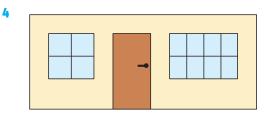
Scale diagrams are used by architects, real estate agents, surveyors, and by many other professionals. House plans are a great example of the use of scale diagrams.

On each scale diagram we have a **scale**. This shows the connection between the lengths on the diagram compared with those for the real object.

A scale which says 1 : 200 or 1 represents 200 indicates that lengths on the scale diagram are 200 times larger in reality.

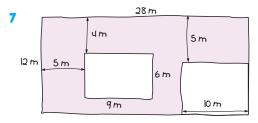
So, if a wall is represented by a 1 cm line on the scale diagram, it is 200 cm or 2 m in reality.

A wall which is 8 m long in reality would be $8 \text{ m} \div 200$ on the scale diagram.

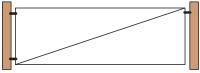

This is 800 cm \div 200 = 4 cm.

Example 6	Self Tutor					
On a scale diagram, the scale is '1 represents 20'. Find:a the actual length if the scale length is 3.4 cmb the scale length if the actual length is 2.4 m.						
a Actual length = $3.4 \text{ cm} \times 20$ = 68 cm	 Scale length = 2.4 m ÷ 20 = 240 cm ÷ 20 = 12 cm 					

EXERCISE 12E

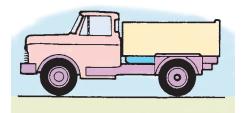

1	The	scale on a diagram is	1 represents 5000.				
	a	Find the actual length	if the scale length	is:			
		4 cm	ii 5.8 cm		2.4 cm	iv	12.6 cm
	b	Find the scale length	if the actual length i	is:			
		500 m	ii 175 m	iii	20 m	iv	108 m
2	The	scale on a diagram is	1 represents 200.				
	a	Find the actual length	if the scale length	is:			
		3 cm	ii 4.5 cm		8.2 cm	iv	$0.8 \mathrm{~cm}$
	b	Find the scale length	if the actual length i	is:			
		200 m	ii 18 m		5.6 m	iv	12.2 m

- The drawing of a gate alongside has a scale of 1 represents 100.Find the actual:
 - a width of the gate
 - **b** height of the gate
 - c length of the diagonal support.

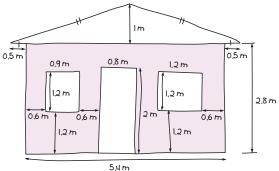


- 5 The drawing of the truck has the scale 1 represents 100. Find:
 - a the actual length of the truck
 - **b** the maximum height of the truck.
- **6** Using the scale shown on the map, find:
 - **a** the actual distance shown by 1 cm
 - **b** the map distance required for an actual distance of 200 km
 - c the actual distance from

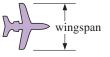
i A to B ii D to E iii C to F.

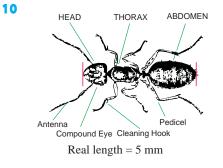



8 The front view of a house is shown in the given rough sketch. Using a scale of 1 represents 100, draw an accurate scale diagram of this view.


If the plan of a house wall alongside has been drawn with a scale of 1 represents 200, find the actual:

- a length of the wall
- b height of the wall
- c measurements of the door
- d measurements of the windows.





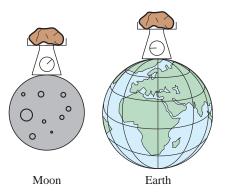
Using the measurements on the given rough sketch and a scale of 1 cm represents 2 m, draw an accurate scale diagram.

- **9** Find the scale if:
 - a an aeroplane has wingspan 50 m and on the diagram it is 50 cm
 - a truck is 15 m long and its diagram has length 12 cm. Ь

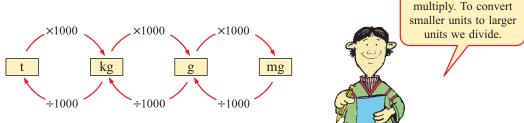
Alongside is a scale diagram of an ant. The actual body length of the ant between the red lines is 5 mm.

- a Measure the length of the ant's body in the diagram in millimetres.
- **b** Explain why the scale is 6 represents 1.
- **c** Using the scale in **b**, find the actual length of the:
 - antenna
 - thorax
- iv head.

abdomen


.

The **mass** of an object is the amount of matter it contains.


In everyday use the terms mass and weight are interchanged. In fact, they have different meaning. The mass of an object is constant; it is the same no matter where the object is. In contrast, the weight of an object is the force upon it due to gravity. For this reason, an object will have less weight on the moon than on the earth although the mass remains the same.

The kilogram (kg) is the base unit of mass in the metric system. Other units of mass which are commonly used are the milligram (mg), gram (g), and tonne (t).

1 g = 1000 mg1 kg = 1000 g1 t = 1000 kgTo convert larger units to smaller units we

CONVERSION DIAGRAM

Example 7		Self Tutor
Convert the following to ki	lograms:	
a 350 g	b 8.5 t	c 7 500 000 mg
a 350 g = (350 ÷ 1000) kg = 0.35 kg	b 8.5 t = (8.5×1000) kg = 8500 kg	c 7500000 mg = $(7500000 \div 1000)$ g = 7500 g = $(7500 \div 1000)$ kg = 7.5 kg

EXERCISE 12F

1 Give the units you would use to measure the mass of:

	a	a person	Ь	a ship	c	a tablet
	d	a book	e	an orange	f	a lounge suite
	9	a raindrop	h	a boulder	i.	your school lunch
	j	a baseball bat	k	a refrigerator	- E	a dinner plate
	m	a school ruler	n	a slab of concrete	0	a bulldozer
	р	a leaf	P	a calculator	r	a computer
	5	an ant	t	a horse		
2		A	B		D	

Which of the above devices should be used to measure the items in question 1?

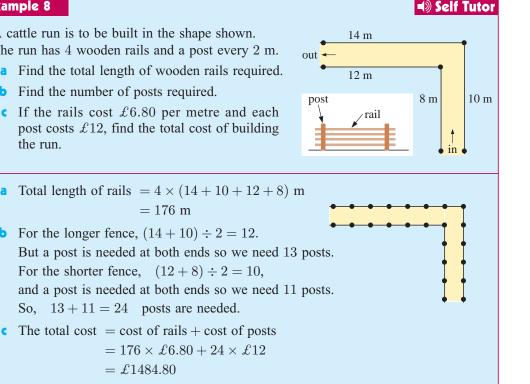
3 Convert these grams into milligrams: a 2 b 34 c 350 d 4.5 c 0.3 4 Convert these into kilograms: a 4 b 25 c 3.6 d 294 c 0.4 5 Convert these kilograms: a 6 b 34 c 2.5 d 256 c 0.6 6 Convert these milligrams into grams: a 3000 b 2500 c 45 000 d 67.5 c 9.5 7 Convert these biograms into tonnes: a 4000 b 95 000 c 4534 d 45.6 c 0.8 8 Write the following in grams: a 4000 b 3.2 kg c 14.2 kg d 380 mg a 8 kg b 3.2 kg c 14.2 kg d 380 mg e 4250 mg f 75420 mg g 6.8 t h 0.56 t						
 4 Convert these tonnes into kilograms: a 4 b 25 c 3.6 d 294 e 0.4 5 Convert these kilograms into grams: a 6 b 34 c 2.5 d 256 e 0.6 6 Convert these milligrams into grams: a 3000 b 2500 c 45 000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95 000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg 	3	Convert these g	rams into milli	grams:		
a 4 b 25 c 3.6 d 294 e 0.4 5 Convert these kilograms into grams: a 6 b 34 c 2.5 d 256 e 0.6 6 Convert these milligrams into grams: a 3000 b 2500 c 45000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg		a 2	b 34	c 350	d 4.5	e 0.3
 5 Convert these kilograms into grams: a 6 b 34 c 2.5 d 256 e 0.6 6 Convert these milligrams into grams: a 3000 b 2500 c 45 000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95 000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg 	4	Convert these to	onnes into kilog	grams:		
a 6 b 34 c 2.5 d 256 e 0.6 6 Convert these milligrams into grams: a 3000 b 2500 c 45 000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95 000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg		a 4	b 25	c 3.6	d 294	€ 0.4
 6 Convert these milligrams into grams: a 3000 b 2500 c 45000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg 	5	Convert these k	ilograms into g	grams:		
a 3000 b 2500 c 45000 d 67.5 e 9.5 7 Convert these kilograms into tonnes: a 4000 b 95000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg		a 6	b 34	c 2.5	d 256	e 0.6
 7 Convert these kilograms into tonnes: a 4000 b 95 000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg 	6	Convert these m	nilligrams into	grams:		
a 4000 b 95000 c 4534 d 45.6 e 0.8 8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg		a 3000	b 2500	c 45000	d 67.5	e 9.5
8 Write the following in grams: a 8 kg b 3.2 kg c 14.2 kg d 380 mg	7	Convert these k	ilograms into t	onnes:		
a 8 kg b 3.2 kg c 14.2 kg d 380 mg		a 4000	b 95 000	c 4534	d 45.6	€ 0.8
	8	Write the follow	ving in grams:			
e 4250 mg f 75 420 mg g 6.8 t h 0.56 t		a 8 kg	b 3.2	kg c	14.2 kg	d 380 mg
			f 754	120 mg g	6.8 t	h 0.56 t

- **9** Convert the following into kilograms:
 - a 13870 g **b** 3.4 t **c** 786 g **d** 3496 mg

10 Solve the following problems:

- a Find the total mass, in kilograms, of 200 blocks of chocolate each 120 grams.
- **b** If a nail has mass 25 g, find the number of nails in a 5 kg packet.
- Find the mass in tonnes of 15000 bricks if each brick has a mass of 2.2 kg.

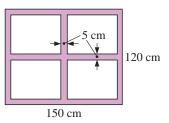
PROBLEM SOLVING


Example 8

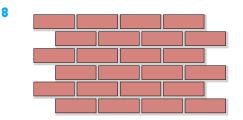
A cattle run is to be built in the shape shown. The run has 4 wooden rails and a post every 2 m.

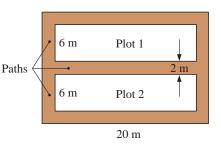
- **a** Find the total length of wooden rails required.
- **b** Find the number of posts required.
- If the rails cost $\pounds 6.80$ per metre and each post costs $\pounds 12$, find the total cost of building the run.
- a Total length of rails $= 4 \times (14 + 10 + 12 + 8)$ m = 176 m
- **b** For the longer fence, $(14 + 10) \div 2 = 12$. But a post is needed at both ends so we need 13 posts. For the shorter fence, $(12+8) \div 2 = 10$, and a post is needed at both ends so we need 11 posts. So, 13 + 11 = 24 posts are needed.
- $= 176 \times \pounds 6.80 + 24 \times \pounds 12$ $= \pounds 1484.80$

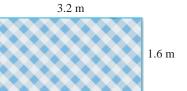
When trying to solve a problem given to you in words, use the following series of steps:

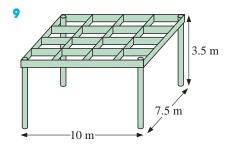

- Step 1: Draw a reasonably large diagram of the described situation.
- Mark clearly all dimensions and other key features on your diagram. Step 2:
- Step 3: Think about what the question is asking and the units you will have to work in.
- Step 4: Set out your answer in a clear and logical fashion.
- Step 5: Write your final answer in a sentence.

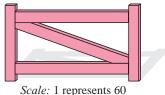
EXERCISE 12G

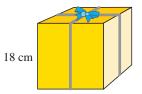

- 1 Martine has a rectangular table cloth with the dimensions shown. She wants to sew lace trimming along its border.
 - a Find the length of the lace required.
 - b If the lace costs €4.65 per metre, find the total cost of the lace Martine needs.
- 2 A tree trunk weighs 3.2 tonnes and can be cut into 80 planks. What is the mass of each plank?
- 3 A farmer fences a 250 m by 400 m rectangular paddock with a 3 strand wire fence.
 - **a** Find the total length of wire needed.
 - Find the cost of the wire if wire costs \$2.40 per metre.


4


A carpenter has to make a window frame with the dimensions shown. What is the total length of timber he requires?


- 5 A supermarket buys cartons of canned tuna. Each carton contains 24 cans and each can weighs 325 g. Find the mass of a full carton in kilograms.
- 6 A bale of lucerne hay weighs approximately 14 kg.
 - a Find the approximate mass carried by a truck loaded with 66 bales of lucerne.
 - **b** Is it carrying more or less than a tonne? Show your working.
- 7 a Henry edges his garden with railway sleepers. If his garden has two plots as shown, find the total length of sleepers required.
 - If each sleeper is 2 m long and weighs 40 kg, find:
 - i the total number of sleepers needed
 - ii the total mass of sleepers.


- a A house-proud couple wish to build a brick fence along the 30 m front of their block of land. If they want 12 rows of bricks and each brick is 20 cm long, find the number of bricks required.
- If each brick weighs 2.5 kg, find the total mass in tonnes of the bricks needed.



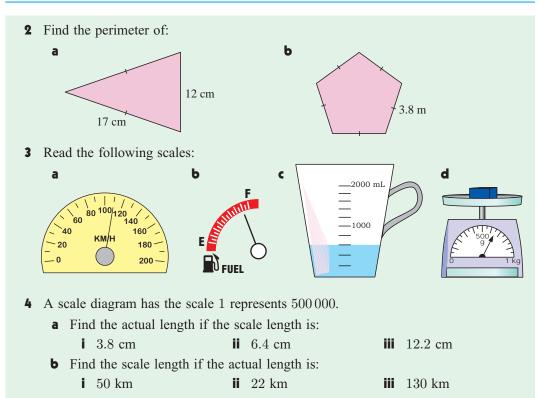
A builder needs to construct a pergola with the dimensions shown. The support posts cost \$15 per metre and the timber for the top costs \$4.50 per metre.

- a Find the total length of timber for the top and hence the cost of this timber.
- **b** Find the cost of the posts.
- Find the total cost of building the frame for the pergola if nails and other extras cost \$27.
- **10** A fish tank weighs 25 kg when empty and 253 kg when full of water. Given that 1 litre of water has a mass of 1 kilogram, how many litres of water have been added to the tank?
- 11 a Using the scale diagram alongside, find the total length of timber required to make the gate frame.
 - **b** If the timber costs \$4.50 per metre, find the total cost of the timber.
- **12** Allowing 20 cm for the bow, what length of ribbon is needed to tie around the cube shaped box shown?

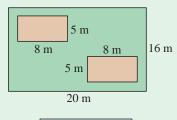
KEY WORDS USED IN THIS CHAPTER

- actual length
- mass
- perimeter
- scale length

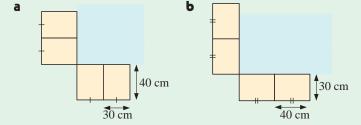
- kilogram
- measure
- rectangle
- square

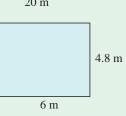

- length
- metre
- scale diagram
- triangle

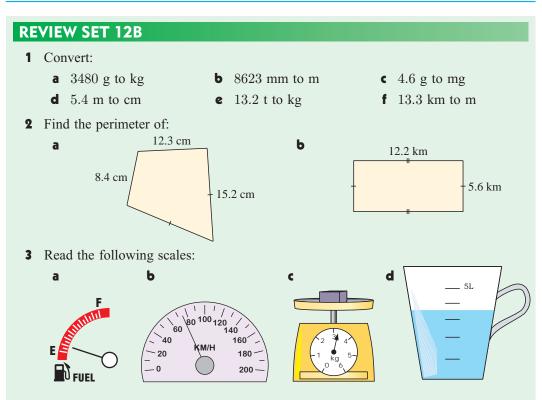
CALCULATING YOUR CARBON FOOTPRINT


Areas of interaction: **Environments, Community and service**

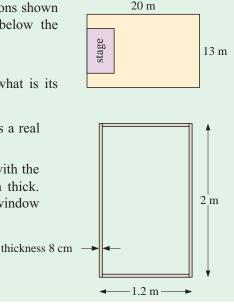
REVIEW SET 12A


- 1 Convert:
 - **a** 356 cm to mm
 - **d** 83 000 kg to t
- **b** 3200 g to kg
- **e** 7.63 m to mm
- **c** 450 m to km
- **f** 630 cm to m




- **5** Kym competes in the 200 metre, 400 metre, 800 metre, 1500 metre, and 5000 metre running events on sports day. How many kilometres does she run in total?
- 6 Find the total mass in kg of 1500 oranges if the average mass of an orange is 180 g.
- **7** If a truck can carry 1400 kg of soil, how many truckloads will be needed to remove 42 tonnes of soil?
- 8 Find the total length of edging required to surround the lawn and two garden beds shown.

9 Rectangular tiles are 40 cm by 30 cm. They are used to form one row around a 6 m by 4.8 m swimming pool. Find the number of tiles needed if they are placed on the orientation:



4 How many 1.8 kg bricks can be carried by a truck which has a load limit of 3.6 tonnes?

Hint: The load limit is the maximum mass the truck is allowed to carry.

- **5** A scale diagram has the scale 1 represents 2500 000.
 - **a** Find the actual length if the scale length is: **i** 4.8 cm **ii** 0.7 cm
 - **b** Find the scale length if the actual length is: **i** 120 km **ii** 98 km
- 6 A rectangular concert hall with the dimensions shown has a frieze running along its wall just below the ceiling.
 - **a** Find the total length of frieze.
 - **b** If the frieze costs €38.80 per metre, what is its total cost?
- 7 A 2.3 cm line on a scale diagram represents a real length of 460 m. What is the scale?
- 8 A window frame is made from pine wood with the dimensions as shown. The timber is 8 cm thick. What is the total length of timber in the window frame?

Directed numbers

A Opposites

- B Directed numbers and the number line
- Using a number line to add and subtract
- D Adding and subtracting negatives
- E Multiplying directed numbers
- F Dividing directed numbers
- G Combined operations
- H Using your calculator

The set of **whole numbers** 0, 1, 2, 3, 4, 5, are useful for solving many mathematical problems. However, there are certain situations where these numbers are not sufficient.

You are probably familiar with the **countdown** for a rocket: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, BLAST OFF!

What comes after zero if we keep counting backwards?

It may seem that we have 'run out' of numbers when we reach zero, but there are many situations where we need to be able to keep counting and where an answer of less than zero has a sensible meaning.

Which of these ideas can you explain, either in words or with a diagram?

- 10 metres below sea level
- owing €30
 a loss of £4500
- 5 degrees below freezing
- 3 floors below ground level

OPENING PROBLEMS

Problem 1:

I had \$15 in my cheque account and had to write a cheque for \$20. How much do I have in my cheque

account now? How much do I need to deposit to have a zero balance?

Problem 2:

A group of student bushwalkers experienced a maximum daily temperature of 21° C. At night, the temperature dropped to 3° C below zero. What change in temperature did they experience?

Problem 3:

A kayaker on Lake Eyre in South Australia is 16 m below sea level. A climber standing on the top of Mt Everest in Nepal is 8848 m above sea level. How much higher is the climber than the kayaker?

The Opening Problems both involve opposites.

These are:

- *having* money in a bank account and *owing* money to a bank account
- temperature *above* zero and temperature *below* zero
- height *above* sea level and height *below* sea level.

DISCUSSION

Prepare a list of *ten* opposites which involve numbers.

Instead of using words to distinguish between opposites, we can use **positive** and **negative** numbers.

NEGATIVE NUMBERS

Negative numbers are written with a negative sign (-) before the number.

For instance:

- '10 metres below sea level' would be written as -10
- 'owing $\in 30$ ' would be written as -30
- '3 floors below ground level' would be written as -3.

In each case a measurement is being taken from a reference position of zero such as sea level or ground level.

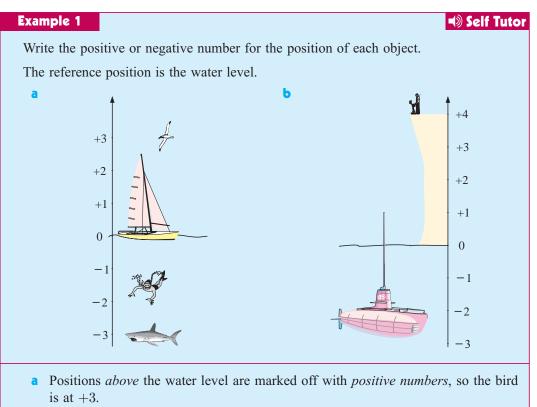
POSITIVE NUMBERS

Positive numbers are the opposite of negative numbers.

They can be written with a **positive sign** (+) before the number, but we normally see them with no sign at all and we *assume* the number is positive.

For instance:

- '10 metres above sea level' would be written as +10 or just 10
- having $\in 30$ would be written as +30
- 3 floors above ground level would be written as +3.


Again, the measurement is being taken from a zero reference position.

Consider again the **Opening Problems**:

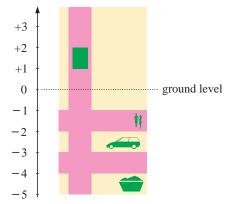
- Owing the bank \$5 would be represented as -5, whereas having a deposit of \$5 would be represented as +5 or just 5.
- A temperature of 21° C above zero would be 21, but 3° C below zero would be -3.
- A height of 16 m below sea level would be −16, whereas 8848 m above sea level would be 8848.

Some common uses of positive and negative signs are listed in the given table:

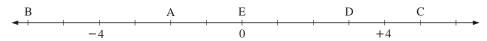
Positive (+)	Negative (–)	Positive (+)	Negative (–)
above	below	fast	slow
increase	decrease	win	lose
profit	loss	north	south
right	left	east	west

The boat is level with the water, so it is at 0.

Positions *below* the water level are marked off with *negative numbers*. The diver is at -1.5 and the shark is at -3.


b The clifftop is at +4, the periscope is at +1, the water is at 0, and the submarine is at -2.

EXERCISE 13A

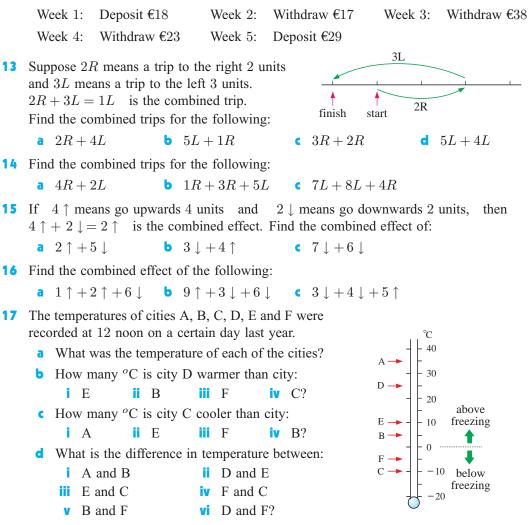

1 Copy and complete the following table:

	Statement	Directed number	Opposite to statement	Directed number
a	20 m above sea level	+20	20 m below sea level	-20
Ь	45 km south of the city			
c	a loss of 2 kg in weight			
d	a clock is 2 min fast			
e	she arrives 5 min early			
f	a profit of \$4000			
9	2 floors above ground level			
h	10°C below zero			
i	an increase of €400			
j	winning by 34 points			

2 Write positive or negative numbers for the position of the lift, the car, the parking attendant, and the rubbish skip. Use the bottom of each object to make your measurements.

3 If right is positive and left is negative, write numbers for the positions of A, B, C, D and E using zero as the reference position.

- 4 Write these temperatures as positive or negative numbers. Zero degrees is the reference point.
 - **a** 11^o above zero **b** 6^o below zero **c** 8^o below zero
 - **d** 29^o above zero **e** 14^o below zero
- 5 Write these gains or losses as positive or negative numbers:
 - a \$30 loss b €200 gain c \$431 loss
- 6 If north is the positive direction, write these positions as positive or negative numbers:
 - a 7 metres north b 15 metres south c 115 metres south
 - **d** 362 metres north **e** 19.6 metres south
- **7** If the ground floor or street level is regarded as zero, write a directed number for the following positions:
 - **a** 6 floors above ground level
 - c 29 floors above ground level
- **b** 3 floors below ground level
- **d** 7 floors below ground level


 ≤ 12 units left

- 4 floors below ground level
- 8 If right is positive, write a number for the position from zero which is:
 - a 7 units left b 5 units right
 - d 9 units right e 23 units left
- **9** State the combined effect of the following:
 - **a** a withdrawal of \$7 followed by a deposit of \$10
 - **b** a $\pounds 7$ withdrawal followed by a $\pounds 6$ withdrawal
 - c a rise in temperature of 13° C followed by a fall of 8° C
 - **d** a fall of 12° C followed by a rise of 7° C
 - e a 4 km trip east followed by a 3 km trip west
 - f a 7 km trip south followed by a 7 km trip north

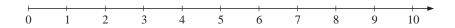
- g going up 5 floors in a lift and then coming down 6 floors
- **h** a loss in mass of 4 kg followed by a gain in mass of 2 kg.
- **10** A baby boy weighed 3409 grams at birth. The record of his weight for the first five days showed the following:

Day 1:28 g lossDay 2:15 g lossDay 3:13 g lossDay 4:17 g gainDay 5:29 g gain

- a Write each day's gain or loss as a positive or negative number.
- **b** What was the baby's weight at the end of the five days?
- 11 Luigi's boat is anchored in a harbour 7 metres from the jetty. As the tide rises and falls, it drifts 3 m away from the jetty, then 5 m towards it, then 6 m away from it. What is the boat's position now?
- 12 Helene has €155 in the bank. How much will be in her account after the following transactions?

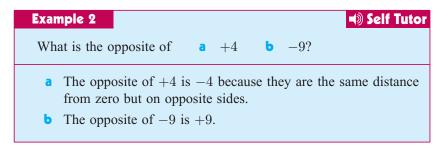
B

DIRECTED NUMBERS AND THE NUMBER LINE


In order to describe situations in which opposites occur, mathematicians introduced **directed numbers**.

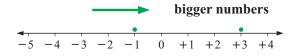
DIRECTED NUMBERS

All negative numbers, zero, and positive numbers form the set of all directed numbers.

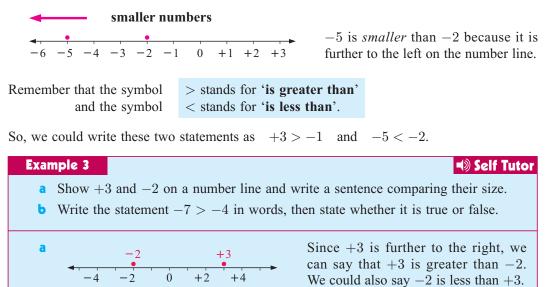

Directed numbers have both size and direction, and they can be illustrated on a number line.

We have used number lines before to place numbers in order. We placed zero on the left and marked numbers off in equal intervals to the right.

Suppose we make a mirror image of the numbers to the right of zero so the number line stretches in both directions. The numbers to the **right of zero** are the positive numbers, and the numbers to the **left of zero** are the negative numbers.


Pairs of numbers like -7 and 7 are exactly the same distance from 0 but on opposite sides, so they are called **opposites**.

COMPARING AND ORDERING NUMBERS


Using the position of numbers on a number line makes it easy to compare their size and arrange them in order.

As you move along the number line from *left* to *right*, the numbers increase in size. The number furthest to the right is the largest.

+3 is *bigger* than -1 because it is further to the right on the number line.

As you move along the number line from *right* to *left*, the numbers decrease in size. The number furthest to the left is the smallest.

b The statement reads 'negative 7 is greater than negative 4'. This is false because -7 is to the **left** of -4, and so it is smaller than -4.

Summary:

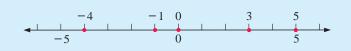
- Positive numbers are to the right of zero. Negative numbers are to the left of zero.
- 5 and -5 are opposites as they are both 5 units from zero but in opposite directions.
- 0 is the only number which is neither positive nor negative.
- 4 is to the right of -1 and 4 > -1. -2 is to the right of -5 and -2 > -5.
- The further to the **right** a number is on the number line, the **greater** its value.
- The further to the left a number is on the number line, the smaller its value.

EXERCISE 13B

Draw a number line to help you with these questions:

1 Write the opposite of these numbers:

	a +8	b -5		c 0	d	11	€ -2
	f +6.4	g $-3\frac{1}{2}$		h 56	i	-23	-23.6
2	Use a number	line to:					
	a increase 2	by 3	b	increase -1 by 3		c	decrease 5 by 2
	d decrease -	-1 by 3	e	increase -4 by 3		f	increase -2 by 1
	g decrease 3	5 by 6	h	decrease -2 by 2		i, i	increase -3 by 5
3	Which is large	r?					
	a +5 or +1	0	b	+6 or -3		c	-4 or +4
	d +7 or -1		e	-6 or -2		f	-5 or -12


Self Tutor

4 Which is smaller?		
a 15 or 12	b 8 or -2	c $-3 \text{ or } 3$
d $-7 \text{ or } -9$	e -2 or 2	f $-6 \text{ or } -6.5$
5 Write <i>true</i> or <i>false</i> for the f	following:	
a $6<-3$	b $13 > -5$	0 > -4
d $7 < -2$	e 11 > -5	f $-8 > -1$
g $-7 > -3$	h $-17 < 1$	-5 > -12
6 Add < or > in the square	to make each statement true:	
a $4 \Box -1$	b −4 □ −11	c 8 □ −8
d −1 □ −11	e −6 □ −8	f $-9 \Box -13$
g 0 \Box -8	h $-6 \Box 0$	$-7 \square -5.5$

Example 4

12

On a number line locate the values of: $\{5, 3, 0, -1, -4\}$

- 7 Draw number lines to show the following sets of numbers. Use a different number line for each set.
 - **a** $\{-2, 0, 3\}$ **b** $\{4, 3, 2, 0, -1, -5\}$
 - c $\{-5, 3, -2, 0, 4, 1\}$ d $\{6, -3, 4, -1, 0, -6\}$
- **8** a Arrange in *ascending* order: $\{-3, 0, -4, -1, 4\}$
 - **b** Arrange in *descending* order: $\{-2, 2, 5, 0, -1\}$
- Four friends have the following bank balances: Monica -\$592, Joey \$311, Rachel \$852 and Ross -\$312. Place them in order of richest to poorest.
- 10 The temperatures of five cities were: Sydney 12° C, New York -3° C, Mexico City 15° C, Moscow -7° C and London 0° C. Place them in order of coldest to hottest.

11 Arrange these numbers from smallest to largest:

a $-5, 8, -2$	b 4, -3	, -4, 0
 c 2.5, −1.2, 4, −3.1 	d -9.5,	-8.9, -10, -9.7
\mathbf{e} $3\frac{1}{2}, -2\frac{1}{4}, 1, -1\frac{1}{5}$	f $-\frac{1}{8}$, -	$-\frac{7}{8}, \frac{5}{8}, -\frac{3}{8}, -\frac{5}{8}$
a Which number is furthest	t from 7?	
3 or 15	ii 10 or -1	-20 or 28
b Which number is furthest	t from $-3?$	
5 or -8	-10 or 6	32 or -28

244 DIRECTED NUMBERS (Chapter 13)

- **13** This number line is vertical. As you go up the numbers increase, and as you go down the numbers decrease. Write the directed number for each of the points marked on the number line, and write true or false for the following statements:
 - aB is higher than DbA < EcD is lower than AdB < C
 - $e C > E \qquad f C < B$
 - **g** B and D are opposites **h** A and E are opposites.
- **14** What number is halfway between the following?
 - a
 0 and 12
 b
 0 and 20
 c
 6 and 10
 d
 1 and 11

 e
 0 and -4
 f
 -2 and 2
 g
 -6 and -2
 h
 -4 and 2

HISTORICAL NOTE

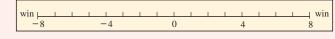
Fibonacci, an Italian mathematician from Pisa, was one of the first scholars of the 13th century to recognise the use of negative numbers.

While he was solving a financial problem he obtained a negative answer. Instead of rejecting this solution as many had before him, he analysed it and realised its significance. He wrote 'this problem is insoluble unless it is conceded that the first man had a debt.'

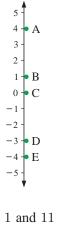
Debts are thus applications of negative numbers.

ACTIVITY 1

DIRECTED NUMBER GAME FOR 2 PLAYERS


You will need:

• 2 different coloured dice showing the numbers 1 to 6. Choose one die to represent the positive numbers 1 to 6 and the other to represent the negative numbers -1 to -6.



- 2 counters
- a number line

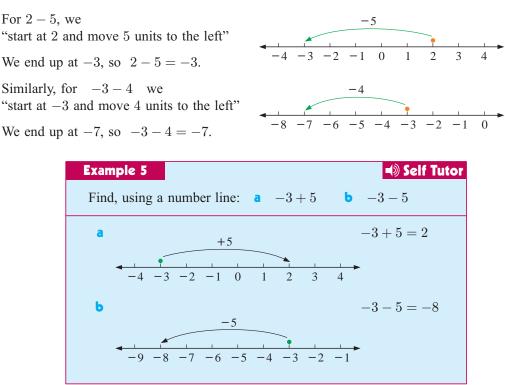
Object of the game: To move your counter over one end of the number line, i.e., > 8 or < -8.

How to play: Start the game with both counters on zero. Take it in turns to throw both dice and move your own counter according to the numbers thrown. Keep going until one player goes over one end. That person wins!

C

USING A NUMBER LINE TO ADD AND SUBTRACT

A number line is useful for adding and subtracting directed numbers.

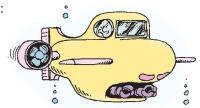

ADDING A POSITIVE

When we **add** a positive number to another, we start at the first number mentioned and then move to the **right** the amount added.

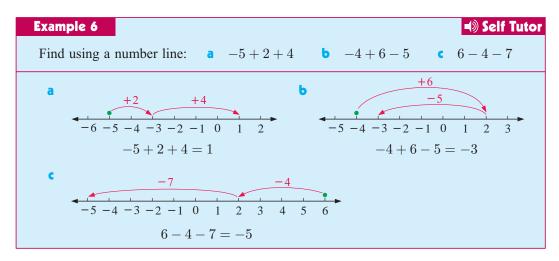
For 5 + 3, we "start at 5 and go 3 units to the right" We end up at 8, so 5 + 3 = 8. Similarly, for -5 + 2 we "start at -5 and go 2 units to the right" We end up at -3, so -5 + 2 = -3. +3 +3 -1 0 1 2 3 4 5 6 7 8 +2-6 -5 -4 -3 -2 -1 0 1 2

SUBTRACTING A POSITIVE

When we **subtract** a positive number from another, we start at the first number mentioned and move the required number of units to the **left**. So, subtraction is the opposite of addition.


EXERCISE 13C

1 Calculate the following **additions** by moving to the **right** along a number line:


a	5 + 3	b	-5 + 3	c	4 + 2	d	-4 + 2
e	-7+7	f	-6 + 6	9	-8 + 8	h	-3 + 3
I	0 + 4	j	0 + 2	k	-9 + 10	I.	-7 + 13
m	-5+8	n	-4 + 10	0	-1 + 9	P	-2 + 7
2 Ca	alculate the following	g su	btractions by mov	ing	to the left along a	nuı	nber line:
a	7 - 4	b	-7 - 4	c	5 - 8	d	-5 - 8
e	0 - 6	f	0 - 3	9	3 - 7	h	-3 - 7
I	6 - 9	j	9 - 6	k	8 - 7	I.	7 - 8
m	-4 - 0	n	-5 - 2	0	3 - 5	P	-1 - 5
3 Ca	lculate the following	g by	moving along a nu	umł	per line:		
a	8 - 3	b	-6 + 8	c	-5 + 3	d	-4 + 4
e	-1 - 3	f	0 - 5	9	-9 + 9	h	-4 + 1
	5 - 5	j	-3 - 2	k	3 - 7	Т	-2 + 6
m	0 + 4	n	-6 + 6	0	0 - 3	P	-8 - 1
4 114	se a number line to s	olv	e the following pro	hlei	ms. •		

4 Use a number line to solve the following problems:

- A mini-submarine is 25 m below sea level and rises 18 m. What is its new depth?
- **b** The temperature overnight was -8° C but it has risen 15° C by noon. What is the temperature at noon?
- A bird gliding 12 m above sea level sees a fish and dives 14 m vertically down to catch it. At what depth was the fish?
- **d** The temperature at dusk was 9°C and it fell by 14°C during the night. What was the lowest temperature reached?

5 Find using a number line:

a $3 - 1 - 4$	b $-2 - 1 - 3$	-3+1+4
d $3-5-1$	<i>2</i> 3+2−7	f $5-4-3$
g $-8-2+2$	h $-1-2-4$	4 - 9 + 2

• Chao has \$10 in his wallet. Dong owes him \$18, but Chao owes Guang \$5. If all debts are paid, how much will Chao have in his wallet?

7 Find using a number line:

a $7+6-2-8$	b $-7 + 11 + 1 - 5$	5-6+2-8
d $-2 - 3 + 8 - 5$	e 4 − 10 + 3 − 2	f $-5 - 2 + 9 - 3$

ACTIVITY 2

Lucky Dip is a game for two people.

How to play:

 Each player draws up a grid like those alongside. This sheet represents their Lucky Dip box containing 16 small bags. Each player marks any 3 squares with the numbers 2, 4, and 5.

2 represents a bag containing \$2, 4 represents \$4, and 5 represents \$5. All the other bags are empty.

PRINTABLE GRIDS (m) Joanne Trov 5 C В В С Α D Α G G 5J К 2 Μ Ν 0 Μ

LUCKY DIP

- 2 Players take turns to pick a bag from their opponent's Lucky Dip box, by calling the letter of a square.
- **3** If a player does not get a bag containing money then he or she loses \$2. If a bag containing money is selected then that amount is gained.
- **4** The player with the most money after 8 selections each is the winner, unless one player has gained all of the opponent's money in less than 8 selections. Each player must have the same number of selections.

Sample game:

Joanne's Lucky Dip box is on the left and Troy's is on the right.

The game ends after 7 selections with Joanne winning.

Set up your own Lucky Dip sheet and play against a partner!

	Selection			Sco	recard
Round	Troy	Joanne		Troy	Joanne
1	G	С		-2	-2
2	P(\$4)	J		2	-4
3	L	K		0	-6
4	А	A(\$4)		-2	-2
5	N	H(\$5)		-4	3
6	М	N		-6	1
7	B(\$5)	F(\$2)		-1	3

ADDING AND SUBTRACTING NEGATIVES

ADDING A NEGATIVE NUMBER

Continuing this pattern gives:

Continuing this pattern gives:

We know that 4+3=7, but what is the value of 4+-3?Consider the following true statements: 4+3=74+2=64+1=54+0=4

As the number being added to 4 decreases by 1, the final answer also decreases by 1.

4 + -1 = 3	compared with	4 - 1 = 3
4 + -2 = 2		4 - 2 = 2
4 + -3 = 1		4 - 3 = 1
4 + -4 = 0		4 - 4 = 0

So, adding a negative number is the same as subtracting a positive number.

For example, 2 + -6 is the same as 2 - 6.

SUBTRACTING A NEGATIVE NUMBER

We know that 4-3=1, but what is the value of 4--3? Consider the following true statements: 4-3=14-2=24-1=34-0=4

Notice that as the number being subtracted decreases by 1, the answer increases by 1.

compared with	4 + 1 = 5
	4 + 2 = 6
	4 + 3 = 7
	4 + 4 = 8
	compared with

So, subtracting a negative number is the same as adding a positive number.

For example, 3 - 5 is the same as 3 + 5.

Example 7	=)) Self Tutor
Simplify and then evaluate:	
a $2 + -5$ b 25	-5 c $-2 + -5$ d -25
a $2 + -5$ b 2	-5 c $-2+-5$ d -25
=2-5 $=2$	+5 = -2-5 = -2+5
= -3 = 7	= -7 = 3

EXERCISE 13D

1 Simplify and then use a number line to evaluate:

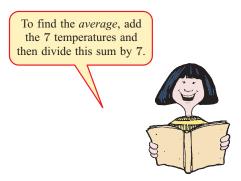
a $7 + -3$	b 73	-7 + -3	d $-3 + -7$
e 3+−7	f 37	g -37	h -73
5 - 11	11 - 5	k 511	115
m -5 + -11	n -511	• $-11 + -5$	p $-11 - 5$
q $-6 + -1$	-2 + -4	6+-2	-5 + -3
u $2 + -6$	V -6 + -4	-6 + -13	x $-15 + -5$

2 A steward working in a hotel starts his day on the ground floor. To fulfil his duties he goes up 7 floors, up 3 floors, down 5 floors, down 6 floors, up 4 floors, down 3 floors, and then up 8 floors. Which floor does he finish on?

3 Simplify if possible, and hence evaluate:

a $-4 + -3$	b 55	-6-2	d 48
€ 8+-1	f 711	g $-2 + -1$	h $6-9$
-6-9	-42	k $16 + -25$	-16 - 25
m $31 + -45$	n 5612	 39 + −15 	p -2116

Self Tutor
b $-25 + -7$
b $-25 + -7$
$= -2 + 5 - 7 {\text{simplifying}}$
= 3 - 7
= -4


4 Simplify and find:

a $21 + 7$	b $11 + -38$	-3 - 2 - 3
d $-5 + -23$	€ 6-115	f $9 - 13 + -8$
g $-1+46$	h $2 + -35$	52 + -3
6-61	k $-72 + 3$	-52 + -6 - 11

5 St Moritz recorded the following maximum temperatures for a week:

Mon 5°C, Tues -3° C, Wed -7° C, Thurs 2°C, Fri 1°C, Sat -4° C, Sun -1° C.

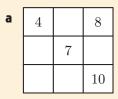
What was the *average* daily maximum temperature for the week?

INVESTIGATION

3			
	4	3	
B)	9	5	
	2	7	

A magic square is one filled with consecutive whole numbers so that each row, column, and diagonal has the same sum.

For example, this magic square contains the numbers 1 to 9 and has the **magic sum** of 15 along every row, column, and diagonal.


What to do:

1 Copy and complete the following magic squares:

8

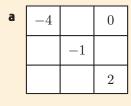
1

6

		7	12
15		9	6
	5		
8	11	2	

- 2 Magic squares may also contain negative numbers.
 - **a** Is the square alongside a magic square? If so, what is the magic sum?
 - **b** Make a new magic square by adding 2 to each number in the magic square given. State the new magic sum.

2	-5	0
-3	-1	1
-2	3	-4


MAGIC SQUARES

- Make a new magic square by subtracting 3 from each number in the magic square given. State the new magic sum.
- **d** Compare the magic sums **a**, **b** and **c**. If you started with the square in **a** and added 3 to each number, can you predict the new magic sum?

Ь

b

3 Copy the following magic squares and try to complete them:

3		-9
-8		
-7	-4	5
6	-1	-6

Ε

MULTIPLYING DIRECTED NUMBERS

We have already seen how to correctly add and subtract negative numbers. In this section we look for rules for their multiplication.

For example, we know that $4 \times 3 = 12$, but how do we calculate:

• 4×-3

• -4×3

3

• $-4 \times -3?$

Consider the following true statements:

$$4 \times 2 = 8$$
$$4 \times 1 = 4$$
$$4 \times 0 = 0$$

 $4 \times 3 = 12$

As the number that 4 is multiplied by decreases by 1, the answer decreases by 4.

If we continue this pattern we get:

 $4 \times -1 = -4$ $4 \times -2 = -8$ $4 \times -3 = -12$

From these examples it seems that a **positive** times a **negative** gives a **negative**.

 $2 \times 4 = 8$

Likewise, from the pattern:

$$1 \times 4 = 4$$

$$0 \times 4 = 0$$

$$-1 \times 4 = -4$$

$$-2 \times 4 = -8$$

$$-3 \times 4 = -12$$

it seems that a **negative** times a **positive** gives a **negative**.

Also, from the pattern:

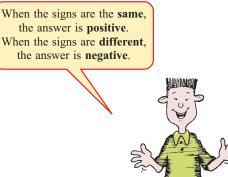
$$-3 \times 3 = -9$$

$$-3 \times 2 = -6$$

$$-3 \times 1 = -3$$

$$-3 \times 0 = 0$$

$$-3 \times -1 = 3$$


$$-3 \times -2 = 6$$

$$-3 \times -3 = 9$$

it seems that a **negative** times a **negative** gives a **positive**.

RULES FOR MULTIPLICATION

- (positive) × (positive) = (positive)
- (positive) \times (negative) = (negative)
- (negative) \times (positive) = (negative)
- (negative) × (negative) = (positive)

Example 9			Self Tutor
Simplify:			
a 2 × 5	b 2×-5	-2×5	d -2×-5
a $2 \times 5 = 10$	b $2 \times -5 = -10$	c $-2 \times 5 = -10$	d $-2 \times -5 = 10$

EXERCISE 13E

1 Simplify:

a	2×3	b	2×-3	c	-2×3	d	-2×-3
e	8×-2	f	8×2	9	-8×2	h	-8×-2
I	7×11	j	-7×-11	k	7×-11	Т	-7×11
m	0×3	n	-2×0	0	-3×-6	P	-5×-5

2 Determine the missing number in each of the following:

- a $-2 \times \Box = -16$
- $d \quad -5 \times \Box = 10$
- **b** $-2 \times \Box = 16$ $\mathbf{c} \quad \Box \times 4 = -12$
- **h** $-4 \times \Box = -20$
- $-4 \times \Box = 20$ $-3 \times \Box = -15$
- k $\Box \times -6 = 18$
- **3** Use a negative sign to help solve the following questions:
 - **a** A gambler loses \$8 per race for seven successive races. How much does he lose in total?
 - **b** A skydiver falls 200 metres per second for 30 seconds. How many metres does he fall?

J. J	
Ste	

 $5 \times \Box = 10$

 $\square \times -4 = 12$

 $3 \times \Box = -15$

 $\Box \times -6 = -18$

Example 10		Self Tuto
Simplify: a -2×5	$b imes -3$ b $(-3)^2$	c $(-2)^3$
a $\underbrace{-2 \times 5}_{= -10} \times -3$ $= 30$	b $(-3)^2$ = -3×-3 = 9	$ \begin{array}{c} \mathbf{c} & (-2)^3 \\ = & -2 \times -2 \\ = & 4 \\ = & -8 \end{array} \times -2 $
4 Simplify:		
a $3 \times -2 \times 5$	b $-2 \times -1 \times -3$	$-1 \times 3 \times -4$
d $(-7)^2$	$(-1)^3$	f $4 \times -1 \times -5$
$5 \times -2 \times -4$	h $-7 \times -2 \times 2$	$(-2)^3$
•		
$-2 imes 5^2$	k $-2 \times (-3)^2$	$(-2)^2 \times -6$
5 Do $(-2)^2$ and -2^2	have the same value?	
6 Calculate:		
a $(-1)^2$	b $(-1)^3$	$(-1)^4$
d $(-1)^5$	 (−1)⁶ 	f $(-1)^7$

What do you notice?

DIVIDING DIRECTED NUMBERS

In this section we look for rules for the division of negative numbers.

We know that $12 \div 4 = 3$, but how do we calculate: • $12 \div -4$

- $-12 \div 4$
- $-12 \div -4?$

The rules for **division** are identical to those for multiplication. This is not surprising because multiplication and division are **inverse operations**.

For example, \div by 2 is the same as \times by $\frac{1}{2}$.

RULES FOR DIVISION

(positive) ÷ (positive) = (positive) (positive) ÷ (negative) = (negative) (negative) ÷ (positive) = (negative) (negative) ÷ (negative) = (positive) The division of numbers with **like** signs gives a **positive**. The division of numbers with **unlike** signs gives a **negative**.

Example 11		Self Tutor
Calculate:		
a −6÷2	b 8÷−4	$ -\frac{-14}{-2} $
a $-6 \div 2 = -3$	b $8 \div -4 = -2$	c $\frac{-14}{-2} = 7$

EXERCISE 13F

1 Calculate:				
a $14 \div 7$	b 14	$l \div -7$	c $-14 \div 7$	d $-14 \div -7$
e 30 ÷ 5	f —	$30 \div -5$	g $-30 \div 5$	h $30 \div -5$
$8 \div 8$	j 8	$\div -8$	$k -8 \div 8$	$-8 \div -8$
$24 \div 4$	n 24	$4 \div -4$	• $-24 \div -4$	p $-24 \div 4$
2 Calculate:				The fraction
a $\frac{12}{3}$	b $\frac{-12}{3}$	$\frac{12}{-3}$	d $\frac{-12}{-3}$	bar acts like a division sign!
	f $\frac{22}{-2}$	$\frac{-22}{2}$	h $\frac{-22}{-2}$	A A A A A A A A A A A A A A A A A A A
i $\frac{18}{9}$	$\frac{18}{-9}$	$ \frac{-18}{-9} $	$\frac{-18}{9}$	

- **3** Find the missing number in each of the following:
 - a $24 \div \Box = -4$ b $24 \div \Box = 4$

 d $-18 \div \Box = -9$ e $-27 \div \Box = -3$

 g $\Box \div -5 = 7$ h $\Box \div -5 = -7$

 j $\Box \div -2 = 8$ k $\Box \div 3 = -5$

 m $\Box \div -4 = -4$ n $\Box \div -4 = 4$

 p $-7 \div \Box = 7$ q $\Box \div \Box = 1$
- 4 Use a negative sign to help solve the following questions:
 - a A company owned equally by four people has a debt of \$320 000. What is each person's share of the debt?
 - One night in Siberia the temperature drops 18°C in six hours. What is the average temperature change per hour?

The *average* temperature change is the total temperature change divided by the number of hours.

 $-18 \div \Box = 9$

 $-27 \div \Box = 3$

 $\Box \div -2 = -8$

 $\Box \div -3 = 5$

• $7 \div \Box = -7$ r $\Box \div \Box = -1$

COMBINED OPERATIONS

The order of operations rules also apply to negative numbers.

- Brackets are evaluated first.
- Exponents are calculated next.
- Divisions and Multiplications are done next, in the order that they appear.
- Addition and Subtractions are then done, in the order that they appear.

Example 12	Self Tutor	
Use the correct order of a $5 + -8 \times 3$	Toperations rules to calculate: b $-5 - 15 \div -5$	Remember to use
a $5 + -8 \times 3$ = $5 + -24$ = $5 - 24$ = -19	{multiplication first} {simplify}	BEDMAS!
b $-5 - 15 \div -5$ = -53 = $-5 + 3$ = -2	{division first} {simplify}	

EXERCISE 13G

- 1 Find, using the order of operations rules:
 - **b** $-2 3 \times -4$ **a** $3 + -7 \times 2$
 - $-4 18 \div 3$
 - $e -10 + 2 \times -4$
 - $(8-12) \times 3-7$
 - $8 12 \times 3 7$

- **d** $(5-10) \times (3-5)$ f $3 \times -4 + -5 \times -2$ **h** $8 - 12 \times (3 - 7)$ $7-2 \times -3 + 4 \times -5$
- **2** Abidin's company makes a \notin 70 000 loss per month for four months and then a \notin 40 000 profit for each of the next eight months. What was the year's result?
- **3** Debbie's Dresses show the following sales record over a six week period:

Week 1:	\$1214 profit	Week 2:	\$867 profit	Week 3:	\$126 loss
Week 4:	\$992 profit	Week 5:	\$543 loss	Week 6:	\$2150 profit.

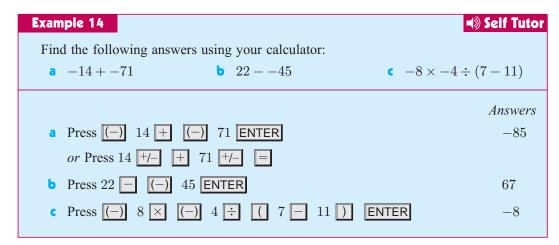
- **a** What is Debbie's overall profit or loss during this period?
- What is Debbie's average weekly earnings during this period? Ь
- 4 The temperature of a bottle of liquid is 18° C. The bottle is placed in a freezer that cools the liquid at 5° C per hour. What is its temperature after 4 hours?
- 5 To explore for gold, a mining company uses a drilling rig to take core samples from below the ground. Gold samples were found at the levels shown in the table:
 - **a** Which sample is closest to ground level?
 - **b** Which sample is the deepest?
 - What is the difference in depth between sample B and D?
 - **d** The cost of drilling is $\pounds 600$ per m. What is the cost of taking sample A?

Sample	Level
А	-113 m
В	-42 m
С	-119 m
D	-78 m

Example 13	Self Tutor	F
Calculate:		11
a $\frac{5 \times -12}{7-3}$	b $\frac{-36}{-3 \times -4}$	d
7-3	$\overline{-3 \times -4}$	
$a \qquad \frac{5 \times -12}{7-3}$	$\mathbf{b} \frac{-36}{-3 \times -4}$	
$=\frac{-60}{4}$	$=\frac{-36}{12}$	
= -15	= -3	
6 Calculate:		

For more complicated	
fractions, work out the	
numerator and the	
denominator first, and	
then divide.	

a $\frac{3 \times -2}{6}$	b $\frac{-4 \times -2}{-8}$	$\frac{3 \times -4}{6}$	d $\frac{12}{-2 \times -3}$
$e \ \frac{3 \times -5}{7-2}$	f $\frac{-3 \times -4}{5-1}$	$\frac{-3\times-6}{5-7}$	h $\frac{3 \times -6}{-2 \times 3}$


USING YOUR CALCULATOR

Scientific calculators have a (-) or +/- key to specify a negative number.

On most calculators we press this key *before* the number, for example, (-) 2.

On some older calculators, however, we press it *after* the number, for example, 2 + -.

You will need to check what keys your calculator has and the sequence in which they need to be pressed.

EXERCISE 13H

1 Use your calculator to evaluate:

a	-29 + 51 - 36	Ь	-2037 + 53	C	-41 - 35 + 28
d	-2971 - 25	e	17×-25	f	$-2100\div30$
9	$-30 \div -5 \times -4$	h	$-10\times24\div158$	I.	$-450\times4\div-18$

- 2 Solve the following problems using your calculator:
 - a In windy conditions a helicopter rises 30 m, falls 45 m, rises 20 m, falls 10 m, rises 15 m, then falls 12 m. How far is it now above or below its original position?
 - Lumina has €673 in the bank and she makes the following transactions: a withdrawal of €517, a deposit of €263, a deposit of €143, and a withdrawal of \$317. What is her new bank balance?
 - Mr Jones owes £150 to each of 17 creditors. How much does he owe altogether?
 - d Abdul wanted to buy a nice car, so he saved RM 240 per week for 5 years. How much extra money does he need to borrow to buy a car valued at RM 86 000?

KEY WORDS USED IN THIS CHAPTER

- addition
- inverse operation
- directed number
- multiplication

• opposite

- number line
- subtraction

REVIEW SET 13A

- **1 a** Evaluate 3-5 using a number line.
 - **b** Insert an inequality symbol to make the following statement true: $7 \Box 12$
 - Evaluate $(-1)^3$.
 - **d** Arrange in ascending order: $\{1, -3, 0, -2, -5, 4, 3\}$
 - e State the combined effect of borrowing 8 books and returning 4.
 - **f** Use a number line to decrease 1 by 4.
 - **g** Simplify -6×2 .
 - **h** What is the result of subtracting -7 from 15?

i Simplify
$$\frac{-12}{-4}$$
.

- **2** a Find $(-3)^3$.
 - **b** Simplify $4 \times (-1)^2$.
 - **c** Evaluate 6 11 2.
 - **d** Copy and complete: negative \times negative =
 - e Decrease 4 by 6.
 - f Find 17 22.
 - **g** By what must I divide -8 to obtain 2?
 - **h** Insert > or < between -6 and 0 to make a true statement.
 - I Simplify $\frac{(-2)^2}{-4}$.
- 3 a Xuen's business has \$7500 in the bank. She must pay each of her 7 employees a wage of \$327 per week for 3 weeks. How much money will be remaining in the bank?
 - **b** Which is the greater distance: moving from 63 metres below sea level to 33 metres above sea level, or moving from 289 metres below sea level to 365 metres below sea level?

REVIEW SET 13B

- **1 a** State the opposite of going up 4 flights of stairs.
 - **b** Simplify -7-2 using a number line.
 - Write down 3 consecutive directed numbers, the smallest being -4.
 - **d** Find 5-8 using a number line.

- division
- negative number
- positive number

- Use a number line to increase -9 by 11.
- f Simplify $-(-2)^2$.
- **g** Arrange in ascending order: $\{-6, 5, 0, -2, -4\}$
- **2** Calculate:

а	-5 + 12	b	-3 - 8	C	15 + -6 - 4
d	$\frac{3\times-6}{4-2}$	e	$\frac{-4 \times -8}{16}$	f	$\frac{43-7}{-82}$

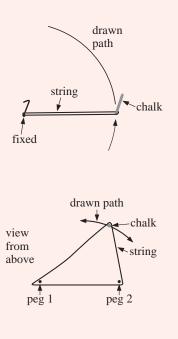
3 a What is the combined effect of depositing €83 and withdrawing €57?

b If ground level is marked as 0 and the top of a 2 metre high fence is assigned the integer 2, what integer would be assigned to:

- i a shrub 1 metre high ii a 10 m tall tree
- iii the bottom of a well 15 m below ground level?
- A shopkeeper bought a refrigerator for $\pounds 575$ and increased the price by $\pounds 90$ to make a profit. He then gave a discount of $\pounds 55$. What was the final selling price of the refrigerator?
- **d** A person weighing 127 kg wishes to reduce his weight to 64 kg in 9 months. What average weight reduction is needed each month to achieve his aim?

ACTIVITY

DRAWING A CIRCLE USING A PIECE OF STRING


Before you begin this activity, ask your teacher where there is a suitable area of concrete which you can draw on with chalk.

What to do:

- **1** Take a piece of string about 1 metre long and tie its ends together.
- **2** Place a peg at one end of the loop and a piece of chalk at the other end, as shown.
- **3** Hold the peg still on the ground. Keep the string taut while moving the chalk. The chalk will trace a circle with the peg at its centre.

Extension:

- 4 Place your string loop over two pegs. Ask a friend to help you keep the pegs still. Keep the string taut while moving the chalk.What shape is traced out?
- **5** Experiment with the same piece of string, putting the pegs closer together, then putting the pegs further apart. What effect does this have on the shape formed?

Chapter

Percentage

- **A** Percentages
- B Converting fractions to percentages
- C Converting percentages to fractions
- Converting decimals to percentages
- E Converting percentages to decimals
- F Plotting numbers on a number line
- G Shaded regions of figures

OPENING PROBLEMS

Problem 1:

Mahari has a collection of blue and red beads. She wants to string them together to form a bracelet. Can you write the number of red beads compared with the total number of beads as:

- a fraction
- a percentage?

Problem 2:

- If a store advertises a 25% off sale, what percentage of the normal cost of an item would you have to pay?
- Can you write the amount you would have to pay as a fraction of the usual amount?

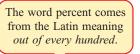
PERCENTAGES

From the chapter on fractions, you might remember the difficulty of comparing some fractions.

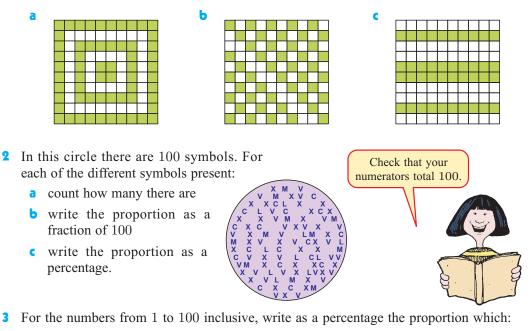
Fractions with the same denominators like $\frac{1}{5}$, $\frac{3}{5}$, $\frac{4}{5}$ and $\frac{8}{5}$ were easy to compare but fractions with different denominators like $\frac{1}{4}$, $\frac{3}{10}$, $\frac{7}{25}$ or $\frac{37}{20}$ needed to first be converted to fractions with the same denominator.

Percentages are special kinds of fractions because their denominator is always 100.

Rather than write the fraction $\frac{12}{100}$, we would write 12%.


 $100\% = \frac{100}{100} = 1$, so 100% represents the whole amount.

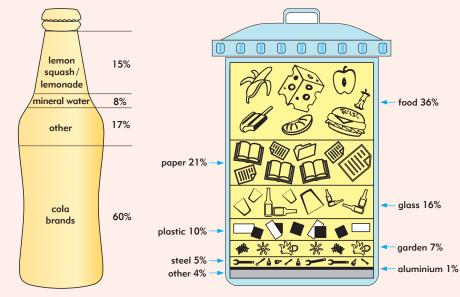
Percentages are comparisons of a portion with the whole amount, which we call 100%.


For example, $12\% = \frac{12}{100}$, and means '12 out of every 100'.

EXERCISE 14A

- 1 In each of the following patterns there are 100 tiles. For each pattern:
 - i write the number of coloured tiles as a fraction of the total, leaving your answer with the denominator 100
 - ii write a percentage which shows the proportion of squares shaded.

- a are odd
- c are multiples of 4
- *c* contain the digit 1
- g are prime numbers


- **b** are exactly divisible by 5
- **d** can be divided by 10 exactly
- f have only 1 digit
- **h** are composite numbers.

ACTIVITY 1

CATCHING ATTENTION WITH PERCENTAGE

Here are some examples of eye-catching graphs which use percentages to create an impact.

Sales of all carbonated softdrinks

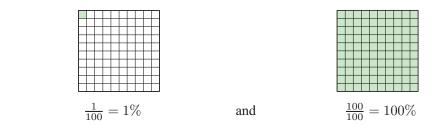
Contents of a garbage can

What to do:

Think of some eye-catching ways you could present different types of information in percentage form. Remember when you represent a percentage, you need to give a symbol or statement which explains what the whole quantity is.

ACTIVITY 2

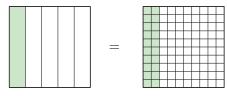
EVERYDAY USE OF PERCENTAGE


What to do:

- **1** Read the following everyday examples of the use of percentages:
- In my street 25% of the homes have roses growing in the front garden.
- Sixty five percent of students at my school voted for a greater variety of fresh fruit in the school canteen.
- Twenty seven percent of primary school age children do not eat fruit and vegetables.
- Our netball goal shooter Alice had a 68% accuracy rate for the whole season.
- Sarah improved by 10% in her times table tests.
- Our country's unemployment rate dropped to 8.1%.
- Last year over 52% of 5-14 year old children living in Switzerland played sport outside school hours.
- House prices near the beach increased by 15% in the last year.
- Nearly 27% of the population visited a museum in 2008.
- The number of children attending the local cinema during the school holidays has dropped 12% on last year's attendance.
- The humidity at 9 am was 46% and at 3 pm it was 88%.
- After the weekend rainfalls the reserviour was at 75% capacity.
- **2** For each of the above examples, suggest how and why these percentages may have been worked out.
- **3** What is a census? How is a census conducted? Why is a census conducted? What types of questions may be asked? Why are percentages important here?
- 4 What census do schools conduct, and why?

CONVERTING FRACTIONS TO PERCENTAGES

If an object is divided into 100 equal parts then each part is 1 percent and is written as 1%.



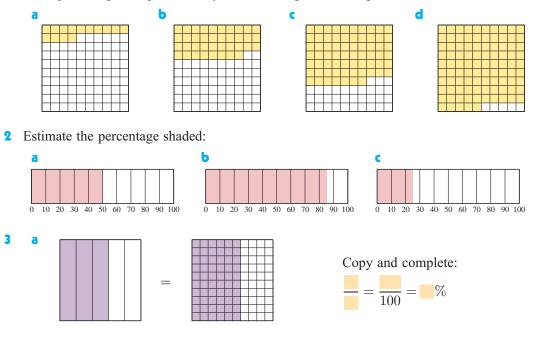
Most common fractions and decimal fractions can be changed into percentage form by first converting into an equal fraction with a denominator of 100.

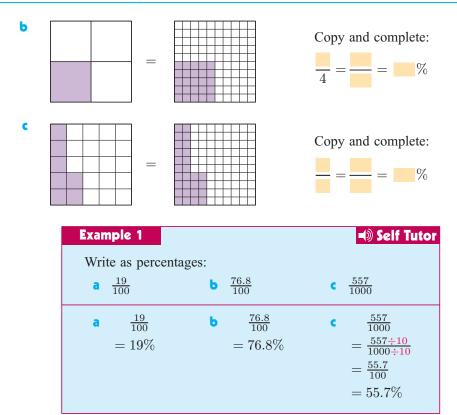
For example:

Thus

B

The shaded part of both squares is the same.


In the first square $\frac{1}{5}$ is shaded.


In the second square $\frac{20}{100}$ is shaded.

So,
$$\frac{1}{5} = \frac{20}{100} = 20\%$$
.

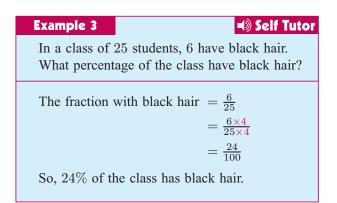
EXERCISE 14B

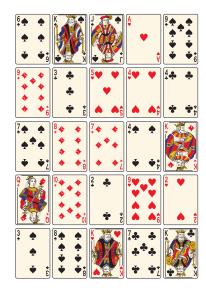
1 What percentage is represented by the following shaded diagrams?

4 Write the following fractions as percentages:

a	$\frac{31}{100}$	Ь	$\frac{3}{100}$	C	$\frac{37}{100}$	d	$\frac{54}{100}$
e	$\frac{79}{100}$	f	$\frac{50}{100}$	9	$\frac{100}{100}$	h	$\frac{85}{100}$
i.	$\frac{6.6}{100}$	j	$\frac{34.5}{100}$	k	$\frac{75}{1000}$	J.	$\frac{356}{1000}$

Example 2		Self Tutor
Write as percentages:		
a 2/5	b $\frac{13}{25}$	
a $\frac{2}{5}$	b $\frac{13}{25}$	
$=\frac{2\times20}{5\times20}$	$=\frac{13\times4}{25\times4}$	
$=\frac{40}{100}$	$=\frac{52}{100}$	
=40%	=52%	


5 Write the following as fractions with denominator 100, and then convert to percentages:


- **6** Write these statements in full:
 - a Fourteen percent means fourteen out of every
 - **b** If 53% of the students in a school are girls, 53% means the fraction $\frac{\dots}{\dots}$.
- 7 Refer to the illustration given and then complete the table which follows:

		Students	Number	Fraction	Fraction with	Percentage
_					denom. 100	
	a	wearing shorts				
	Ь	with a ball				
	C	wearing skirts				
	d	wearing shorts and with a ball				
	e	wearing track pants, baseball cap				
		and green top				
	f	wearing shorts or track pants				
	9	every student in the picture				

- 8 In a class of 25 students, 13 have blue eyes. What percentage of the class have blue eyes?
- 9 There are 35 basketball players in the Tigers club. 14 of them are boys. What percentage are girls?

A pack of 52 playing cards has been shuffled. You can view the whole pack by clicking on the icon. Suppose the 25 cards shown are dealt from the pack.

hearts

picture cards

- a What percentage of the cards shown are:
 - i black
 - iv spades?
- If an ace is 1 and picture cards are higher than 10, what percentage of the cards shown are:
 - 10 or higher 15 or lower
 - iii higher than 5 and less than 10?
- In the full pack of cards, what percentage are:
 - i red ii diamonds
 - either spades or clubs?

C

10

CONVERTING PERCENTAGES TO FRACTIONS

Percentages are easily converted into fractions. We first write the percentage as a fraction with a denominator of 100, and then express the fraction in its lowest terms.

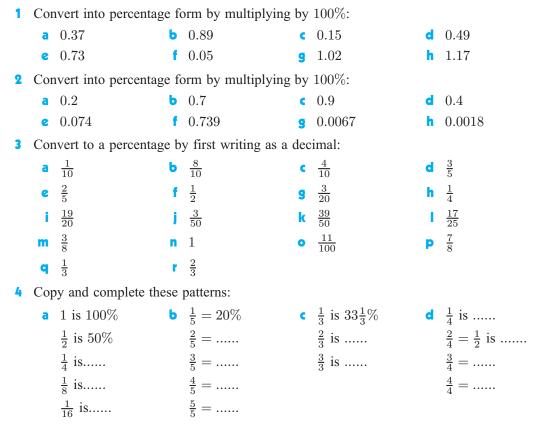
Example 4 Express as fraction a 70% a 70% $= \frac{70}{100}$ $= \frac{70 \div 10}{100 \div 10}$ $= \frac{7}{10}$	Constant ions in lowest terms: b 85% $= \frac{85}{100}$ $= \frac{85 \div 5}{100 \div 5}$ $= \frac{17}{20}$	b	nvert to a fraction with enominator 100, then write in simplest form.
	ion in lowest terms:	007	
a 43% e 90%	b 37% f 20%	c 50% g 40%	d 30% h 25%
i 75%	95 %	k 100%	3%
m 5%	n 44%	• 37%	p 80%
q 99%	r 21%	s 32%	t 15%
u 200%	▼ 350%	w 125%	x 800%

Example 5		Self Tutor
Express 2.5% as a fraction in lowest terms.	2.5% = $\frac{2.5}{100}$ = $\frac{2.5 \times 10}{100 \times 10}$ = $\frac{25}{1000}$ = $\frac{25 \div 25}{1000 \div 25}$ = $\frac{1}{40}$	{to remove the decimal}

2 Write as a fraction in lowest terms:

a 12.5%	b 7.5%	c 0.5%	d 17.3%
e 97.5%	f 0.2%	g 0.05%	h 0.02%

To write a decimal number as a percentage we multiply it by 100%.

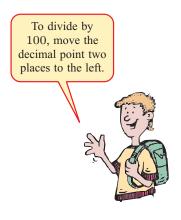

Since $100\% = \frac{100}{100} = 1$, multiplying by 100% is the same as multiplying by 1. We therefore do not change the value of the number.

Example 6	Self Tutor	Remember that
Convert to a percentage	e by multiplying by 100%:	100% = 1.
a 0.27	b 0.055	A CONTRACTOR OF THE OWNER OF THE
a 0.27	b 0.055	
$= 0.27 \times 100\%$	$=0.055 \times 100\%$	
=27%	= 5.5%	

Another way of converting a fraction to a percentage is to first convert it to a decimal.

Example 7	Self Tutor
Change to percentages b	by multiplying by 100%:
a $\frac{4}{5}$	b $\frac{3}{4}$
a <u>4</u> 5	b <u>3</u>
= 0.8	= 0.75
$= 0.8 \times 100\%$	$= 0.75 \times 100\%$
= 80%	= 75%
= 80%	= 1070

EXERCISE 14D



CONVERTING PERCENTAGES TO DECIMALS

To write a percentage as a decimal number, we divide by 100%.

To achieve this we can first write the percentage as a common fraction with denominator 100.

Example 8	🔊 Self Tutor
Write as a decimal:	
a 21%	b $12\frac{1}{2}\%$
a 21%	b $12\frac{1}{2}\%$
$=\frac{21}{100}$	= 12.5%
$= \frac{21}{100} \\ = \frac{21}{100}$	$=\frac{12.5}{100}$
= 0.21	$=\frac{12.5}{100}$
	= 0.125

Percentage	Common	Decimal	Percentage	Common	Decimal
	Fraction	Fraction		Fraction	Fraction
100%	1	1.0	5%	$\frac{1}{20}$	0.05
75%	$\frac{3}{4}$	0.75	$33\frac{1}{3}\%$	$\frac{1}{3}$	$0.\overline{3}$
50%	$\frac{1}{2}$	0.5	$66\frac{2}{3}\%$	$\frac{2}{3}$	$0.\overline{6}$
25%	$\frac{1}{4}$	0.25	$12\frac{1}{2}\%$	$\frac{1}{8}$	0.125
20%	$\frac{1}{5}$	0.2	$6\frac{1}{4}\%$	$\frac{1}{16}$	0.0625
10%	$\frac{1}{10}$	0.1	$\frac{1}{2}\%$	$\frac{1}{200}$	0.005

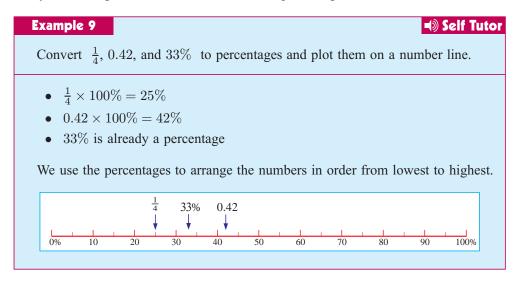
It is worthwhile remembering the conversions in the following table:

EXERCISE 14E

2

Write as a decimal:			
a 50%	b 30%	c 25%	d 60%
e 85%	f 5%	g 45%	h 42%
15%	100%	k 67%	125%
Write as a decimal:			
a 7.5%	b 18.3%	c 17.2%	d 106.7%
e 0.15%	f 8.63%	g $37\frac{1}{2}\%$	h $6\frac{1}{2}\%$
$\frac{1}{2}\%$	$1\frac{1}{2}\%$	$\frac{3}{4}\%$	$4\frac{1}{4}\%$

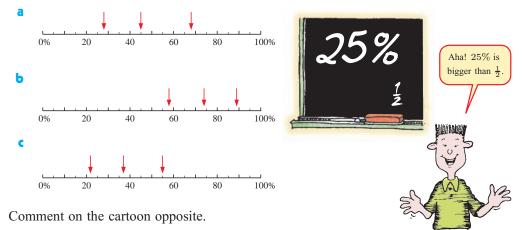
3 Copy and complete the table below:


	Percent	Fraction	Decimal		Percent	Fraction	Decimal
а	20%		0.2	9			0.35
ь	40%	$\frac{2}{5}$		h	12.5%		
c			0.5	i.		$\frac{5}{8}$	
d		$\frac{3}{4}$		j	100%		
e			0.85	k		$\frac{3}{20}$	
f		$\frac{2}{25}$		Т			0.375

- **a** Write 45% as a fraction and as a decimal. The fraction must be in simplest form.
 - **b** Write $\frac{7}{25}$ as a decimal and as a percentage.
 - Write $\frac{1}{5}\%$ as a decimal number and as a fraction.
 - **d** Write 250% as a decimal and as a fraction.

PLOTTING NUMBERS ON A NUMBER LINE

Plotting numbers on a number line can be difficult, especially when the numbers are given as a mixture of fractions, decimals, and percentages. However, we can make the comparison easier by converting all fractions and decimals to percentages.

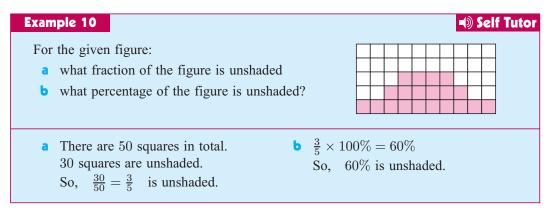


EXERCISE 14F

3

- 1 Convert each set of numbers to percentages and plot them on a number line:

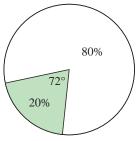
- $\frac{3}{4}, 0.65, 42\%$
- a $\frac{3}{5}$, 70%, 0.65b 55%, $\frac{9}{20}$, 0.83c 0.93, 79%, $\frac{17}{20}$ d 0.85, $\frac{3}{4}$, 92%e $\frac{27}{50}$, 67%, 0.59f 47%, 0.74, $\frac{18}{30}$ **h** 0.39, 58%, $\frac{7}{20}$, $\frac{2}{5}$ **i** $\frac{5}{8}$, 73%, $\frac{13}{20}$, 0.47
- **2** Write each of the following number line positions as fractions with denominator 100, as decimals, and also as percentages:



G

SHADED REGIONS OF FIGURES

When we shade regions of figures to illustrate percentages, it is important that the region is the correct size.


In some cases we may divide the figure into a number of equal parts, and then shade the appropriate number of them.

When we divide up a circle, we need to remember there are 360° in a full turn.

Suppose we wish to shade 20% of a circle.

If 100% is 360° then 1% is 3.6° and so 20% is 72° .

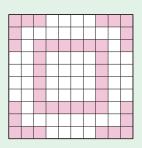
EXERCISE 14G

1 Copy and complete the following table, filling in the shading where necessary:

	Figure	Fraction shaded	Percentage shaded	Percentage unshaded
a				ITABLE KSHEET
b		$\frac{3}{4}$		*
c				

	Figure	Fraction shaded	Percentage shaded	Percentage unshaded
d			25%	
e				30%
f		$\frac{1}{6}$		

- 2 Construct a square with 10 cm sides. Divide it into 100 squares with 1 cm sides.
 - a How many squares must you shade to leave 65% unshaded?
 - **b** In lowest terms, what fraction of the largest square is then unshaded?
- 3 Construct a rectangle 10 cm by 5 cm. Divide it into 1 cm squares. Shade 7 squares blue, 9 squares red, and 20 squares yellow. What percentage of the rectangle is:
 - a red b blue c unshaded d either red or blue?
- Use a compass to draw a circle.
 Colour 50% of your circle red, 25% blue, 10% orange, 5% green, 5% purple, 5% yellow.
 What fraction of the whole circle is now:
 - a blue b red c orange
 - **d** orange or blue **e** red or purple or yellow **f** coloured?
- **5** Divide a circle into 5 equal sectors of 20%. Colour $\frac{1}{5}$ of the circle red, 40% yellow, $\frac{1}{5}$ blue, and 20% green. If you drew 4 such identical circles:
 - a what percentage of *all* the circles would be i blue ii red
 - **b** what fraction of the 4 circles would be yellow?
- 6 Click on the icon for a worksheet which gives more practice questions like those in question 1.


KEY WORDS USED IN THIS CHAPTER

- decimal
- lowest terms
- denominator
- number line
- fraction
- numerator

• percentage

REVIEW SET 14A

- 1 In the following pattern there are 100 tiles.
 - **a** Write the number of coloured tiles as a fraction of 100.
 - **b** Write the number of coloured tiles as a percentage of the total number of tiles.

- **2** Find the percentage of the numbers from 1 to 100 inclusive, which are exactly divisible by 12.
- **3** What percentage of the diagram is unshaded?

- **4 a** Write $\frac{3}{4}$ as a percentage.
 - **b** Write 66% as a fraction in lowest terms.
 - **c** Convert 0.125 into a percentage.
 - **d** Write 82% as a decimal.
- **5** a Write $\frac{7}{25}$ with a denominator of 100.
 - **b** Change $\frac{1}{3}$ to a percentage.
 - **c** Convert 2.15 into a percentage.
- In a group of 40 children, 14 are allergic to peanuts. What percentage of the group are not allergic to peanuts?
- 7 Write as a decimal:
 - a 81% b 10.8% c $8\frac{1}{2}\%$
- 8 Write $\frac{3}{4}$, 0.78 and 72% as percentages and then plot them on a number line.
- Write the number line positions indicated as fractions with denominator 100, as decimals, and using % notation:

- 10 Construct a square with 5 cm sides. Divide it into 1 cm squares.
 - a How many squares must you shade in order to leave 20% unshaded?
 - **b** In lowest terms, what fraction of the original square is then unshaded?

REVIEW SET 14B

- 1 In the following pattern there are 100 symbols.
 - a Count the number of each type of symbol.
 - **b** Write the number of each type as a fraction of the total.
 - Write the number of each type as a percentage of the total.

Х	\vee	\vee	Х	\vee	\vee	Х	\vee	\vee	Х
\vee	Х	\vee	\vee	Х	\vee	\vee	Х	\vee	\vee
\vee	\vee	Х	\vee	\vee	Х	\vee	\vee	Х	\vee
Х	\vee	\vee	×	\vee	\vee	X	$^{\vee}$	\vee	X
\vee	Х	\vee	\vee	Х	\vee	\vee	Х	\vee	<
\vee	\vee	Х	\vee	\vee	×	\vee	\vee	X	<
Х	\vee	\vee	Х	\vee	\vee	Х	\vee	\vee	×
\vee	Х	\vee	\vee	Х	\vee	\vee	Х	\vee	<
\vee	\vee	Х	\vee	\vee	Х	\vee	\vee	Х	\vee
Х	\vee	\vee	Х	\vee	\vee	Х	\vee	\vee	Х

2 Find the percentage of numbers from 1 to 100 inclusive, which contain the digit 4.

- **4 a** Write 0.47 as a percentage.
 - **b** Write 40% as a fraction in lowest terms.
 - Write $\frac{2}{3}$ as a percentage.
 - **d** Write $12\frac{1}{2}\%$ as a decimal.
- **5** Write the following fractions as percentages:

a
$$\frac{27}{100}$$
 b $\frac{3.5}{100}$ **c** $\frac{18}{25}$ **d** $\frac{11}{20}$

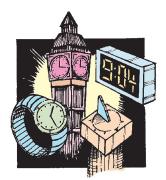
• 45 students decided to attend the annual quiz night. 27 of them won at least one prize during the night. What percentage of the students won at least one prize?

7 Write as a fraction in lowest terms:

```
a 16\% b 250\% c 8.5\% d 0.01\%
```

- **8 a** Convert 0.45 to a percentage.
 - **b** Write 5.79% as a decimal.
- **9** Convert to percentages and plot on a number line:
 - **a** $\frac{2}{5}$, 0.75, and 56% **b** $\frac{1}{8}$, 52%, and 0.8
- **10** Use a compass to draw a circle. Divide the circle into 8 equal sectors of 12.5%. Colour $\frac{1}{8}$ of the circle blue, 25% red, $\frac{3}{8}$ white and $\frac{1}{4}$ green. If you drew 4 such identical circles:
 - a what percentage of all 4 circles would be white
 - **b** what fraction of all 4 circles would be red?

Time and temperature


- A Time lines
- B Units of time
- C Differences in time
- D Reading clocks and watches
- E Timetables
- F Time zones
- G Average speed
- H Temperature conversions

276 TIME AND TEMPERATURE (Chapter 15)

For most of us, time seems to control our lives.

Questions like the following all involve time:

How long until the bus leaves? What time do you have to be at school? When did the Second World War finish? For how long did Elizabeth I reign in England? What time does the ice hockey start? How long will it take us to travel to Tokyo?

OPENING PROBLEM

Simran is sitting in London Heathrow airport. His flight to his home in Mumbai departs at 10:15 pm. It is 7163 km from London to Mumbai, and the flight is scheduled to take 9 hours.

TIME OUT

Things to think about:

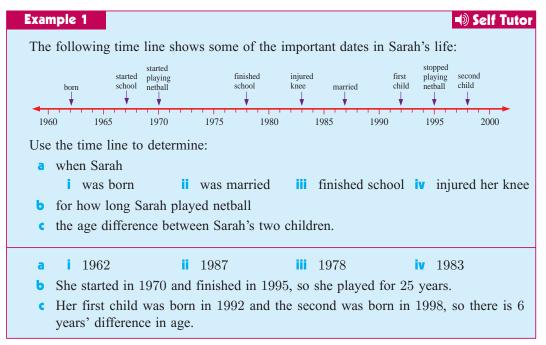
- What is the *average speed* of the scheduled flight?
- What is the *time difference* between London and Mumbai?
- When the flight takes off in London, what is the time in Mumbai?
- What is the *local time* in Mumbai when the plane is scheduled to land?

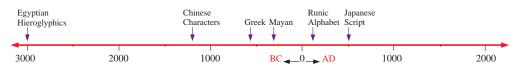
ACTIVITY 1

Work in small groups to discuss the following topics.

What to do:

- 1 List ways that the following would be aware of time changes:
 - **a** animals in the wild
 - **c** human infants


- **b** domestic animals
- **d** farmers
- e sailors at sea 300 years ago
- **2** Outline some of the problems people may have had in measuring time using:
 - a candles
- **b** water clocks
- **c** shadow sticks
- **d** sundials
- e sand-glasses
- **f** pendulum clocks
- g mechanical clocks
- **3** List 20 occupations where time or timing is very important, for example musicians and restaurant chefs. For each of the occupations listed, write 2 consequences for wrong timing.


TIME LINES

Time lines are simple graphs which display times or dates, and key events that correspond to these times.


EXERCISE 15A

1 The following time line shows when various methods of writing first appeared:

- a Estimate when the Runic Alphabet first appeared.
- How long was there between the appearance of Egyptian Hieroglyphics and Chinese Characters?
- Which form of writing appeared most recently?
- 2 The following time line shows the monarchs of England during the 20th century:

- a Which monarch reigned longest in the 20th century?
- **b** How long did the reign of George VI last?
- How much longer was the reign of Edward VII than Edward VIII?

3 The following time line shows the period of various Chinese civilizations:

Use the time line and a ruler to:

- a find the Chinese civilization which lasted longest
- **b** determine the period for which the Xia dynasty lasted
- find how much longer the Longshan civilization lasted compared with the Shong civilization.

ACTIVITY 2

DEVELOPING TIME LINES

The purpose of this activity is to draw at least one time line based on your research of relevant information.

What to do:

- 1 Decide on a suitable topic to research. Here are some suggestions, but you should research a topic which particularly interests you:
 - Presidents of the USA
 - Wars of the 20th century
 - Significant dates in your family's history, such as birthdays, marriages, and special holidays.
- **2** Choose a suitable scale for your time line and complete it with the relevant information.

ESTIMATING A MINUTE

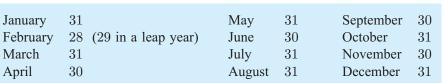
3 Write down 4 questions based on your time line, and ask another student to answer them.

ACTIVITY 3

In small groups or as a whole class, arrange a competition to find who is best at estimating one minute.

One student or the teacher has a watch and others try to estimate a minute without seeing a watch or clock.

B

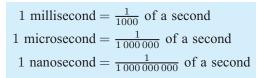

UNITS OF TIME

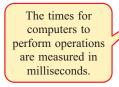
We are all familiar with the concept of time and the measurement of time in years, months, weeks, days, hours, minutes, and seconds.

RELATIONSHIP BETWEEN TIME UNITS

1 year	1 week = 7 days
= 12 months	1 day = 24 hours
= 52 weeks (approximately)	1 hour = 60 minutes
= 365 days (or 366 in a leap year)	1 minute = 60 seconds

The number of days in the month varies:

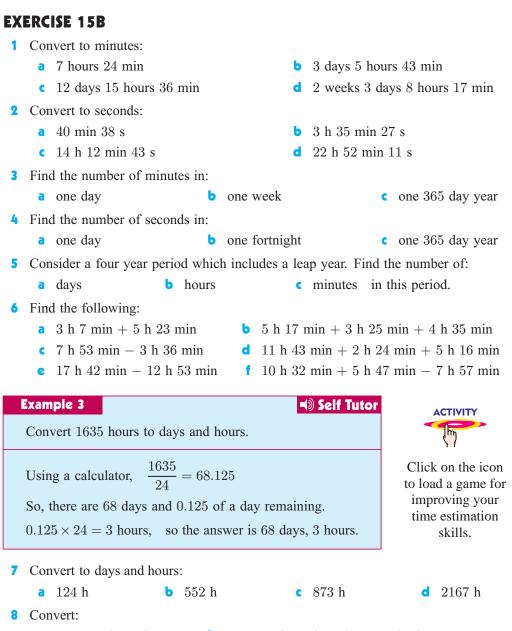

A **leap year** occurs if the year is divisible by 4 but not by 100, except if the year is divisible by 400. For example: 1996 was a leap year


2000 was a leap year 2100 will not be a leap year.

Long times

1 decade = 10 years 1 century = 100 years 1 millennium = 1000 years

Short times



Example 2				Self Tutor
Convert 3 days, 9 hours a	nd 42 minutes to min	utes.		
3 days	9 hours		3 days	4320
$= 3 \times 24$ hours	$= 9 \times 60 \min$		9 hours	540
$= 3 \times 24 \times 60 \min$	$= 540 \min$	+	42 mins	42
= 4320 min			Total	4902 min

It is common to write h for hours, min for minutes, s for seconds.

a $67\,680$ min to days

What to do:

b 31717 min to days, hours and minutes

RESEARCH MEASURING TIME IN DIFFERENT CULTURES

- 1 Research the development of the current Western calendar.
- **2** Find out what the Gregorian calendar is.
- 3 Compare the calendars of Christian, Muslim, Jewish and Chinese people.
- 4 List the days of great importance to these people and write them on a single calendar.

C

DIFFERENCES IN TIME

Calculating the difference between two times or dates is very important. Time difference calculations are frequently made by travellers, credit card owners, and businesses.

Examples of date notation:				
31/12/08	Australia			
31.12.08	Germany			
12.31.08	USA			
2008-12-31	ISO standard			

Dates are often represented using three numbers, though the order in which they are written differs

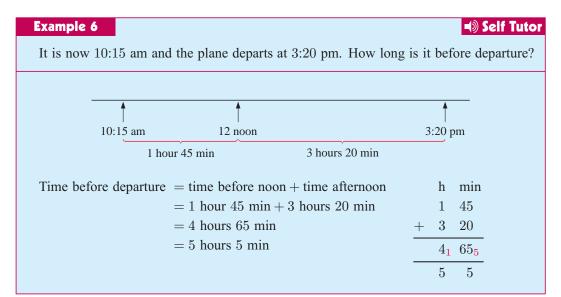
from place to place. In this course we write dates in the form (day)/(month)/(year). So, the date 13/6/08 is the shorthand way of writing "the thirteenth day of the sixth month (June) of the year 2008".

Example 4	Self Tutor
Karaline will turn 17 on $23/4/10$.	What does this mean?
Karaline's 17th birthday is on the 2	23rd of April 2010.

Example 5 Self Tutor	
How many days is it from April 24th to July 17th?	In questions like this we assume
April has 30 days, so there are $30 - 24 = 6$ days remaining in April.	full days.
April 6	
May 31	
June 30	A CONTRACTOR OF
+ July 17	5-6
Total 84 days	

EXERCISE 15C

- 1 Write out in sentence form the meaning of:
 - **a** Wei joined the club on 17/12/07
- **b** Jon arrived on 13/3/06
- c Piri is departing for Malaysia on 30/7/10
- **d** Sam will turn 21 on 28/5/14
- 2 Find the number of days from:
 - a March 11th to April 7th
 - c July 12th to November 6th
 - *e* January 7th to March 16th in a non-leap year
 - **f** February 6th to August 3rd in a leap year
 - **g** 6/7/12 to 2/11/12


- **b** May 11th to June 23rd
- d September 19th to January 8th
- **h** 7/2/13 to 17/5/13

- Lou Wong is saving money to buy a bicycle costing \$279. Today is the 23rd of March and the shop will hold the bicycle until May 7th at this price.
 - **a** How many days does Lou have to save for the bicycle?
 - How much needs to be saved each day to reach the \$279 target?
- 4 Sean can save €18 a day. Today is May 9th, and on November 20th he wishes to travel to Fiji on a package deal costing €5449. If he does not reach the target of €5449 he will have to borrow the remainder from a bank.
 - **a** How many days does he have available for saving?
 - **b** What is the total he will save?
 - Will he need to borrow money? If so, how much?

5 On 17th July 2005 Sung Kim proudly announced that he had been in New Zealand for 1000 days. On what day did he arrive in New Zealand?

Example 7	Self Tutor
What is the time 3 hours 40 minutes before 9:15 am?	
The time is $9:15 - 3$ hours 40 minutes = 9 hours + 15 min - 3 hours - 40 min = 6 hours + 15 min - 40 min = 5 hours + 60 min + 15 min - 40 min = 5 hours + 35 mins	$ \begin{array}{r} h & \min \\ 8 & 75 \\ 9 & 15 \\ - & 3 & 40 \\ \hline 5 & 35 \end{array} $
So, the time is 5:35 am.	

- 6 What is the time:
 - **a** 4 hours after 3:00 am
 - 34 minutes after 6:15 am
 - 2 hours 13 min after 8:19 pm
 - **g** 2 hours 55 min before 2 pm
 - 1 hour 47 mins before 1:30 pm
- **7** What is the time difference from:
 - **a** 3:24 am to 11:43 am
 - **c** 8:29 am to 3:46 pm
 - **e** 3:18 pm to 11:27 am next day
 - **g** 2:23 pm Sun to 5:11 pm Mon

- **b** 5 hours after 8:00 pm
- d 45 minutes after 7:21 pm
- f 3 hours 27 min after 12:42 pm
- **h** 5 hours 18 minutes before noon
- **j** 3 hours 16 minutes before 2 am Mon?
- **b** 7:36 pm to 10:55 pm
- **d** 5:32 am to 6:24 pm
- f 4:29 pm to 2:06 am next day
- **h** 3:42 am Tues to 7:36 pm Fri?
- 8 If a courier travelling between two cities takes $1\frac{1}{4}$ hrs for a one way trip, how many round trips can she do in an 8 hour working day?
- **9** Herbert was born in 1895. How old was he when he had his birthday in 1920?
- **10** It takes Jill 4 seconds to put each can into her supermarket display. If there are 120 cans to be displayed, how long will it take Jill to complete the job?
- 11 Mary's watch loses 3 seconds every hour. If it shows the correct time at 8 am on Wednesday, how slow will it be when the real time is 5 pm on Friday of the same week?

- 12 A high tide happens every 6 hours and 20 minutes. If the next high tide is at 1:25 am on Monday, list the times for the next 8 high tides after that one.
- **13** How many times will the second hand of a clock pass 12 in a 24 hour period starting at 11:30 pm?

D

READING CLOCKS AND WATCHES

ACTIVITY 4

HOW LONG DOES IT TAKE?

You will need:

A stopwatch or digital watch with similar functions and a partner to work with.

What to do:

- 1 Become familiar with what the watch can do and how you should operate it.
- **2** Read through the list of activities.
- **3** Organise how and when you can do them together.

- **4** Prepare your own copy of the chart.
- **5** Estimate the times you think it will take to do each activity.
- **6** Take it in turns to do the activity or operate the watch.
- 7 Find the difference between your estimated time and the actual time it takes for each activity. Who is more accurate?

Activity	Estimated Time	Actual Time	Difference
Count from 1 to 200 by ones	111110	111110	
Accurately write down your 8 and 9 times tables			
Carefully read aloud one page from a novel			
Walk 100 metres			
Record the total commercial time in 30 min of TV			
Make a cup of coffee			

How many times each day do you look at a clock, watch or timetable? There are many occasions each day when we need to determine 'the time'. For example:

- the time that lesson 2 starts today
- the time when the next bus or train departs
- the time dinner will be served tonight.

12-HOUR CLOCKS

Traditional analogue clocks give us 12-hour time.

For example:

reads 3 o'clock and could be 3:00 am or 3:00 pm

reads 20 minutes past 8 o'clock and could be either 8:20 am or 8:20 pm.

am stands for ante meridiem which means 'before the middle of the day'. pm stands for *post meridiem* which means 'after the middle of the day'.

24-HOUR CLOCKS

24-hour time is often used in transport timetables such as railway and airport schedules. It is used to avoid confusion between am and pm times.

For example, on a 12-hour clock 8:15

could mean 8:15 am or 8:15 pm.

5

A 24-hour clock overcomes this problem by displaying

for the morning (am)

and **21**:15 for the afternoon (pm).

20:15 means 20 hours 15 minutes since midnight, which is 8 hours 15 minutes since midday, that is, 8:15 pm.

FOUR DIGIT NOTATION

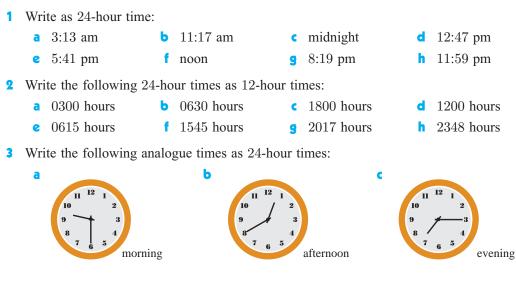
7:15 am appears as

and is written as 0715 hours.

8:15 pm appears as

5

and is written as 2015 hours.


In the following examples we compare 12-hour time and 24-hour time.

12-hour time	Digital display	24-hour time
midnight	0:00	0000 hours
7:42 am	7:42	0742 hours
midday (noon)	12:00	1200 hours
11:29 pm	23:29	2329 hours

Example 8	Self Tutor
 a Convert 7:38 am into 24-hour time. b Convert the digital display 17:38 into 	12-hour time.
 a 7:38 am is 0738 hours b 17:38 is 5:38 pm 	

EXERCISE 15D

4 What, if anything, is wrong with the following 24-hour times:

a 0862 hours **b** 0713 hours

- **5** The following arrivals appear on a display at Singapore Changi Airport:
 - **a** Convert each arrival time into 12-hour time.
 - **b** At what time is the Singapore Airlines flight from Rome arriving?
 - If a thunderstorm delays all arrivals to the airport by 1 hour 35 minutes, what new arrival time is expected for:
 - **i** BA10 **ii** QF14

ARRIVALS						
Flight	From	Arr. Time				
JAL130	Tokyo	14:50				
BA10	London	15:50				
SQ71	Rome	16:25				
QF14	Perth	16:45				
EM16	Dubai	17:15				

Ε

Timetables are tables of information which tell us when events are to occur.

The timetable alongside gives information about phases of the moon and the rising and setting of the planets of our solar system. We can observe, for example, that:

- the next full moon is on October the 6th
- Mercury rises at 5:59 am tomorrow
- Saturn sets at 8:23 pm tomorrow.

EXERCISE 15E

1 This timetable shows tide times on a particular day.

Tide times						
Port Xenon	12:55	AM	0.8 m	7:21	AM	2.5 m
	1:56	PM	1.2 m	7:13	PM	1.8 m
Port Dowell	5:15	AM	1.4 m	11:45	AM	1.1 m
	1:46	PM	1.2 m	9:22	PM	0.6 m
Windcok	2:47	AM	0.9 m	9:53	AM	2.4 m
	5:12	PM	1.2 m	8:41	PM	1.3 m
Joseph's Bay	3:20	AM	0.9 m	10:22	AM	2.6 m
	5:24	PM	1.3 m	9:13	PM	1.5 m
Paradise Point	3:22	AM	1.4 m	7:57	AM	0.9 m
	12:19	PM	1.3 m	9:08	PM	0.6 m
Sunny Inlet	12:29	AM	0.5 m	9:03	AM	1.3 m
	11:29	PM	0.4 m			

TIMETABLES

The Moon						
New Sep 21	First $\frac{1}{4}$ Sep 29	Full Oct 6	$\bigcup_{\text{Oct 12}}^{\text{Last} \frac{1}{4}}$			
The Sun and Planets						
Tomorrow	Rise		Set			
Sun	6:15	am	6:07 pm			
Moon	2:29	am	1:00 pm			
Mercury	5:59	am	5:20 pm			
Venus	5:51	am	5:09 pm			
Mars	4:43	am	3:11 pm			
Jupiter	6:01	am	6:34 pm			
Saturn	9:10	am	8:23 pm			

- a When is the tide highest in the morning at Port Xenon?
- When is the tide lowest in the afternoon at Paradise Point?
- What is the lowest tide at Joseph's Bay in the morning and at what time does it occur?
- **d** What is the highest tide at Port Dowell in the afternoon and at what time does it occur?
- 2 Consider the timetable for an Adelaide tourist bus service in the summer season:
 - a How many bus services are available?
 - **b** What is the latest departure time?
 - What is the earliest arrival time back at the depot?
 - d How long does it take between arrivals at
 - the Adelaide Zoo and the Stonyfell Winery
 - ii the Murray Mouth and Victor Harbor?

Departure Times	Bus A	Bus B	Bus C	Bus D	Bus E	Bus F
City depot	7:30	7:45	8:00	8:15	8:30	8:45
Adelaide Oval	7:40	7:55	8:10	8:25	8:40	8:55
Adelaide Zoo	8:20	8:35	8:50	9:05	9:20	9:35
Stonyfell Winery	10:15	10:30	10:45	11:00	11:15	11:30
Hahndorf	11:20	11:35	11:50	12:05	12:20	12:35
River Murray Mouth	1:00	1:15	1:30	1:45	2:00	2:15
Victor Harbor	1:40	1:55	2:10	2:25	2:40	2:55
Port Adelaide	3:15	3:30	3:45	4:00	4:15	4:30
The Museum	4:00	4:15	4:30	4:45	5:00	5:15
Arrive at City depot	5:00	5:15	5:30	5:45	6:00	6:15

- **3** Consider the given Carlingford to Wynyard train timetable:
 - **a** What does it mean by:

arr i dep?

- **b** If I catch the 4:17 pm train at Rydalmere, what time will I arrive at Central?
- At what time will I have to catch the train from Dundas in order to arrive at Lidcombe by 6:00 pm?
- d If I miss the 5:00 pm train from Clyde, what is the earliest time I can now arrive at Wynyard?

- How long does a complete trip last?
- f If you wanted to be at Victor Harbor no later than 2:00, what bus should you take?
- **g** If a friend is meeting the bus at Port Adelaide at 3:30, what bus is it best to travel on?

CARLINGFO	ORD-	WYN	YARD	TRA		/ETA	BLE
Carlingford	p.m. 3.32	p.m. 4.11	p.m. 4.45	p.m. 5.23	p.m. 5.55	p.m. 6.26	p.m. 6.52
Telopea	3.34	4.13	4.47	5.25	5.57	6.28	6.54
Dundas	3.36	4.15	4.49	5.27	5.59	6.30	6.56
Rydalmere	3.38	4.17	4.51	5.29	6.01	6.32	6.58
Camellia	3.40	4.19	4.53	5.31	6.03	6.34	7.00
Rosehill UA	3.42	4.21	4.55	5.33	6.05	6.36	7.02
Clydearr	3.45X	4.24X	4.58X	5.36X	6.08X	6.39X	7.05
dep	3.51	4.26	5.00	5.48	6.18	6.48	7.06
Lidcombearr							
dep	3.57	4.31	5.06	5.54	6.24	6.54	7.12
Strathfieldarr	4.02	4.36	5,11	5.59	6.29	6.59	7.18X
dep	4.03	4.37	5.12	6.00	6.30	7.00	7.23
Centralarr	4.17	4.50	5.26	6.14	6.44	7.14	7.36
dep	4.18	4.51	5.27	6.15	6.45	7.15	7.37
Townhall	4.21	4.54	5.30	6.18	6.48	7.18	7.40
Wynyard	4.24	4.57	5.33	6.20	6.50	7.20	7.42

- If I come out of the cinema at 3:45 pm at Carlingford, what is the time of the first train that I can catch to Strathfield?
 - ii At what time will this train reach Strathfield?
 - **II** I have an errand at Strathfield that will take no more than half an hour. What is the shortest time that I will have to wait for the next train that I can catch to Townhall?
- f Calculate the time it takes for the i 3:32 pm ii 5:23 pm iii 6:52 pm trains from Carlingford to reach Central. Can you suggest a reason for the differences in times?

F

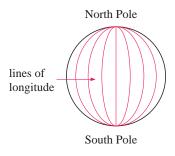
The Earth rotates from west to east about its axis. This rotation causes day and night.

As the sun rises in the Chinese city of Beijing, India is still in darkness. It is therefore later in the day in Beijing. By the time the sun rises in India, Beijing has already experienced $2\frac{1}{2}$ hours of daylight.

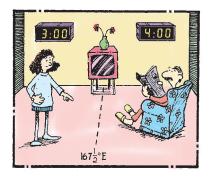
TRUE LOCAL TIME

The Earth rotates a full 360° every day.

This is 30	50^o in	24 hours	
or	15^o in	1 hour	$\{360 \div 24 = 15\}$
or	1^o in	4 minutes.	$\{\frac{1}{15} \text{ of } 60 \text{ min} = 4 \text{ min}\}\$


Places on the same **line of longitude** share the same **true local time**.

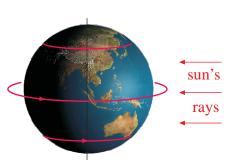
However, using true local time would cause many problems.


For example, any movement to the east or west would mean the time would be different, so the time on one side of a city would be different to the time on the other side.

Some states of the USA and Australia stretch across almost 15^{o} of longitude. This would mean time differences of up to one hour within the same state.

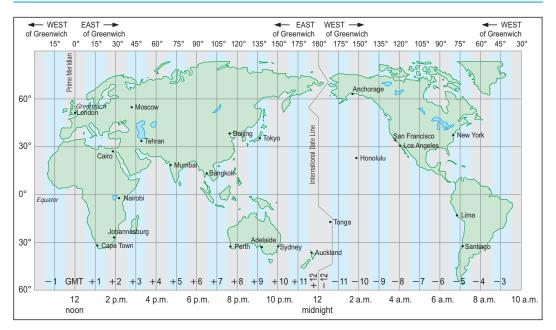
The solution to these problems was to create time zones.

STANDARD TIME ZONES



The following map shows lines that run between the North and South Poles. They are not straight like the lines of longitude but sometimes follow the borders of countries, states or regions, or natural boundaries such as rivers and mountains.

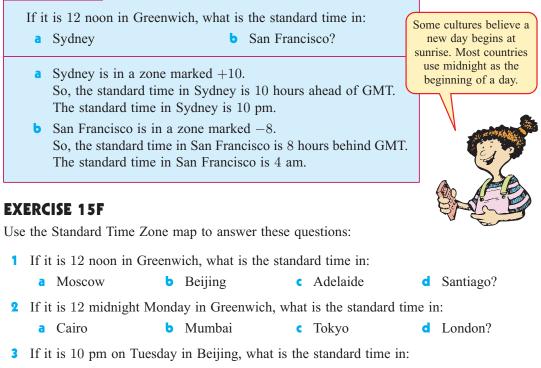
The first line of longitude, 0° , passes through Greenwich near London. This first or **prime meridian** is the starting point for 12 time zones west of Greenwich and 12 time zones east of Greenwich.


Places which lie within a time zone share the same **standard time**. Standard Time Zones are mostly measured in 1 hour units, but there are also some $\frac{1}{2}$ hour units.

Time along the prime meridian is called Greenwich Mean Time (GMT).

TIME ZONES

Self Tutor



Places to the east of the prime meridian are ahead of or later than GMT.

Places to the west of the prime meridian are behind or earlier than GMT.

The numbers in the zones show how many hours have to be added or subtracted from Greenwich Mean Time to work out the **standard time** for that zone.

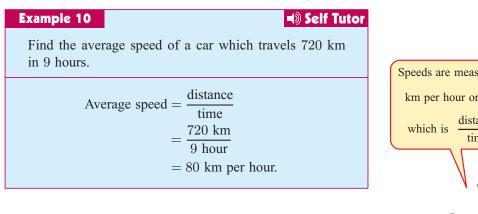
Example 9

- a New York **b** San Francisco **c** Tehran
- d Johannesburg?

- 4 If it is 2:45 am on Sunday in Tokyo, what is the standard time in:
 - a San Francisco **b** Mumbai d Auckland? **c** Lima
- **5** If it is 3 pm in Moscow on Friday, what is the standard time in: **b** Beijing
 - a Nairobi

- **c** London
- d Los Angeles?

AVERAGE SPEED

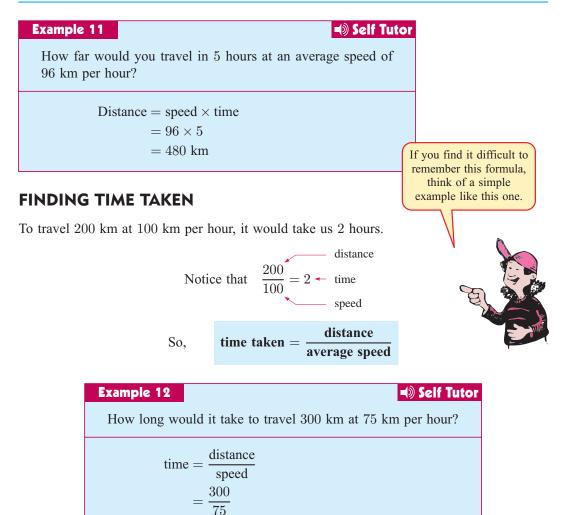

Speed is a measure of how fast something is travelling. Most objects do not travel with exactly the same speed all the time, so we say the speed varies.


The average speed of an object in a given period of time is the constant speed at which it would need to travel in that time period so as to travel the same distance.

The average speed can be calculated using the formula:

average speed = $\frac{\text{distance travelled}}{\frac{1}{2}}$ time taken

For example, if a car travels a distance of 180 km in two hours then its average speed is $\frac{180 \text{ km}}{21} = 90 \text{ km}$ per hour. On average it travels 90 km in each hour.


FINDING DISTANCES TRAVELLED

If we travel at 60 km per hour for 3 hours, we will travel a distance of $60 \times 3 = 180$ km.

Notice that we worked out $60 \times 3 = 180$

distance = average speed \times time taken

So,

EXERCISE 15G

- 1 Find the average speed of a vehicle which travels:
 - **a** 540 km in 6 hours **b** 840 km in 12 hours

= 4 hours

- **c** 664 km in 8 hours **d** 846 km in 9 hours.
- 2 If a vehicle is travelling at 90 km per hour, find how far it will travel in:
 - a 7 hours b 5 hours c 10 hours
 - **d** 3.5 hours **e** 11 hours 24 mins **Hint:** 24 min = $\frac{24}{60}$ hours
- **3** How far would you travel in:
 - **a** 3 hours at an average speed of 85 km per hour
 - **b** 8 hours at an average speed of 110 km per hour
 - $4\frac{1}{2}$ hours at an average speed of 98 km per hour
 - **d** 2 hours 15 mins at an average speed of 76 km per hour?

- 4 Find how long it will take to travel:
 - a 90 km at 30 km per hour
 - 440 km at 80 km per hour
 - 208 km at 64 km per hour.
- **b** 720 km at 120 km per hour

DEMO

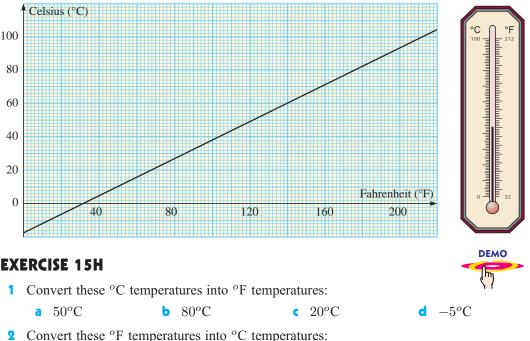
 $d \quad 0^{o} F$

d 750 km at 90 km per hour

TEMPERATURE CONVERSIONS

In most of the world, temperatures are measured in degrees Celsius (°C).

 0° C is the temperature at which pure water freezes.


100°C is the temperature at which pure water boils.

In a few countries, such as the USA, the Fahrenheit scale (°F) is still used.

 32° F is the temperature at which pure water freezes.

 212° F is the temperature at which pure water boils.

The following graph allows us to convert from ^oC to ^oF or from ^oF to ^oC.

a 100°F **b** 50°F **c** 80°F

- 3 The formula for converting °C temperatures into °F temperatures is $F = 1.8 \times C + 32$. Use this formula to check your answers to question 1.
- 4 The formula for converting ^oF temperatures into ^oC temperatures is $C = 5 \times (F - 32) \div 9.$
 - **a** Use the formula to check your answers to question **2**.
 - **b** If you are in New York and the temperature is 90° F, what is the temperature in $^{\circ}$ C?

TEMPERATURES ONLINE

ACTIVITY 5

Use the internet to compare temperatures in three different world cities. On the same graph plot the daily maximum temperatures over a fortnightly period.

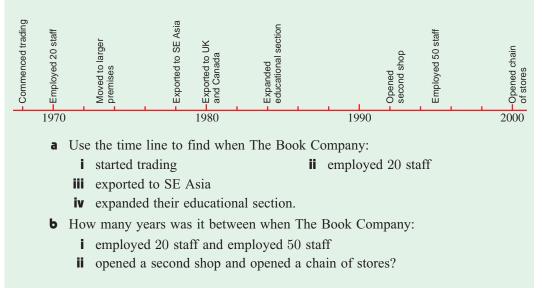
KEY WORDS USED IN THIS CHAPTER

- 12-hour time
- average speed
- distance travelled
- post meridiem
- time line
- timetable

LINKS

click here

- 24-hour time
- degrees Celsius
- Greenwich Mean Time
- prime meridian
- time taken


- ante meridiem
- degrees Fahrenheit
- longitude
- standard time
- time zone

HOW MANY STEPS DO YOU TAKE EACH DAY?

Areas of interaction: Environments, Health and social education

REVIEW SET 15A

1 The following line shows some important dates in the history of The Book Company.

2 Copy and complete:

- **a** 7 weeks = \Box days **b** 12 minutes = \Box seconds
- **c** $9\frac{1}{4}$ hours = \Box minutes **d** 1 millennium = \Box years

3 Find the following:

- **a** 9 hours 38 mins + 6 hours 45 mins + 4 hours 18 mins
- **b** 7 hours 27 min 3 hours 49 mins
- **4** To reach her goal of running 500 km before the season starts, a hockey player plans to run 5 km each day. If the season starts on the 8th of September, when should she start her running?
- **5** Josh began saving 15 dollars a day from the 4th of April. He needs \$3000 to have his teeth straightened on September 27th.
 - **a** How many days does he have to save?
 - **b** What is the total he will have saved by then?
 - How much will he still owe the orthodontist?
- **6** Write the following in **i** 12-hour time
 - **a** quarter to seven in the morning
 - half past nine at night.
- 7 The following schedule of arrivals has appeared on a TV monitor at New Orleans Airport.
 - **a** Give the arrival time for the plane from Orlando in 12-hour time.
 - **b** Give the difference in time between the arrival of the two planes from:
 - i Houston ii Memphis.
 - If the plane from Dallas is one hour and twenty minutes late, at what time will it arrive?

ARRIVALS							
Flight	From	Arrival time					
438	Atlanta	1218					
1236	Dallas	1225					
524	Houston	1355					
2618	Memphis	1440					
1029	Houston	1530					
264	Orlando	1545					
4350	St Louis	1620					
3256	Memphis	1655					

ii 24-hour time:

b quarter past midnight

- 8 Use the Standard Time Zone map on page 289 to answer the following questions:
 - **a** If it is 11 am on Saturday in Greenwich, what is the standard time in:
 - i Moscow ii Santiago?
 - b If it is 8 pm on Tuesday in New York, what is the standard time in:i Cairoii Mumbai?
- **9** How far would I ride in 3 hours if I can travel at 18 km per hour on my bicycle?
- **10** Find the speed of a car which travels 752 km in 8 hours.

REVIEW SET 15B

- 1 Convert:
 - **a** 19 hours 54 minutes to minutes
- **b** 475 hours to days

- **2** Find the number of:
 - a days from 7th July to 22nd October
 - **b** hours from 11 pm Monday to noon the following Thursday

- c minutes from 9:47 am to 11:08 am
- **d** seconds from 11:59 pm to 12:04 am.
- **3** Find:
 - **a** 4 hour 8 min + 5 hour 35 min + 3 hour 47 min
 - **b** 2 days 9 hours 18 min + 3 days 15 hours 45 min
 - **c** 3 hours 15 min 1 hour 57 min
- **4** How many days are there from:
 - **a** 15th January to 4th April in a leap year
 - **b** 1st January 2007 to 31st December 2008
 - c 1st January 1999 to 31st December 2008?
- **5** How many Tuesdays were there in 2008 if January 1st was a Tuesday?
- 6 a In the 1500 m event, the first placed swimmer's time was 14 min 58.29 seconds. Second place was 2.78 seconds slower, with third place a further 4.35 seconds behind. Find the second and third placed swimmers' times.

- **b** A marathon runner finished 2 minutes 13 seconds slower than his personal best time of 2 hours 58 minutes and 48 seconds. What was his finishing time?
- If the sun rose at 5:24 am and set at 7:43 pm, how many hours and minutes of daylight were there?
- **7** Write the following 24-hour times as 12-hour times:
 - **a** 0415 hours **b** 1300 hours
- c 2335 hours

- 8 Write this **pm** time as:
 - **a** as an analogue time in words
 - **b** in 12-hour digital time
 - **c** in 24-hour time.
- **9** Use the Standard Time Zone map on page **289** to answer the following questions.
 - **a** If it is 12 noon in Greenwich, what is the standard time in:
 - i Cape Town ii Anchorage?
 - **b** If it is 6:05 am on Thursday in Tokyo, what is the standard time in:
 - i Johannesburg ii Honolulu?
- **10** What distance is travelled by a car in 4 hours if it is travelling at 87 km per hour?
- **11** How long would it take me to travel 25 km if I can ride at 20 km per hour on my bicycle?
- **12** Convert these ^oF temperatures into ^oC temperatures:
 - **a** 140°F **b** 23°F

 $\begin{array}{cccc}
11 & 1^2 & 1 \\
10 & & 2 \\
9 & & 3 \\
8 & & 4 \\
7 & 6 & 5 \\
\end{array}$

- **13** Use the formula $F = 1.8 \times C + 32$ to answer the following questions:
 - **a** If it is 5° C in London, what is the temperature in $^{\circ}$ F?
 - **b** If it is 40° C in Cairo, what is the temperature in $^{\circ}$ F?

ACTIVITY

RECORD TIMES

Time is used to compare and record achievements and events.

2

What to do:

- Use the conversion tables on page 279 to help you answer the following:
- 1 The world's oldest surviving clock was completed in England in 1386. How many years ago was that?

Two helicopter pilots flew around the world in 17 days 6 hours 4 minutes and 25 seconds. Find the total flight time in seconds.

- **3** John Fairfax and Sylvia Cook started rowing across the Pacific Ocean from San Francisco on 26th April 1972. They reached Hayman Island in Australia on 22nd April 1973. How many days did their crossing take?
- **4** Yiannis Kouros started a 1000 km run on Saturday 26th November 1984 at 1 pm. At what time did he finish if it took him 136 hours and 17 minutes to complete the distance?
- **5** Big Ben stopped at noon on 4th April 1977. He was repaired and restarted at noon on 17th April 1977. For how many minutes did Big Ben stop?
- 6 Recent records show that the greatest age that a human has lived is one hundred and twenty one years.
 - **a** For how many decades did she live?
 - **b** Over how many centuries did her life span?
- 7 Find some time records in your family or class.

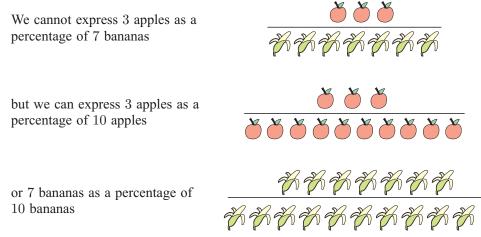
Using percentages

- **A** Comparing quantities
- **B** Finding percentages of quantities
- C Percentages and money
- Profit and loss
- E Discount
- F Goods tax
- G Simple interest

OPENING PROBLEMS

Problem 1: What is 15% of \$2400?

Problem 2: A bicycle normally sells for €400. An 18% discount is given. What will the bicycle sell for?



COMPARING QUANTITIES

Percentages are often used to compare quantities, so it is useful to be able to express one quantity as a percentage of another.

We must be careful to only compare like with like.

For example:

We must also make sure that the quantities are compared in the same units.

For example, if we are asked to express "35 cm as a percentage of 7 m" we would normally convert the larger unit to the smaller one. So we would find "35 cm as a percentage of 700 cm".

We cannot express "5 bicycles as a percentage of 45 cars", but we can express "5 bicycles as a percentage of 50 vehicles" as bicycles are a type of vehicle.

ACTIVITY

CHOOSING A COMMON NAME OR SAME UNIT

When we are given different quantities to compare, we often need to choose a common name that describes them.

For example, a German Shepherd and a Rottweiler are both dogs.

What to do:

- 1 Choose a common name which could be used to describe each of the given items:
 - a coffee, tea
 - c train, bus, tram
 - e e-mail, letters, fax, telephone
 - g museum, art gallery
 - i rice, barley, wheat, oats

- **b** hamburgers, pizza
- **d** fins, wetsuit, goggles
- f saxophone, clarinet, trumpet
- **h** zloty, euro, pound, dollar
- j locusts, termites, millipedes, mice
- **2** For each of the above examples above, prepare a statement and a question which uses the common name you have chosen.

For example, "Of the people who had breakfast in the hotel dining room, 12 ordered coffee and 28 ordered tea. What percentage of the people who ordered a hot drink ordered tea?"

ONE QUANTITY AS A PERCENTAGE OF ANOTHER

Martina's water container holds 20 litres whereas Fabio's holds 50 litres.

20 litres compared with 50 litres is $\frac{20}{50} = \frac{2}{5}$ as a fraction and is $\frac{40}{100} = 40\%$.

To express one quantity as a percentage of another, we first write them as a fraction and then convert the fraction to a percentage.

Example 1	Self Tutor	
Express the first quantity as a 12 hours, 5 days	a percentage of the second: b 800 m, 2 km	We make the units of both quantities the same.
a $\frac{12 \text{ hours}}{5 \text{ days}}$ $= \frac{\frac{122 \text{ h}}{5 \times 24 \text{ h}}}{5 \times 24 \text{ h}}$	$b \qquad \frac{800 \text{ m}}{2 \text{ km}} \\ = \frac{800 \text{ m}}{2000 \text{ m}}$	
$= \frac{1}{10}$ $= 10\%$	$= \frac{800 \div 20}{2000 \div 20} \\ = \frac{40}{100}$	
	=40%	a cor

- EXERCISE 16A
 - 1 Express the first quantity as a percentage of the second:
 - **a** 10 km, 50 km
 - **d** 90°, 360°
 - **9** 125 mL, 750 mL
 - **i** 48 kg, 1 tonne
- **b** 20 cm, 100 cm
- € 5 L, 100 L
- **h** 6 months, 4 years
 - **k** 120°, 360°
- c 3 m, 4 m
 f 45°, 90°
 i 50 g, 1 kg
 l 5 mm, 8 cm

- **m** 25 cm, 0.5 m
- **n** $48 \min, 2$ hours

q 5 mg, 2 g

- 180 cm, 3 m
- 6 hours, 2 days

p 3 min, $\frac{1}{2}$ hour

Example 2 Self Tutor Express a mark of 17 out of 25 as a percentage. $\frac{17 \text{ marks}}{25 \text{ marks}} = \frac{17}{25}$ $=\frac{17\times4}{25\times4}$ $=\frac{68}{100}$ = 68%

- **2** Express as a percentage:
 - **a** 17 marks out of 20
 - 29 marks out of 40
 - e 37 marks out of 50

- **d** 72 marks out of 80
- f 138 marks out of 200.

Example 3 Out of 1250 cars sold last month, 250 were made by Ford. Express the Ford sales as a percentage of total sales.

250 cars 250 $\frac{1250 \text{ cars}}{1250} = \frac{1250}{1250}$ $=\frac{250 \div 250}{1250 \div 250}$ $=\frac{1}{5}$ = 20%

So, the Ford sales were 20% of the total sales.

3 Express as a percentage:

- **a** 427 books sold out of a total 500 printed
- **b** 650 square metres of lawn in a 2000 square metre garden
- **c** 27 400 spectators in a 40 000 seat stadium
- An archer scores 95 points out of a possible 125 points. d

4 What percentage is:

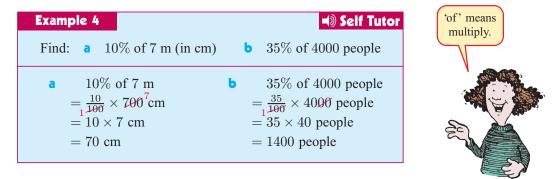
a 42 of 60

- **b** 34 of 40
- **d** 3 minutes of one hour

 \mathbf{g} 420 kg of 1 tonne

- € 175 g of 1 kg
- h 16 hours of 1 day
- **440 mL of 2000 mL**
- f 48 seconds of 2 min
- 174 cm of 1 m?

- **b** 11 marks out of 25


Self Tutor

B

FINDING PERCENTAGES OF QUANTITIES

To find a percentage of a quantity, we could first convert the percentage to a fraction. We then find the required fraction of the given quantity.

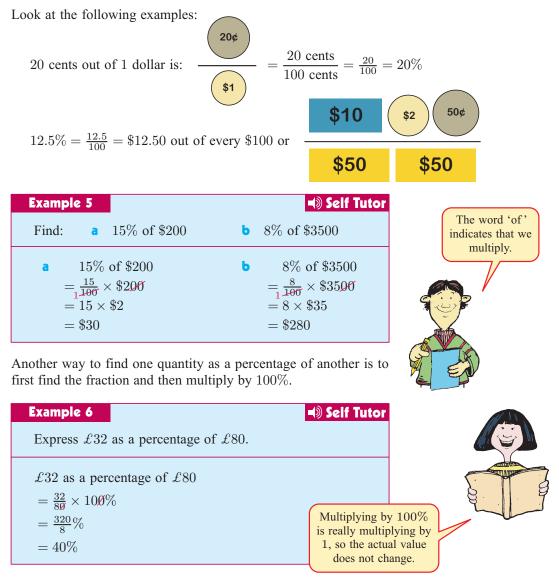
For example, 50% of 40 is $\frac{1}{2}$ of 40, which is 20.

EXERCISE 16B

- 1 Find:
 - **a** 20% of 360 hectares
 - **c** 5% of 9 m (in cm)
 - \bullet 10% of 3 hours (in min)
 - **g** 30% of 2 tonnes (in kg)
 - i 15% of 12 hours (in min)
- 2 A school with 485 students takes 20% of them on an excursion to the museum. How many students are left at school?
- 3 An orchardist picks 2400 kg of apricots for drying. If 85% of the weight is lost in the drying process, how many kilograms of dried apricots are produced?
- 4 A council collects 4500 tonnes of rubbish each year from its ratepayers. If 27% is recycled, how many tonnes is that?

- **b** 25% of 4200 square metres
- d 40% of 400 tonnes
- f 8% of 80 metres (in cm)
- **h** 4% of 12 m (in mm)
- **j** 75% of 250 kilolitres

- **5** A marathon runner improves her best time of 4 hours by 5%. What is her new best time?
- Damian was 1.5 metres tall at the beginning of the school year. At the end of the year his height had increased by 5.6%. What was his new height?
- 7 Which is the larger amount?
 - **a** 40% of a litre or $\frac{1}{3}$ of a litre
 - **c** 33% of 1000 or $\frac{1}{3}$ of 1000
- **b** 20% of one metre or $\frac{1}{4}$ of a metre
 - **d** 30% of a kg or 315 g


- 8 45% of an energy drink is sugar. How many grams of sugar would there be in a 450 g can of this drink?
- Simon used 20% of a 4 L can of paint. How much paint was left?
- **10** 30% of a farmer's crop was barley, and the rest was wheat. If he planted 2400 acres in total, how many acres were planted with wheat?

PERCENTAGES AND MONEY

All over the world, money is used for trading goods and services. Percentages are commonly used in situations involving money, especially decimal currencies.

EXERCISE 16C

- 1 Find:
 - **a** 10% of \$40
 - d 11% of €20
 - **9** 83% of £720
 - 12% of 2950 rupees
 - m 17.5% of RMB 4000
- 2 Express:
 - **a** \$5 as a percentage of \$20
 - **c** $\pounds 3$ as a percentage of $\pounds 20$
 - e €25 as a percentage of €125
 - **g** $\pounds 1.50$ as a percentage of $\pounds 30$
 - i €8 as a percentage of €240
 - **k** \$334 as a percentage of \$33400

- **c** 70% of £210
- f 45% of RM 9700
- 8% of €4850
- 54% of €2500
- 10.9% of ¥50 000
- **b** €15 as a percentage of €150
- **d** ¥4000 as a percentgae of ¥80000
- **f** 8 rubles as a percentage of 120 rubles
- **h** 35 cents as a percentage of \$1.40
- j $\pounds 40$ as a percentage of $\pounds 600$
- €9.95 as a percentage of €99.50.

PROFIT AND LOSS

PROFIT

If we sell an item for more than we paid for it, we say we have made a profit.

b 30% of €180

≥ 20% of \$150

h 36% of \$450

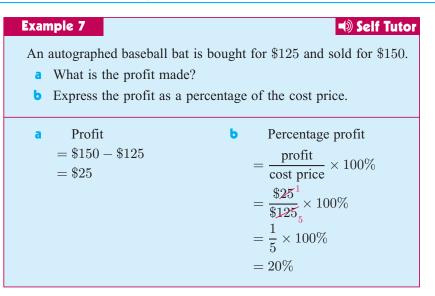
k 37% of £700

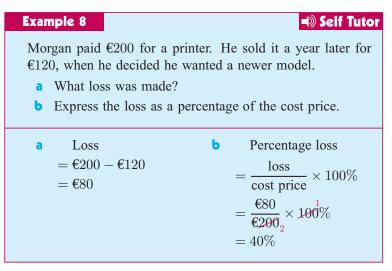
6.8% of $\pounds 40$

For example, suppose we buy a bicycle for $\notin 375$ and then sell it for $\notin 425$. We have made a profit of $\quad \notin 425 - \notin 375 = \notin 50$.

LOSS

If we sell an item for less than we paid for it, we say we have made a loss.

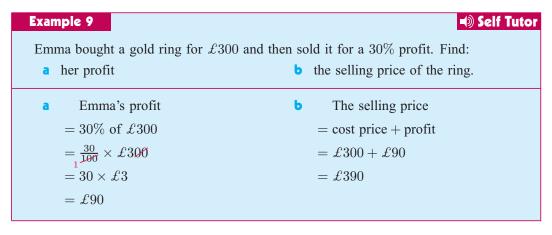

For example, suppose we buy a computer game for \$155 and then sell it for \$90. We have made a loss of \$155 - \$90 = \$65.


PROFIT AND LOSS AS A PERCENTAGE

Profit and loss are often expressed as a percentage of the cost price.

To do this we compare the profit or loss with the cost price using a fraction, and then multiply it by 100% to convert to a percentage.

percentage profit = $\frac{\text{profit}}{\text{cost price}} \times 100\%$ percentage loss = $\frac{\text{loss}}{\text{cost price}} \times 100\%$



EXERCISE 16D

- 1 A surfboard was bought for $\pounds 400$ and was sold later for $\pounds 300$.
 - **a** What was the loss made?
 - **b** Express the loss as a percentage of the cost price.
- 2 A mountain bike was purchased by a cycle shop for €500 and sold to a customer for €700.
 - **a** What was the profit made?
 - **b** Express the profit as a percentage of the cost price.
- **3** Donald bought a property for \$80 000 and sold it a year later for \$95 000. Find his profit:
 - a in dollars b as a percentage of his cost price.
- 4 Kate bought a dress for RM 250 and sold it later for RM 150. Find her loss:
 - a in RM

b as a percentage of her cost price.

- **5** Francis paid $\notin 250$ for a wrist watch and sold it for a 40% profit. Find:
 - **b** the selling price of the wrist watch. a his profit
- 6 Mia paid $\pounds 125$ for a pair of earrings and then sold them for a 60% profit. Find:
 - a her profit **b** the selling price of the earrings.
- 7 A car was bought for $\$100\,000$ and sold at a 17% loss. Find:
 - **b** the actual selling price of the car. a the loss
- **8** Sergio had to sell his fishing boat at a 30% loss. If it cost him $\notin 18000$, find:
 - **a** Sergio's loss in euros **b** the selling price of the boat.

To attract customers and make sales, many businesses reduce the prices of items from the marked price shown on their price tags.

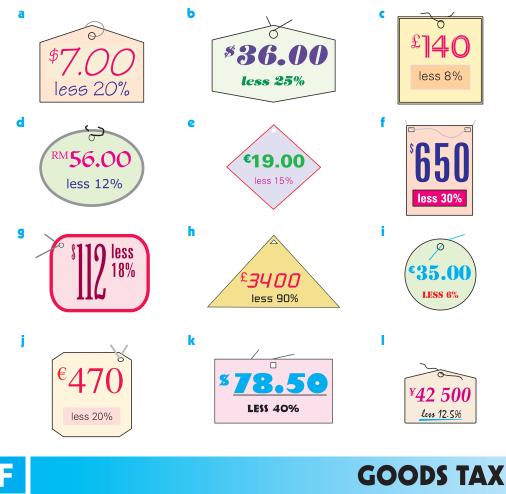
The amount of money by which the marked price is reduced is called the **discount**.

Discounts are often stated as a percentage of the marked price or recommended retail price.

Example 10

The marked price of a wetsuit is 200. If a 15% discount is offered, find the actual selling price of the wetsuit.

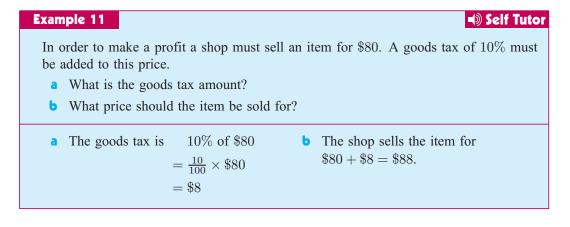
15% of the marked price	Marked price	\$200
$= 15\% \times \$200$	Less 15% discount	- \$30
$=\frac{15}{100} \times \$200$	Selling price	\$170
= \$30 discount		


Self Tutor

DISCOUNT

EXERCISE 16E

1


- a The marked price of a DVD player is \$320. If a 15% discount is offered, find the actual selling price of the DVD player.
 - b A camera's normal price is €460. Buying it duty free reduces the price by 25%. Find the actual selling price of the camera.
 - A supermarket is offering 2% discount on the total of your shopping docket. How much will you actually pay if your docket shows \$130?
 - **d** The marked price of a computer is $\pounds 600$. If a 12% discount is offered, what is the new selling price?
- **2** Find the selling price after the following discounts have been made:

Many countries have a **tax** on all goods and services. This tax is paid any time an item is bought, and also on services by electricians, plumbers, and so on.

This tax may be called a **goods and services tax (GST)** or a **value added tax (VAT)** or have some other title.

The percentage paid varies from 8% to 35% depending on the country and its taxation laws.

EXERCISE 16F

1 If the goods tax is 10%, how much tax must be added to the following prices?

Selling price = $\pounds 56 + \tan \theta$

2 If the goods tax is 15%, how much tax must be added to the following prices:

- a €100 b \$10 c £16 d RMB 320?
- 3 Find the total price, including 18% goods tax, of a service which would otherwise cost:
 - a \$100 b €48 c \$2000 d \$640?
- 4 A shopkeeper needs to sell a pair of shoes for $\pounds 160$ to make a profit. A tax of 15% must be added on to this price.
 - a What is the tax she must add on? b What must she sell the shoes for?
- **5** Conrad buys a lounge chair for \$750 plus a government charge of 17.5%. Find:
 - a the government chargeb the final price of the lounge chair.
- A bicycle shop sells bicycles for €250 plus a tax of 12¹/₂%.
 - **a** What is the tax amount to be added?
 - How much will customers have to pay for a bicycle?

G

SIMPLE INTEREST

When a person borrows money from a bank or a finance company, the borrower must repay the loan in full, and pay an additional charge which is called **interest**.

If the charge is calculated each year or *per annum* as a fixed percentage of the original amount borrowed, the charge is called **simple interest**.

For example, suppose \$8000 is borrowed for 4 years at 10% per annum simple interest.

Self Tutor

The simple interest charged for each year is 10% of \$8000 = $\frac{10}{100} \times 8000 = \$800

So, the simple interest for 4 years is $\$800 \times 4 = \3200 . The borrower must repay \$8000 + \$3200 = \$11200.

Example 12

Find the simple interest payable on a loan of $\notin 5000$ for $3\frac{1}{2}$ years at 8% p.a.

The simple interest charged for 1 year = 8% of €5000 = $\frac{8}{100} \times €5000$ = €400 So, the simple interest for $3\frac{1}{2}$ years = €400 × 3.5 = €1400

EXERCISE 16G

- **1** Find the simple interest when:
 - **a** \$1000 is borrowed for 1 year at 15% per annum simple interest
 - **b** $\pounds 3500$ is borrowed for 2 years at 10% per annum simple interest
 - **c** \$5000 is borrowed for 4 years at 8% per annum simple interest
 - **d** €20 000 is borrowed for $1\frac{1}{2}$ years at 12% per annum simple interest
 - \$140 000 is borrowed for $\frac{1}{2}$ year at 20% per annum simple interest.
- 2 Find the total amount to repay on a loan of:
 - **a** \$2000 for 5 years at 8% p.a. simple interest
 - **b** €6500 for 3 years at 10% p.a. simple interest
 - \$8000 for $4\frac{1}{2}$ years at 12% p.a. simple interest
 - **d** $$100\,000$ for 10 years at 10\% p.a. simple interest.$

Simple interest is often called **flat**

KEY WORDS USED IN THIS CHAPTER

- cost price
- goods tax
- percentage
- simple interest

REVIEW SET 16A

- 1 Write 200 mL as a percentage of 4000 mL.
- 2 An airline offers a special of 30% off its normal prices during its off-peak flights to Madrid. If its normal price is €324 return, what is the special price?

discount

interest

profit

- **3** About 8% of all students are left-handed. In a school of 375 students, how many left-handed students would you expect to find?
- 4 A small country town has 280 households. 45% use a wood burning fire to warm their homes, 30% use electricity, 15% use gas, and the rest use oil or kerosene. How many households use gas, oil or kerosene?
- **5** If the goods tax is 15%, how much must be added to the price of a shirt which would otherwise sell for \$30?
- heir gas, any t be build
- A survey of 500 year 6 students showed that 55% always started their homework as soon as they arrived home from school, and 30% always started after tea. The rest had no regular pattern as to when they did their homework. How many students:
 - **a** had no regular pattern **b** started as soon as they arrived home?
- 7 In a town of 7200 people, 1800 were over 60 years of age and 3600 were under 40.Find the percentage of people aged from 40 to 60.
- 8 As a result of dieting, Alfred reduced his 90 kg weight by 10%. What was his reduced weight?
- 9 Maryanne received 12% p.a. simple interest on her \$3500 investment.
 - **a** How much interest did she earn after 2 years?
 - **b** What was her new balance?
- **10** A salesman offered 20% discount on a holiday package costing $\pounds 2100$.
 - **a** Find the amount of discount.
 - **b** Find the new price of the holiday.
- 11 A table tennis set was bought for \$40 and sold for \$55. Find the profit:
 - a in dollars b as a percentage of the cost.

- fraction
- loss
- selling price

REVIEW SET 16B

- **1** Express the first quantity as a percentage of the second.
 - a 13 goals from 25 shots b 58 cm from 2 m
- 2 Anthony lost 6 marks in a test out of 25. What percentage did he score for the test?
- **3** What percentage is 650 kilometres of a 2000 km journey?
- 4 One hundred students agree to come to a fund raising school disco. The committee has determined that the DJ costs €180, and balloons and streamers will cost €20. If they want to make a 50% profit, how much should they charge each student?
- 5 A fridge has a marked price of €840, but a discount of 15% is given.
 - a Find the discount.
 - **b** What is the actual price paid for the fridge?

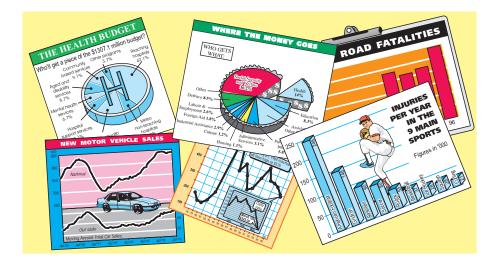
- A telemarketing company offers a "100% Money Back Guarantee". If I return my \$189 exercise machine, how much will I get back?
- 7 Jody has organised a loan of \$7000 for 5 years at 8% p.a. simple interest.
 - **a** How much interest will she need to pay?
 - **b** Find the total amount of money that must be repaid.
- 8 A survey of 250 primary school students found that 24% usually have the TV on while they are doing their homework, 56% never have the TV on, and the rest sometimes have the TV on. How many students:
 - a usually have the TV on **b** never have the TV on?
- 9 Klaus spent €15 from the €50 he was given for his birthday. What percentage of his money did he spend?
- 10 A dentist charges \$270 for dental treatment. A 10% services tax must be added to this amount.
 - **a** What is the service tax that must be added?
 - **b** How much will the customer have to pay?
- 11 An item of jewellery was bought for $\pounds 400$ and later was sold at a loss of 15%. What was:
 - **a** the loss **b** the selling price of the jewellery?

Data collection and representation

- A Samples and populations
- **B** Categorical data
- C Graphs of categorical data
- Numerical data
- E Mean or average

OPENING PROBLEM

Tony and Carl play for the same basketball team. Due to an injury at practice Tony played only half of the season. The points scored by the players in each match were:


Tony:	17	21	15	8	18	12	27	15	22	31	28	8
Carl:	19	19	13	10	15	15	24	18	26	27	23	13
	20	24	18	26	19	25	8	36	21	23	26	19

Which player's performance was better?

Things to think about:

- Would it be fair to simply total the points each player scored for the season?
- How could we display the data in the meaningful way?
- What would be the 'best' way to solve the problem?

Statistics is about collection, organisation, display, analysis and interpretation of data.

Many groups such as schools, businesses and government departments collect information. The information is used to determine whether changes are needed, or whether changes that have been made have been successful.

Governments sometimes conduct a **census** in which they gather data from all of the nation's population. This information is used to help make decisions which will affect us in the future. For example, the government must consider how much money needs to be provided for health care in the years ahead because the number of elderly people is increasing.

Results of the collection and interpretation of data are displayed using graphs, tables and diagrams.

SAMPLES AND POPULATIONS

These are important words used in statistics:

- **Population**: The whole group of objects or people from whom we are collecting data.
- Sample: A group chosen to take part in a survey or to be measured or tested.
- **Random sample**: A sample selected so that any person or object has as much chance as any other of being selected.

Inference: A conclusion you make based on your survey or investigation.

For example, suppose we conduct a survey on how much chocolate students at your school eat. The *population* is the students at your school.

A *sample* is chosen by selecting 10 students at random from the school roll. An *inference* might be that most students eat chocolate at least once a week.

CENSUS OR SURVEY

When the government carries out a **census** it requires everyone in the **population** to take part. This process is very expensive and takes a lot of time.

Instead, the government may conduct a **survey** of a **sample** of the population. It is important that the results of a survey are typical of the whole population. To ensure this, the sample must be randomly chosen, and as large as is practical.

DISCUSSION

- **1** Discuss why:
 - a clothing manufacturers would like to know the body measurements of people in different age groups
- **b** the manager of your school canteen would be interested in the types and quantities of food you eat
- your school keeps records of what is bought by the school population throughout the year
- **d** meteorologists are interested in temperature, rainfall, and atmospheric pressure measurements throughout the country and throughout the world.

- 2 For each of the situations listed in question 1, discuss how the information could be collected.
- **3** Discuss how you would gather data in each of the following situations:
 - **a** You wish to manufacture shoes and want to know how many of each size to make.

- **b** As a private citizen you wish to make a case for traffic lights near the local school.
- You own a lawn mowing business and want to expand your business to a new area.
- **d** You are an employer and you need to choose one person from 50 applicants.
- **4** Organisations and marketing researchers have many clever ways of gathering information by tempting us with offers. Discuss some of the ways in which information is collected from you. Collect samples from newspapers, magazines, packaging, and letterbox deliveries which invite you to provide data.

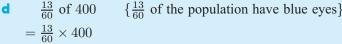
EXERCISE 17A

- 1 Suggest how to select a random sample of:
 - a 400 adults
 - 30 students at a school

- **b** bottles of soft drink at a factory
- **d** words from the English language

Self Tutor

Are there any advantages or disadvantages in the methods you have suggested?


2 How would you randomly select:

- a one ticket out of 5 tickets
- **b** one of the letters A or B
- \bullet one of the numbers 1, 2, 3, 4, 5 or 6
- **d** a card from a pack of 52 playing cards?

Example 1

From a school of 400 students, a random sample of 60 students was selected. 13 were found to have blue eyes.

- **a** How many students are in the population?
- **b** How many students are in the sample?
- What fraction of the sample has blue eyes?
- **d** Estimate how many in the population have blue eyes.
- **a** There are 400 students in the population.
- **b** There are 60 students in the sample.
- 13 out of 60 students in the sample have blue eyes so the fraction of the sample with blue eyes is $\frac{13}{60}$.

 ≈ 87

Calculator: $13 \div 60 \times 400 =$

So, approximately 87 students in the school have blue eyes.

You must know the difference between a population and a sample.

- **3** From a colony of 10 000 ants, 300 are collected and examined for red eye colour. 36 were found to have red eyes.
 - **a** How many ants form the population?
 - **b** How large was the sample?
 - What percentage of the sample had red eyes?
 - d Estimate the total number of red-eyed ants.
- **4** 50 people were randomly selected from the 750 who attended the opening night of a new play. Of the 50 people, 33 said that they liked the play.
 - **a** What was the population size of people attending the play?
 - **b** How large was the sample?
 - What percentage of the sample did *not* like the play?
 - d Estimate the total number of people who did not like the play.

B

CATEGORICAL DATA

Categorical data is data which can be placed in categories.

For example, suppose we stand at a street intersection and record the colour of each car going past.

We use the code R = red, B = blue, G = green, W = white, O = other colours to help us record the data efficiently.

The following results were observed in a sample of 50 cars:

BGWWR	OGWRW	OOBBG	OGRWR	WWWGB
BBGGW	WWWOG	WOBWW	RWWRB	OOBWR

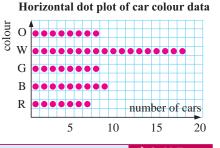
Having collected our categorical data, we first **organise** it in groups. We can do this using either • a **dot plot** or

• a tally and frequency table

Organisation of the data helps us to identify its features. For example:

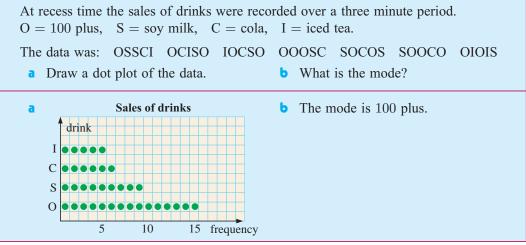
The **mode** is the most frequently occurring category.

DOT PLOTS

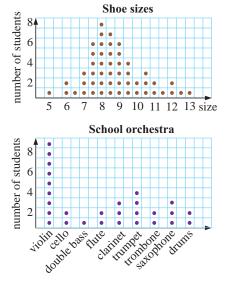

A dot plot is a graph which displays data, where each dot represents one data value.

Dot plots are often used to record data initially and may be horizontal or vertical.

A dot plot for the car colour data is shown alongside:


Check that there is one dot for each car recorded in the data.

The mode is 'white' as W is the most frequently occurring category.


Example 2

Self Tutor

EXERCISE 17B.1

- 1 The dot plot shows shoe sizes for students in grade 6.
 - a How many students are in grade 6 at this school?
 - **b** How many have shoe size 9 or more?
 - What percentage have shoe sizes 8 or more?
- 2 The dot plot shows the numbers of students playing various instruments in the school orchestra.
 - a How many play stringed instruments?
 - **b** How many students are in the orchestra?
 - Find the mode of the data.

3 A class of students at a school in England were asked which summer sport they wanted to play. The choices were: T = tennis, S = swimming, C = cricket, B = basketball and F = football.

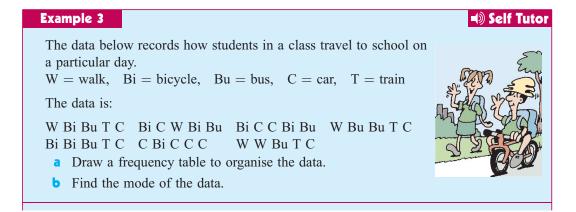
The data was: FFCTC CSFST TTBFS FFCSF TFTBC

- **a** Draw a horizontal dot plot of the data.
- **b** Find the mode of the data.
- Students voted the most popular attractions at the local show to be the side shows (S), the farm animals (F), the ring events (R), the dogs and cats (D), and the wood chopping (W). The students in a class were then asked to name their favourite.
 The data was: SRWSS_WFDDS_RRFWS_RSRWS_SRRF
 - **a** Draw a vertical dot plot of the data.
 - **b** Find the mode of the data.

TALLY AND FREQUENCY TABLES

If there is a lot of data, a tally and frequency table is a useful way to collect the information.

The **tally** is used to count the data in each category. The **frequency** summarises the tally, giving the total number of each category.


Such a table is also called a frequency distribution table or simply a frequency table.

For the car colour data the frequency table is:

Colour	Tally	Frequency
Other	₩	8
White	₩₩₩₩	18
Green	HH III	8
Blue	HH III	9
Red	HH	7

The frequency of a category is the number of items in that category.

а	Method of Travel	Tally	Frequency
	Walk	Ħ	5
	Bicycle		8
	Bus		7
	Car		11
	Train		4
		Total	35

• The mode is 'car' as this category occurs most frequently.

EXERCISE 17B.2

 The results of a survey of eye colour in a class of 28 year 6 students were: Br Bl Gn Bl Gn Br Br Bl Gn Gr Br Gr Br Bl Br Bl Br Gr Gn Br Bl Br Gn Gr Br Bl Gn

where Br = brown, Bl = blue, Gn = green, and Gr = grey.

- **a** Complete a frequency table for the data.
- **b** Find the mode of the data.
- 2 Students in a science class obtained the following levels of achievement: D C C A A C C D C B C C C D B C C C C E B A C C B C B C
 - a Complete a frequency distribution table for the data above.
 - **b** Use your table to find the:
 - i number of students who obtained a C
 - ii fraction of students who obtained a B.
 - What is the mode of the data?
- Tourists staying in a city hotel were surveyed to find out what they thought about the service by the hotel staff. They were asked to choose E = excellent, G = good, S = satisfactory, or U = unsatisfactory. The results were:

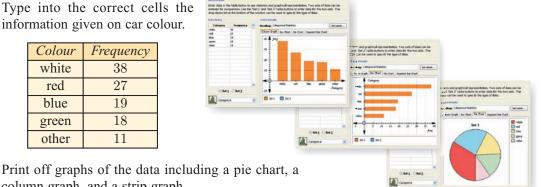
EGGSE USSGG SGUGG ESGUG SSEGG

- a Complete a frequency table for the data.
- What is the mode of the data?

• Suggest a reason why this survey would be carried out.

С

GRAPHS OF CATEGORICAL DATA


Categorical data is often displayed using column graphs and pie charts.

USING HAESE & HARRIS SOFTWARE

Click on the icon to load a statistical package which can be used to draw a variety of statistical graphs.

Change to a different graph by clicking on a different icon. See how easy it is to change the labels on the axes and the title of the graph.

Print off graphs of the data including a pie chart, a column graph, and a strip graph.

Use the software or a spreadsheet to reproduce some of the statistical graphs in the remaining part of this chapter. You can also use this software in any statistical project you may be required to do.

COLUMN GRAPHS

Colour

white

red

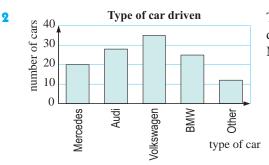
blue

green

other

Column graphs consist of rectangular columns of equal width. The height of each column represents the the frequency of the category.

Example 4 Self Tutor **Recess time drinks** The graph given shows the types of drink frequency 40 30 purchased by students at recess time. **a** What is the least popular drink? What is the mode of the data? 20 How many students drink orange juice? 10 d What percentage of students drink 0 Iced coffee Orange juice Soft drink Chocolate milk type chocolate milk? Iced coffee {shortest column} а 'Soft drink' is the mode. 27 students drink orange juice.


The total number of students purchasing drinks = 27 + 35 + 18 + 10 = 90d So, the percentage of students drinking chocolate milk is $\frac{18}{90} \times 100\% = 20\%$

EXERCISE 17C.1

- The results of a survey of eye colour 1 in a class of 28 year 6 students were:
 - Illustrate these results using a hand а drawn column graph.

Eye colour	Brown	Blue	Green	Grey
Frequency	11	7	6	4

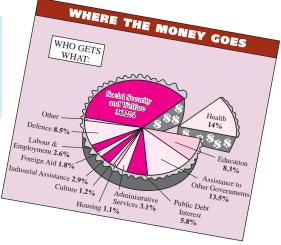
- What is the most frequently occurring eye colour? Ь
- What percentage of the students have blue eyes? C

- Yearly profit and loss figures for a business can be easily illustrated on a column graph. For the example given:
 - a in what years was a profit made
 - **b** what happened in 2006
 - what was the overall profit or loss over the 6-year period?

PIE CHARTS

A **pie chart** is a useful way of displaying how a quantity is divided up. A full circle represents the whole quantity.

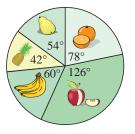

We divide the circle into **sectors** or wedges to show each type or category.

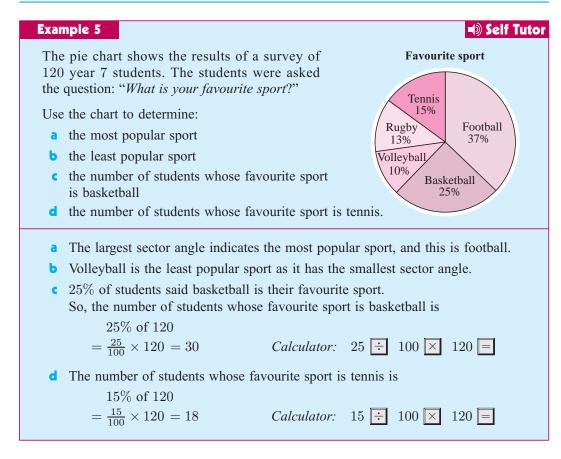

For example, the pie chart alongside shows how the budget of a country is distributed.

Fruit	Frequency
Orange	13
Apple	21
Banana	10
Pineapple	7
Pear	9
Total	60

The column graph shows the type of vehicle driven by 120 randomly selected people in Munich.

- **a** Use the graph to estimate the frequency of each type of car.
- Which make of car is the most popular?
 - What percentage of the surveyed people drive an Audi?

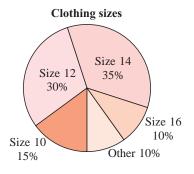


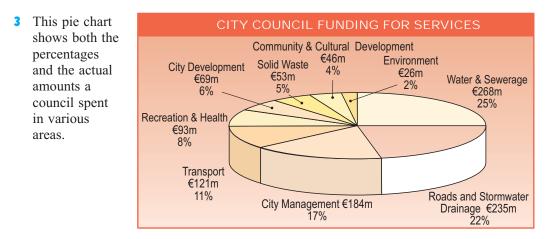

The table opposite shows the results when a class of year 8 students were asked 'What is your favourite fruit?'.

There are 60 people in the sample, so each person is entitled to $\frac{1}{60}$ th of the pie chart. $\frac{1}{60}$ th of 360° is 6° , so we can calculate the sector angles on the pie chart:

 $13 \times 6^{\circ} = 78^{\circ}$ for the orange sector $21 \times 6^{\circ} = 126^{\circ}$ for the apple sector $10 \times 6^{\circ} = 60^{\circ}$ for the banana sector $7 \times 6^{\circ} = 42^{\circ}$ for the pineapple sector $9 \times 6^{\circ} = 54^{\circ}$ for the pear sector.

The completed pie chart is shown alongside.


EXERCISE 17C.2


- 2 The pie chart alongside shows the percentages of women in France who wear certain sizes of clothing.
 - a Find what size is most commonly worn.
 - A group of 200 women attends a fashion parade. Estimate how many would wear size 10 clothing.

The pie chart alongside illustrates the proportion of water required for various household uses.

- a For what purpose is the most water used?
- **b** For what purpose is the least amount of water used?
- If the household used 400 kilolitres of water during a particular period, estimate the quantity of water used for:
 - i showering ii cleaning.

322 DATA COLLECTION AND REPRESENTATION (Chapter 17)

- **a** Briefly describe what the graph is about.
- **b** Comment on the usefulness of having both percentages and amounts shown.
- What percentage of total funding is spent on:
 - i Recreation and Health ii Community and Cultural Development?
- d How much money is spent on:
 - i Environment ii City Development?
- On what service is the largest amount spent?
- f How much is spent in total?

D

NUMERICAL DATA

Numerical data is data which is in number form.

Numerical data can be *organised* using a **stem-and-leaf plot** or a **tally and frequency table**. Numerical data is usually represented graphically by a **column graph**.

STEM-AND-LEAF PLOTS

A stem-and-leaf plot can be used to write a set of data in order.

For example, the weights (in kg) of army recruits are:

101, 91, 83, 84, 72, 93, 67, 85, 79, 87, 78, 89, 68, 80, 107, 70, 85, 64, 95, 76, 87, 74, 68, 59, 82, 77

For each data value, the units digit is used as the **leaf**, and the digits before it determine the **stem** on which the leaf is placed.

So the stem labels are 5, 6, 7, 8, 9, and 10, and they are written under one another in ascending order.

We now look at each data value in turn. The first data value is 101. Its stem label is 10 and its leaf is 1. We record 1 to the right of the stem label 10. The next data value is 91. Its stem label is 9 and its leaf is 1. We record 1 to the right of the stem label 9. Using this method we record all the data in an unordered stem-and-leaf plot.

Unordered stem-and-leaf display of weight data

Ordered stem-and-leaf display of weight data

unit $= 1$ 5	
6	7848
scale 7	$\begin{array}{c} 7 & 8 & 4 & 8 \\ 2 & 9 & 8 & 0 & 6 & 4 & 7 \\ 3 & 4 & 5 & 7 & 9 & 0 & 5 & 7 & 2 \end{array}$
8	$3\ 4\ 5\ 7\ 9\ 0\ 5\ 7\ 2$
a stem label → 9	135
10	17

The leaves on each stem are now written in ascending order. So for the stem $6 \mid 7 \mid 8 \mid 4 \mid 8$ we write $6 \mid 4 \mid 7 \mid 8 \mid 8$. This gives an ordered stem-and-leaf plot.

Notice that:

- $6 \mid 4788$ represents the four scores 64, 67, 68 and 68.
- The leaves are placed in ascending order.
- The scale (unit = 1) tells us the place value of each leaf. If the scale was 'unit = 0.1' then 6 | 4 7 8 8 would represent 6.4, 6.7, 6.8, 6.8
- $\begin{array}{c} 5 & 9 & 6 \\ 6 & 4788 & 29 \\ 7 & 0246789 & 807682 \\ 9 & 135 & 6700111 \\ 10 & 17 & 5678910 \end{array}$
- Rotating the diagram, we see the shape of a column graph.

Example 6

A fisherman recorded the total weight of all schnapper he caught each day. Construct a stem-and-leaf plot for the data shown below (in kg):

> 11, 16, 07, 25, 39, 26, 14, 17, 18, 31 31, 25, 43, 32, 25, 19, 16, 08, 34, 21

> > unit = 1 kg

Stem-and-leaf display for schnapper catch

0	78
1	$1\ 4\ 6\ 6\ 7\ 8\ 9$
2	$1\;5\;5\;5\;6$
3	$\begin{array}{c} 7 \ 8 \\ 1 \ 4 \ 6 \ 6 \ 7 \ 8 \ 9 \\ 1 \ 5 \ 5 \ 5 \ 6 \\ 1 \ 1 \ 2 \ 4 \ 9 \end{array}$
4	3

EXERCISE 17D.1

1

The weights of 24 football players were recorded to the nearest kg as follows:

72	63	90	70	67	71	89	64	93	86
66	78	75	89	80	91	81	72	87	72
86	84	84	87						

Construct a stem-and-leaf plot to display this data.

324 DATA COLLECTION AND REPRESENTATION (Chapter 17)

2 The weights of 30 fifteen week old piglets were recorded to the nearest kg as follows:

18	20	30	30	25	19	30	34	28	36	32	33	38	13	37
29	43	50	20	44	23	27	27	47	37	17	38	51	29	39

Construct a stem-and-leaf plot to display this data.

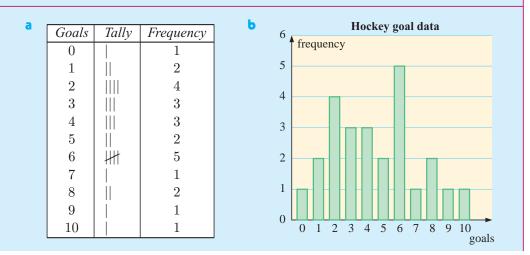
3 The time in hours taken by a farmer to plough, fertilise, and seed each of his paddocks is given below:

7	24	9	12	41	30	36
28	18	27	32	24	13	25

Construct a stem-and-leaf plot to display this data.

4 The time (in hours) taken by farmers to travel to their nearest town centre is given below:

1.0	2.4	0.9	1.2	3.6	3.0	0.7
0.8	1.8	2.7	0.2	2.4	1.3	0.5


Construct a stem-and-leaf plot to display the data, stating the scale used.

WORKING WITH NUMERICAL DATA

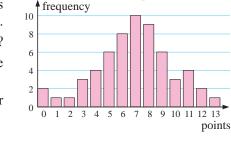
Example 7

An exceptional hockey player scores the following number of goals over a 25 match period: 43615 84224 60519 37266 836210

- **a** Organise the data in a tally and frequency table.
- **b** Graph the data on a column graph.
- On how many occasions did the player score 5 or more goals in a match?
- **d** On what percentage of occasions did the player score 4 or more goals in a match?

Self Tutor

$$2+5+1+2+1+1 = 12$$
 times


d He scored 4 or more goals on 15 occasions. So, the percentage $=\frac{15}{25} \times 100\%$ $=\frac{3}{5} \times 100\%$ =60%

EXERCISE 17D.2

- **a** Complete a frequency distribution table for the number of children in 30 families: 0, 4, 6, 2, 1, 3, 2, 4, 0, 2, 1, 2, 5, 0, 2, 3, 1, 4, 2, 1, 2, 4, 3, 3, 0, 4, 5, 2, 2, 4
 - Use your table to find the:
 - number of families with two children
 - i fraction of families with three children.
- **2** Following are the ages of children at a party:

12, 11, 17, 12, 14, 13, 11, 12, 15, 13, 12, 14, 11, 14, 12, 10, 12, 11, 13, 14

- **a** Organise the data in a tally and frequency table.
- How many children attended the party?
- How many of the children were aged 12 or 13?
- **d** What percentage were 13 or more years old?
- Display the data on a column graph.
- 3 The given graph shows the number of points scored by a basketballer over a 60-match period.
 - a What point score occurred most frequently?
 - On how many occasions were 10 or more points scored?
 - In what percentage of matches were fewer than 5 points scored?

Basketball point scores

4 The numbers of goals kicked by a football player each match for the 2008 season were:

- a Complete a frequency table for the given data.
- Use the table to find the number of games where the player kicked:
 - i exactly 3 goals ii at least 3 goals.
- 5 A record was kept of the number of goals scored by a goal shooter in netball games during the season. The results were:
 - 10, 7, 8, 5, 8, 7, 10, 10, 6, 11, 5, 7, 7, 12, 7, 11, 6, 5, 8, 8, 7
 - **a** Complete a frequency table for the data above.
 - **b** Draw a column graph of the data.
 - Find the number of games in which the shooter scored:
 - i exactly 8 goals
 - ii at least 8 goals.

6 It is stated on match-boxes that the average contents is 50. When 40 boxes were sampled, the following numbers of matches were counted:

48, 51, 49, 50, 51, 52, 50, 48, 49, 51, 50, 53, 48, 49, 51, 50, 52, 49, 50, 52, 51, 48, 50, 49, 50, 51, 52, 50, 49, 48, 52, 50, 51, 49, 50, 50, 48, 53, 52, 49

- a Prepare a frequency table for this data.
- **b** How many boxes had exactly 50 matches?
- How many boxes had 50 or more matches?
- **d** What fraction of boxes had less than 50 matches?
- Do you think the manufacturer's claim is valid?

MEAN OR AVERAGE

The **mean** or **average** of a set of numbers is an important measure of their middle. We talk about averages all the time. For example:

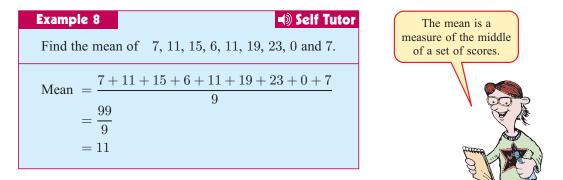
- the average speed of a car
- average height and weight
- the average score for a test
- the average wage or income.

The mean or average is the total of all scores divided by the number of scores.

For example, the mean of 2, 3, 3, 5, 6 and 11 is

 $\frac{2+3+3+5+6+11}{6} \qquad \text{{there are 6 scores}}$ $= \frac{30}{6}$ = 5

DISCUSSION


COMPARING DATA

Discuss how averages can be used to compare different sets of data. You may wish to consider these statements:

- In the last World Cup, Brazil scored an average of 2.3 goals per match. Germany scored an average of 1.5 goals per match.
- The X8 model travels 11.6 km per litre of fuel, whereas the Z3 travels 12.7 km per litre.
- In American Football, why is the average height and weight of the players important?

EXERCISE 17E

- **1** Find the mean of 1, 2, 3, 4, 5, 6 and 7.
- **2** Calculate the mean of the scores 7, 8, 0, 3, 0, 6, 0, 11 and 1.
- **3** The weights of a group of newborn ducklings are: 60 g, 65 g, 62 g, 71 g, 69 g, 69 g Find the average birthweight of the ducklings.
- 4 In a skijumping competition, Lars jumps the following distances: 110 m, 112 m, 118 m, 103 m, 122 m
 Coloulate the sugress length of Larg' ski jumps

Calculate the average length of Lars' ski jumps.

- **5** In a basketballer's last 12 games of a season he scored 23, 18, 36, 29, 38, 44, 18, 52, 47, 20, 50, and 42 points. What was his mean point score over this period?
- Baseballers Sean and Rick each throw a set of baseball pitches. The speeds of their pitches, in kilometres per hour, are:

Sean: 130, 135, 131, 119, 125 Rick: 132, 125, 138, 121, 129

- a Find the average speed of the pitches thrown by each baseballer.
- **b** Who has the fastest average pitching speed?
- **7** Compare the performance of two groups of students in the same mental arithmetic test out of 10 marks.

Group X: 7, 6, 6, 8, 6, 9, 7, 5, 4, 7 Group Y: 9, 6, 7, 6, 8, 10, 3, 9, 9, 8, 9

- a Calculate the mean of each group.
- **b** There are 10 students in *group X* and 11 in *group Y*. Because of unequal numbers in each group it is unfair to compare their means. True or false?
- Which group performed better at the test?
- 8 The given data shows the goals scored by girls in the local netball association.
 - a Find the mean number of goals for each goal shooter.
 - Which goal shooter has the best average performance?

Name	Goals	Games
Sally Brown	238	9
Jan Simmons	235	10
Jane Haren	228	9
Peta Piper	219	7
Lee Wong	207	8
Polly Lynch	199	7
Sam Crawley	197	6

ACTIVITY

A POSSIBLE STATISTICAL EXPERIMENT

In this activity you will grow wheat over a 21 day period in a controlled experiment. You will use 6 grains of wheat in each of 4 plots.

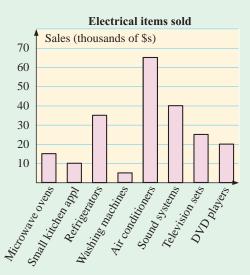
You will need: 4 saucers or coffee jar lids, cotton wool, 24 grains of wheat, measure, eye dropper, diluted liquid fertiliser.

What to do:

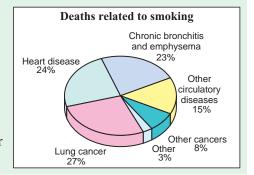
- Layer the cotton wool three quarters of the way up each lid. Place 6 grains of wheat at equal distances apart in each lid.
- 2 Label the lids as plots 1, 2, 3 and 4. Saturate each plot with 15 mL of water.
- **3** Over a 3 week period, perform the following:
 - In plot 1 squeeze 2 drops of water onto each grain of wheat every weekday.
 - In plot 2 squeeze 2 drops of water onto each grain of wheat every Monday, Wednesday and Friday.
 - In plot 3 squeeze 2 drops of water and 1 drop of diluted fertiliser onto each grain every Monday, Wednesday and Friday.
 - In plot 4 squeeze 2 drops of water and 1 drop of diluted fertiliser onto each grain every weekday.
- 4 Place all the plots in the same safe, sheltered place with plenty of light.
- **5** Every Monday, Wednesday and Friday, record the mean height of any germinating seeds for each plot. Avoid handling any shoots. Make a table to summarise your results.
- **6** Use graphs and the language of statistics to comment on your results.

KEY WORDS USED IN THIS CHAPTER

- average
- dot plot
- inference
- numerical data
- random sample
- tally and frequency table
- bar graph
- frequency
- mean
- pie chart
- sample


- categorical data
- frequency table
- mode
- population
- stem-and-leaf plot

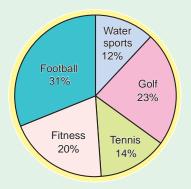
REVIEW SET 17A

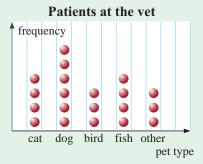

1 The data below represents birth months in a year 7 class. January is represented by the number 1, February by the number 2, and so on up to December which is 12. Boys are shown in black and girls in blue.

6	7	3	9	5	5	9	12	10	4	1	12	6	3	5
7	7	4	10	3	7	1	9	5	9	4	8	7	11	4

- **a** Prepare a tally and frequency table to show this data.
- **b** Answer the following questions:
 - i How many students were in the class?
 - **ii** How many girls were in the class?
 - **What fraction of the class was born in April?**
 - iv What percentage of the class was born in March?
- **2** In a diving competition, Sally's final dive was awarded the following scores: 8.8 9.1 8.9 9.0 9.2 8.6 8.8
 - **a** Find the mean of the 7 scores given.
 - **b** If the highest and lowest scores were left out, what would be the average of the 5 remaining scores?
- The column graph represents the value of one month's sales at Stan's Super Savings Store.
 - **a i** What goods represent the highest value of electrical items sold?
 - **ii** Give two reasons why this may have happened.
 - **b** What was the total value of goods sold?
 - If 200 small kitchen appliances like kettles and toasters were sold, what was their average price?

- **4** Use the pie chart to answer the following questions:
 - **a** What was the major disease causing death as a result of smoking?
 - **b** What 2 groups of diseases made up 50% of all smoking related deaths?
 - If 20 000 people died in one year as a result of smoking, estimate how many died from:
 - i heart disease ii lung cancer
 - iii other cancers?


REVIEW SET 17B


 A medal is awarded to the best and fairest player in a national sporting competition. Umpires award 3 votes to the player they feel was the best and fairest in each game.
 2 votes are awarded for second best, and 1 vote for the third best.

Listed below are the votes awarded to a recent winner. The first vote from the left was for the first game, the second vote was for the second game, and so on.

 $0 \ 2 \ 0 \ 3 \ 1 \ 0 \ 3 \ 2 \ 3 \ 1 \ 1 \ 3 \ 2 \ 0 \ 3 \ 2 \ 1 \ 0 \ 3 \ 2$

- **a** Construct a frequency table showing the votes awarded to the winner in each game.
- **b** Draw a column graph to show the frequency of the votes.
- In how many games did the winner not receive votes?
- **d** What was the winner's total vote?
- e In what percentage of games did the winner receive votes?
- f What was the mean number of votes the winner received per game?
- 2 The given pie chart represents the sale of €100000 worth of goods by a sports store during its February sale.
 - **a** Gear for which sport sold best?
 - **b** What value of goods for water sports and tennis was sold?
 - The same percentage of goods was sold in the sports store's $\frac{1}{2}$ million euro 'End of Year Sale'.
 - i What value of fitness gear was sold?
 - **ii** What was the total amount of tennis and water sports sales?
- **3** The dot plot shows the types of pets treated at a vet on one day.
 - **a** How many pets were treated on this day?
 - **b** Find the mode of the data.
 - What percentage of the pets treated were fish?

- 4 Bill's Bakery advertises a new variety in its range of pastries. The daily sales of the new variety are: 23, 25, 18, 21, 17, 14, 15, 19, 18, 11, 15, 12, 6, 9. Find the mean of the daily sales.
- **5** The time in minutes taken for customers at a restaurant to receive their meals is given below:
 - $15 \quad 28 \quad 31 \quad 8 \quad 22 \quad 18 \quad 35 \quad 24 \quad 15 \quad 9 \quad 28 \quad 17 \quad 21 \quad 20 \quad 13$
 - **a** Construct a stem-and-leaf plot to display this data.
 - **b** Find the average time for the customers to receive their meals.

Algebra and patterns

- **A** Patterns
- B Variables and notation
- C Algebraic form
- D The value of an expression
- **E** Substituting into formulae
- F Practical problems using formulae
- G Linear graphs

OPENING PROBLEM

Consider the following pattern created using matchsticks. We start with figure 1, add some matchsticks to make figure 2, add more to make figure 3, and so on.

Figure:

 $\nabla_{1}, \quad \nabla_{2} \nabla_{2}, \quad \nabla_{3} \nabla_{2}, \quad \dots$

Figure 1 is made using 3 matchsticks, figure 2 is made using 7 matchsticks, and figure 3 is made using 11 matchsticks.

Things to think about:


- How many matchsticks do we need to add each time to move from one figure to the next?
- Can you write down a formula for the number of matchsticks used in figure n?
- How many matchsticks are needed to make figure 32?

PATTERNS

You have probably already seen some **number patterns** or **sequences**. For example:

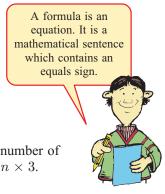
- 2, 5, 8, 11, 14, 17, where 3 is added to one number to get the next one.
- 39, 35, 31, 27, 23, where 4 is subtracted from one number to get the next one.

Patterns also exist with geometric shapes. These are called geometric patterns. For example:

What to do:

- 1 Copy the given pattern and draw the next 4 figures.
- **2** Copy and complete the table showing the number of matches required to make each figure.

Figure number	1	2	3	4	5	6	7
Matches needed	3	6					


- **3** Without drawing them, write down the number of matches needed to make the figures 8, 9, 10 and 11.
- **4** Predict the number of matchsticks needed to make figure:
 - **a** 30 **b** 50 **c** 200 **d** 1000.
- **5** Can you predict the number of matchsticks required to make figure n?

From the Investigation you should have made these discoveries about the triangle pattern

Figure number	1	2	3	4	5	6	7	
Matches needed	3	6	9	12	15	18	21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

To get the next figure we add 3 to the previous one. We can hence construct a table which shows the number of matches required for each figure.

Figure number	Figure	Matches needed
1	\bigtriangleup	$3 = 1 \times 3$
2	\bigtriangleup	$6 = 2 \times 3$
3	$ \bigtriangleup \bigtriangleup $	$9 = 3 \times 3$
4		$12 = 4 \times 3$

So, for figure 100, the number of matches needed is 100×3 .

For figure *n*, where *n* could be any positive whole number, the number of matches *M* that we need is given by the **rule** or **formula** $M = n \times 3$.

Exan	nple 1 Self Tutor
Cor	nsider the matchstick pattern: , , , , , , , , , , , , , , , , , , ,
a	Draw the next <i>two</i> figures of the pattern.
ь	Copy and complete:
	<i>Figure number (n)</i> 1 2 3 4 5 6
	Matches needed (M) 1 3
c	Write a formula connecting the figure number n and the matches needed M .
a	
Ь	Figure number (n) 123456
	Matches needed (M) 1 3 5 7 9 11
	+2 $+2$ $+2$ $+2$ $+2$ $+2$
c	We notice that each time the <i>figure number</i> n goes up by one, the <i>matches needed</i> M goes up by two.

334 ALGEBRA AND PATTERNS (Chapter 18)

We therefore compare " $2 \times n$ " with M :	$2 \times n$	2	4	6	8	10	12	
From the table we can see that:	Matches needed (M)	1	3	5	7	9	11	
Matches needed = $2 \times \text{figure number} - 1$ or $M = 2 \times n - 1$								

EXERCISE 18A

1 Consider the matchstick pattern: |, ____, ____,

- **a** Draw the next two figures of the pattern.
- **b** Copy and complete:

Figure number (n)	1	2	3	4	5
Matches needed (M)	1	3			

- As the value of n increases by 1, what happens to the value of M?
- **d** Copy and complete:

$2 \times n$	2	4		
M	1	3		

e Write down the formula connecting M and n using d.

2 Consider the matchstick pattern:

- **a** Draw the next two figures of the pattern.
- **b** Copy and complete:

Figure number (n)	1	2	3	4	5
Matches needed (M)	4	7			

- As the value of n increases by 1, what happens to the value of M?
- **d** Copy and complete:

$3 \times n$	3	6	9	
M	4	7		

e Write down the formula connecting M and n using d.

3 Consider the matchstick pattern:

a Draw the next two figures of the pattern.

b	Copy and complete:	Figure number (n)	1	2	3	4	5	
		Matches needed (M)	5					

- As the value of n increases by 1, what happens to the value of M?
- d Copy and complete:

3 imes n	3	6		
M	5			

- e Write down the formula connecting M and n using d.
- 4 By following the steps used in questions 1 to 3, find formulae connecting the number of matchsticks needed (M) to the figure number (n) in:
 - a
 IZI, IZIZI, IZIZI,

 b
 △, △_, △_, △_, △_,

 c
 [], []]]], []]]], []]]]],

B

VARIABLES AND NOTATION

In **Section A** we discovered **formulae** or **rules** for matchstick patterns. These formulae linked the two **variables**, *number of matchsticks needed* and *figure number*.

We call these quantities variables because they can take many different values. In **algebra** we use letters or symbols to represent variables. This allows us to write formulae more neatly. For example:

Writing the *number of matches needed* as M and the figure number as n, we obtained formulae such as $M = n \times 2 - 1$, $M = 3 \times n + 1$, and $M = 3 \times n + 2$.

PRODUCT NOTATION

Centuries ago mathematicans agreed that to make expressions easier, they would:

- omit the \times sign wherever possible
- write the numbers in products before the variables.

For example:

- $M = n \times 2 1$ is written as M = 2n 1
- the number of matchsticks is M = three times the figure number M + 1

M = 3n + 1 is a much shorter statement and is easier to read than when given in words. We say the formula is written in **algebraic form**, as it uses symbols rather than words.

Example 2

Self Tutor

In a matchstick pattern, the number of matchsticks needed is seven times the figure number, minus four.

Rewrite this statement using variables M and n in simplest algebraic form.

If the number of matchsticks is M and the figure number is n, the statement in algebraic form is M = 7n - 4.

Where two or more variables are used in an algebraic product we agree to write them in **alphabetical order**.

So, $a \times b$ and $b \times a$ would both be written as ab.

Example 3	Self Tutor
Write using product notation:	
a $x imes 2 imes y$	b $3 \times x - 2 \times y$
a $x \times 2 \times y = 2xy$	b $3 \times x - 2 \times y = 3x - 2y$

EXERCISE 18B

1 Write using product notation:

a	c imes d	b	$d \times c$	c	$a\times b\times c$	d	$a \times 5$
e	$m\times 2\times n$	f	$b \times 3 \times a$	9	$3 \times t + 2$	h	$n \times 7 - 4$
i	$b\times 7\times a$	j	$2\times a\times 5\times c$	k	$5 + s \times 3$	I.	$6-t \times p$
m	$11 + q \times p$	n	$3 \times r - 6$	0	$b\times a + c\times a$	р	$c\times 3 + d\times 2$

- **2** Write in algebraic form:
 - **a** The number of matches M is three times the figure number n.
 - **b** The number of shapes s is two more than the figure number n.
 - The number of matches M is five times the figure number n, plus three.
 - **d** The number of shapes N is twice the figure number n, minus four.
 - \bullet The number of matches M is two more than three times the figure number n.
 - f To obtain the number of shapes N you add one to the figure number n, then double the result.

C

ALGEBRAIC FORM

Self Tutor

Formulae are not the only things that can be written in a shorthand way using algebra.

A vital part of algebra is the ability to convert **word sentences** into algebraic form. You will learn this skill with practice.

The following table shows words commonly associated with the 4 operations $+, -, \times, \div$.

+	add, sum, exceeds, more than, plus
—	subtract, minus, take, less than, difference
×	multiply, times, product, double, twice, treble, triple
÷	divide, quotient

Example 4

Write in algebraic form:

- **a** the sum of p and q
- **b** a number 5 times larger than a
- **c** a number which exceeds r by t
- d twice the sum of k and 4
- **a** Sum means add, so the sum of p and q is p+q.
- **b** The number is $5 \times a$ which is written as 5a.
- The number which exceeds 7 by 3 is 7+3, so the number which exceeds r by t is r+t.
- **d** The whole of k + 4 must be doubled, so the number is 2(k + 4).

QUOTIENT NOTATION

We have seen previously how $3 \div 4$ can be written as the fraction $\frac{3}{4}$.

In general, we can write any division in algebra using

				\boldsymbol{a}
\boldsymbol{a}	•	b	=	\overline{b}

Example 5	Self Tutor
Write in algebraic form:	
a the average of a and b	b a divided by the sum of b and c
a The average of 3 and 5 is $\frac{3+5}{2}$, so the average of a and b is $\frac{a+b}{2}$.	b <i>a</i> is divided by the whole of $b + c$, so we write $\frac{a}{b+c}$.

b 3 more than a

h 2 less than d

k four times n

 \mathbf{c} double n

EXERCISE 18C

- 1 Write in algebraic form:
 - a m plus n
 - **d** a third of g
 - $\mathbf{9}$ 4 more than a
 - q less than r
- 2 Write in algebraic form:
 - **a** the average of m and n
 - **c** 5 divided by the sum of r and s.
- 3 Copy and complete:
 - a The product of 3 and 8 is The product of 3 and m is The product of a and m is
 - The number 2 less than 6 is The number 2 less than a is The number x less than a is
 - The number of cents in \$3 is The number of cents in \$D is

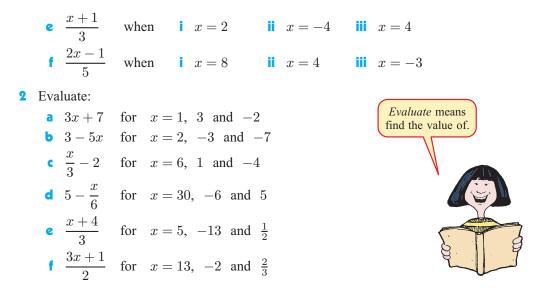
- b minus c
- f treble y
- d more than a
- twice n, add 5
- **b** the sum of x and y, divided by 4
- If I subtract 5 from 9 I get
 If I subtract 5 from d I get
 If I subtract c from d I get
- **d** The number which exceeds 7 by 5 is The number which exceeds 7 by t is The number which exceeds r by t is
- f The number of dollars in 400 cents is The number of dollars in c cents is
- **a** There are 11 people on an aeroplane and x get off. How many are left on the aeroplane?
 - **b** A train has 86 passengers and y more get on at the next station. How many are now on the train?
 - A hotel has x floors with y apartments per floor. Each apartment contains 4 rooms. How many rooms does the hotel have in total?
 - **d** A can of soft drink costs c cents. How much would 7 cans cost in dollars?

- 5 A man is n years old.
 - **a** How old was he 12 years ago?
 - **b** His wife is 6 years older than he is. How old is she?
 - His mother is twice his age. How old is she?
- 6 Concert tickets cost €40 for adults and €15 for children. If a group of x adults and y children attend, write an expression for the total cost.

THE VALUE OF AN EXPRESSION

Consider the algebraic expression 3x + 5.

When x = 2, 3x + 5 $= 3 \times 2 + 5$ = 6 + 5= 11When x = -4, 3x + 5 $= 3 \times (-4) + 5$ = -12 + 5= -7


Notice that first we multiplied by 3 and then added 5. We did this to follow the BEDMAS order.

Example 6	Self Tutor
Find the value of:	
a $4x - 11$ when $x = -2$	b $\frac{x}{3} + 2$ when $x = 12$
• $4(x+3)$ when $x = 7$	d $\frac{x+2}{3}$ when $x = -8$
a $4x - 11$ b $\frac{x}{3} + 2$	c $4(x+3)$ d $\frac{x+2}{3}$
$= 4 \times (-2) - 11 = \frac{12}{3} + 2$	=4(7+3) (8) + 2
= -8 - 11	$= 4(1+3) = 4(10) = \frac{(-8)+2}{3}$
= -19 $= 4 + 2$	· · ·
= 6	$=40 = \frac{-6}{3}$
	= -2

EXERCISE 18D

1 Find the value of:

a	5x - 3	when	x = 4	ii x = 0	iii	x = -3
b	5-2x	when	x = 3	x = 10		$x = \frac{1}{2}$
c	$\frac{x}{2} + 5$	when	x = 6	ii $x = -4$		x = 3
d	$6-\frac{x}{3}$	when	x = 12	x = -6		x = 4

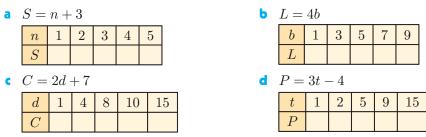
Ε

SUBSTITUTING INTO FORMULAE

Suppose we have a formula which connects two variables. If we are given the value of one of these variables, we can **substitute** it into the formula to find the value of the other variable.

The formula for the number of matcheticks M in figure n is M = 2n - 1. We can substitute

the value n = 10 to find the number of matcheticks in figure 10.


When n = 10, $M = 2 \times 10 - 1 = 19$

So, there are 19 matchsticks in figure 10.

Example 7 Self Tutor Copy and complete the table by substituting into the t1 3 6 15formula W = 3t + 2: WThe formula is W = 3t + 2When t = 1, When t = 3, When t = 6, $W = 3 \times 1 + 2$ $W = 3 \times 3 + 2$ $W = 3 \times 6 + 2$ W = 3 + 2 \therefore W = 9 + 2 \therefore W = 18 + 2 $\therefore W = 3 + 2$ $\therefore W = 5$ $\therefore W = 11$ $\therefore W = 20$ When t = 15, We can now complete the table: $W = 3 \times 15 + 2$ 1 3 6 15t $\therefore W = 45 + 2$ W511 2047 $\therefore W = 47$

EXERCISE 18E

1 Use substitution to help complete the tables for the given formulae:

2 Substitute the given values of x into the formulae to find the values for y in each case:

a $y = 5x + 3$	if $x = 4$	x = 6	x = 15
b $y = 7x - 5$	if $x = 2$	i x = 3	iii x = 10
y = 3(x+2)	if $x = 5$	x = 12	iii x = 20
d $y = 50 - 4x$	if $x = 5$	i x = 8	iii x = 10
e y = 2(20 - x)	if $x = 2$	i x = 9	iii x = 14
f $y = 4(x+1) - 3$	if i $x = 3$	x = 7	x = 24

Example 8

Self Tutor

The cost of hiring a tennis court is given by the formula C = 5h + 8 where C is the cost in dollars and h is the number of hours the court is hired for. Find the cost of hiring the tennis court for: **a** 4 hours **b** 10 hours.

The formula is C = 5h + 8a Substituting h = 4 we get $C = 5 \times 4 + 8$ = 20 + 8 = 28So, it costs \$28 for 4 hours. b Substituting h = 10 we get $C = 5 \times 10 + 8$ = 50 + 8 = 58So, it costs \$58 for 10 hours.

- 3 The cost of staying at a hotel is given by the formula C = 50d + 20 where C is the cost in \pounds and d is the number of days a person stays. Find the cost of staying for:
 - a 3 days b 6 days c 2 weeks
- 4 For most medicines, the dose a child should take depends on the child's age, a years. One particular medicine has the following rule for calculating the dose D mL:

$$D = \frac{50 \times a}{a+12}.$$

Find the dose for children aged:

a 4 years

b 8 years

✓ 12 years.

	Example 9 Self Tutor
	Examine the matchstick pattern: $\underline{\ }$,
	a Copy and complete: Figure number (n) 1 2 3 4 5
	Matchsticks needed (M) 2
	b Find the rule connecting M and n .
	• Find the number of matchsticks needed to make figure 90.
	a n 1 2 3 4 5
	$\begin{array}{ c c c c c c }\hline M & 2 & 5 & 8 & 11 & 14 \\ \hline \end{array}$
	b The increases in M by 3 tell us to multiply n by 3.
	b The increases in M by 3 tell us to multiply n by 3. 3n 3 6 9 12 15
	M 2 5 8 11 14
	Since the M values are 1 less than the $3n$ values, $M = 3n - 1$.
	• When $n = 90$, $M = 3 \times 90 - 1$
	= 270 - 1 = 269
	So, 269 matches are needed to make figure 90.
	,
5	Examine the matchstick pattern:
	a Copy and complete:
	Figure number (n) 1 2 3 4 5 6
	Matchsticks needed (M)
	 Find the rule connecting M and n. Find the number of matchsticks needed to make figure 63.
	• The the humber of matchstleks needed to make right os.
6	Examine the matchstick pattern: \bigwedge , \bigwedge , \bigwedge , \bigwedge ,
	a Copy and complete:
	Figure number (n)123456Matchsticks needed (M) </th
	 Find the rule connecting M and n.
	Find the number of matchsticks needed to make figure 75.
-	·, ·, ·, ·, ·,
7	Look at the following pattern:,,,
	a Copy and complete: Figure number (n) 1
	Matchsticks needed (M) 1 2 3 4 5

b Find the rule connecting M and n.

• Find the number of matchsticks needed to make figure 57.

342 ALGEBRA AND PATTERNS (Chapter 18)

8 Look at the following pattern:

a Copy and complete:

Figure number (n) 1 23 4 5Matchsticks needed (M)

- **b** Find the rule connecting M and n.
- Find the number of matchsticks needed to make figure 80.
- 9 Examine the following matchstick pattern:

a Copy and complete:

Figure number (n)	1	2	3	4	5
Matchsticks needed (M)					

- **b** Find the rule connecting M and n.
- Find the number of matchsticks needed to make figure 29.

PRACTICAL PROBLEMS USING FORMULAE

We can construct formulae to help us with many practical situations that involve patterns.

For example:

Joe Smith hires small trucks for moving furniture.

He charges an initial fee of $\pounds 14$ plus $\pounds 3$ per kilometre travelled.

distance d kilometres is $\pounds 3d$.

We can construct a table to show Joe's fees such as the one above. Notice that each time the distance travelled increases by 1 km, the fee increases by $\pounds 3$. So, the fee for just the

We then need to add on the $\pounds 14$ initial fee.

So, the total hire fee H for travelling d kilometres is H = 3d + 14 pounds.

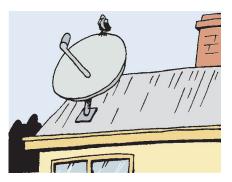
If Erin travels 38.7 km, she would have to pay Joe $3 \times 38.7 + 14$ pounds

 $= \pounds 130.10$

DISCUSSION

Why is Joe's formula very easy to write down, unlike the geometric matchstick patterns we have seen previously?

JOE SMITH	Distance travelled	Hire fee
TRUCKHIRE	0 km	£14
	1 km	$\pounds 17$
	2 km	$\pounds 20$
	3 km	$\pounds 23$
	:	


Example 10 Self Tutor A taxi company charges €3 'flagfall' and €1.80 for each kilometre travelled. Suppose the total charge is $\in C$ for travelling *n* kilometres. Find: **a** the cost just for travelling the distance n kilometres Ь the formula connecting C and n• the total charge for travelling 21.6 km. The charge for each kilometre is $\notin 1.80$, so the cost for just the distance n kilometres а is €1.80*n*. **b** To find the total charge C we need to add on the 'flagfall' which is $\in 3$. So, the total charge C = 1.80n + 3 euros. • When n = 21.6, $C = 1.80 \times 21.6 + 3$ = 41.88So, the total charge for travelling 21.6 km is €41.88.

EXERCISE 18F

1 On weekends a mechanic charges a \$40 callout fee plus \$30 for every hour he spends fixing a car.

So, for a breakdown taking two hours to fix, the total cost would be $$40+2\times$30 = 100 .

- **a** What is the charge for doing h hours work (excluding the callout fee)?
- **b** If C is the total charge (in dollars) for a job taking h hours, what is the formula connecting C and h?
- Find the total charge for a callout taking:
 - i 1 hour ii $3\frac{1}{4}$ hours
- 4 hours 12 min.
- 2 A satellite TV company charges €75 installation and €42.00 per month from then on.
 - a How much will the monthly fee amount to after *m* months?
 - **b** If the total cost is $\in C$ for *m* months, what formula connects *C* to *m*?
 - Use the formula to find the cost to install and use the satellite TV for a period of:
 - i 7 months ii $4\frac{1}{2}$ years.

- 3 On a rainy day the flow of a river increases by 2 cumecs each hour. When the rain starts, the river flow is 8 cumecs.
 - a Calculate the flow after 9 hours of rain.
 - **b** Write a formula to show how you got your answer.
 - Construct a table to show the flow each hour for 9 hours.

344 ALGEBRA AND PATTERNS (Chapter 18)

4 Below is a table of fees which an electrician charges for jobs of different length:

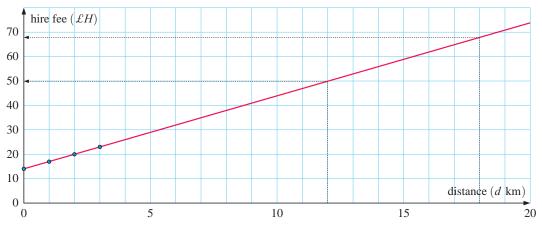
Number of hours (h)		2	3	4	5
Cost of job (C)	\$70	\$110	\$150	\$190	\$230

- **a** Find the rule connecting C and h.
- **b** Find the cost of a job taking: **i** 23 hours
- **5** A runner in a 14 km road-race starts quickly but then slows. She runs the first kilometre in 5 minutes but then takes an extra 12 seconds for each kilometre afterwards.
 - **a** Write a formula which gives the time for the *n*th kilometre of the race.
 - **b** How long does she take to run the:

С

- i 6th kilometre ii 13th kilometre?
- How long does it take the runner to finish the race?

 $17\frac{1}{2}$ hours.


LINEAR GRAPHS

Consider again Joe's fees for hiring small trucks on page 342. We saw that the hire fee for travelling d kilometres was H = 3d + 14 pounds.

We saw how this formula was related to the table of values:

<i>d</i> (km)	0	1	2	3
$H\left(\pounds\right)$	14	17	20	23

We can also display the hire fees using a graph. We do this by plotting points from the table of values: (0, 14), (1, 17), (2, 20), (3, 23) and connecting them with a straight line. The points lie in a straight line because the fee increases by the same fixed amount for each kilometre driven.

It can easily be read from the graph that when d = 12, $H = \pounds 50$ and when d = 18, $H = \pounds 68$.

A linear graph has points which lie in a straight line.

EXERCISE 18G

- **a** Use only the graph above to find the cost of hiring one of Joe's trucks to travel a distance of:
 - i 7 km ii 14 km iii 17.7 km
 - **b** Why is it easier to use the formula H = 3d + 14 for trips of more than 20 km?
- 2 Draw the graph of P against n from the table which follows:

n	0	1	2	3	4	5	6
P	7	10	13	16	19	22	25

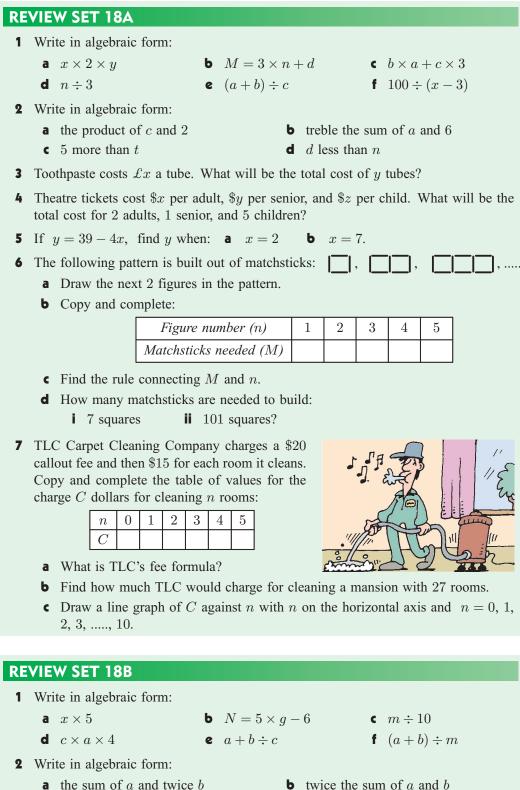
P is the profit in dollars for selling n spanner sets. Make sure that your graph can be extended to n = 25.

- Find the profit in selling:
 - i 10 spanner sets ii 18 spanner sets iii 22 spanner sets
- **b** Tania found a formula for calculating the profit. Her formula was $P = 3 \times n + 7$.
 - Check that this formula fits the tabled values.
 - ii Check your answers to **a**.
 - Find the profit when selling 35 spanner sets.
- 3 The following graph shows the growth of a seedling over a period of weeks.

Seedling growth 40 height (cm) 30 20 10 weeks (n) 0 5 10 15 20 Find the height of the seedling: a when planted after 4 weeks after 16 weeks. **b** If the linear trend continues, how long will it take for the seedling to reach a height of:

i 20 cm ii 26 cm

KEY WORDS USED IN THIS CHAPTER


- algebra
 - quotient
- equation
- linear graph
- product

- rule
- increase
- sum
- number pattern
- substitution

variables

33.5 cm?

- geometric pattern
- notation
- formula

c d more than 3

- **b** twice the sum of a and b
- **d** n less than treble c

- **3** What is the cost of 8 golf clubs at $\in x$ each?
- **4** If $M = \frac{5x + 15}{10}$, find M when: **a** x = 3 **b** x = 8
- 5 What is the change from $\pounds 100$ when n items are bought costing $\pounds d$ each?
- 6 The following pattern is built out of matchsticks:

a Copy and complete the table of values:

Figure number (n)	1	2	3	4	5	6
Number of matchsticks (M)						

- **b** Find the rule connecting M and n.
- Write down the rule in sentence form.
- **d** Use the rule to find the number of matchsticks needed for figure 80.
- **7** Joe sells television sets. He is paid \$400 per week plus \$80 for every television set he sells.
 - **a** Copy and complete the following table of values showing the amount Joe earns (E dollars) for selling n television sets:

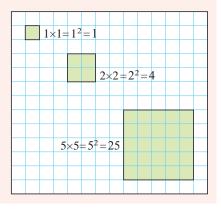
n	0	1	2	3	4	5
E						

- **b** Write a formula for the amount that Joe earns.
- How much would Joe earn if he sold 8 television sets in a week?
- **d** Draw a line graph of E against n with n on the horizontal axis.
- Use your graph to check your answer to **c**.

ACTIVITY

SQUARE NUMBERS

You will need: some sheets of graph paper

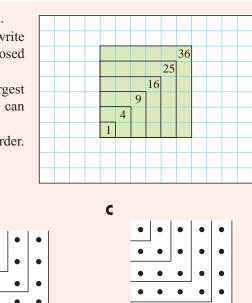

What to do:

 Near the top left hand corner of the page, shade in one square region.

Leave two squares of space and shade a 2×2 square region. $2 \times 2 = 2^2 = 4$ squares.

Continue this pattern to construct squares 3×3 , 4×4 , and so on until you cannot fit any more on the page without overlapping.

Write a rule which explains how the square number was produced.



2 Construct overlapping squares as shown. On the top right corner of each square, write down the **total** number of squares enclosed by the larger square.

On your piece of paper, what is the largest number of smaller squares that you can enclose with a larger square?

List your square numbers in ascending order.

B

- A shows that the sum of the first 3 odd numbers is 3^2 . 1+3+5=9
- **B** shows that the sum of the first 4 odd numbers is 4^2 . 1+3+5+7=16
- **C** shows that the sum of the first 5 odd numbers is 5^2 . 1+3+5+7+9=25
- a Draw the next two diagrams in this pattern.
- **b** Write down the next three lines in this pattern.
- Add the first and last number in each sum then divide it by 2. What do you find?
- **d** What numbers when squared are equal to these sums?

i	$1 + 3 + 5 + 7 + \dots + 21 =$	ii	$1 + 3 + 5 + 7 + \dots + 23 =$
iii	$1 + 3 + 5 + 7 + \dots + 35 =$	iv	$1 + 3 + 5 + 7 + \dots + 39 =$

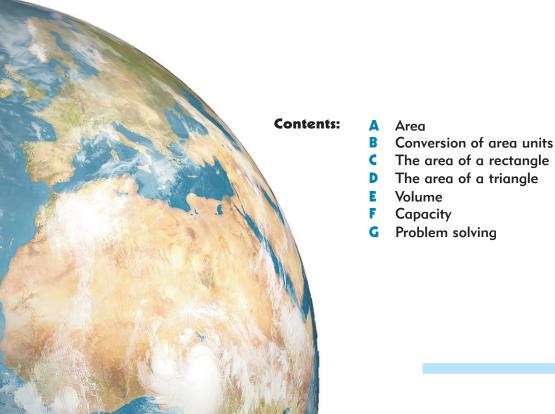
4 A square number results from one being added to the product of any four consecutive whole numbers.

For example:

3 A

$$1 \times 2 \times 3 \times 4 + 1 = 25 = 5^{2} \qquad 2 \times 3 \times 4 \times 5 + 1 = 121 = 11^{2}$$

Copy and complete:
a $3 \times 4 \times 5 \times 6 + 1 = \dots = 19^{2}$
b $4 \times 5 \times 6 \times 7 + 1 = \dots = \square^{2}$
c $5 \times 6 \times 7 \times 8 + 1 = \dots = n^{2}$
d $6 \times 7 \times 8 \times 9 + 1 = \dots = \Delta^{2}$

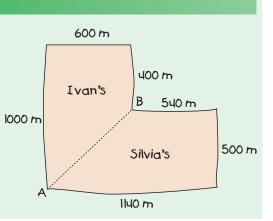

e $7 \times 8 \times 9 \times 10 + 1 = \dots = \bigcirc^2$

Use any four consecutive whole numbers to show that the rule is true.

5 Find other patterns and formulae using square numbers to share with the class.

Area, volume and capacity

OPENING PROBLEM



Hector owns a farm. Its dimensions are shown in the diagram alongside. Hector has decided to divide his property

using a straight fence from A to B. He gives his son Ivan the land on one side of the fence, and his daughter Silvia the land on the other side.

Things to think about:

- How much land did Hector own?
- Who gets more land, Ivan or Silvia?

AREA

In any house or apartment there are **surfaces** such as carpets, walls, ceilings, and shelves. These surfaces have **boundaries** which define the **shape** of the surface.

As in the **Opening Problem**, people need to measure the amount of surface within a boundary, whether it be land, a wall, or an amount of dress material.

Area is the amount of surface inside a region.

Descriptions on cans of paint, insect surface spray, and bags of fertiliser refer to the area they can cover. Garden sprinklers are designed to spray water over a particular surface area.

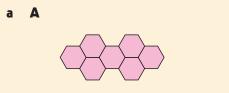
INVESTIGATION 1

CHOOSING UNITS OF AREA

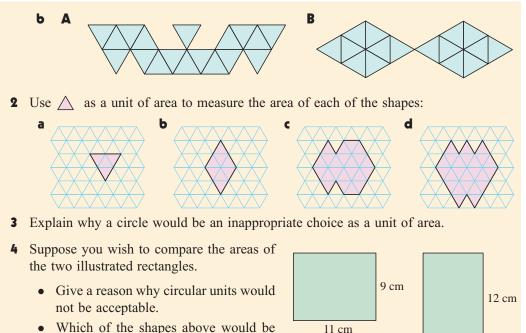
Some identical shapes can be placed together to cover a surface with no gaps. For example:

equilateral triangles

B



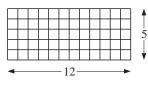
regular hexagons


We can use these shapes to compare different areas.

What to do:

1 Compare the areas of these shapes. For each pair, which has the bigger area?

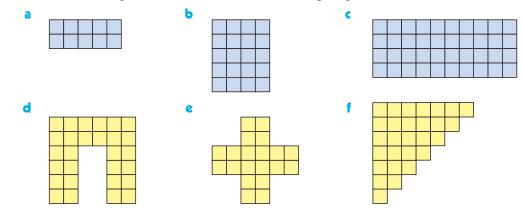
best to use as a measure of area? Give two reasons why you think this is so.

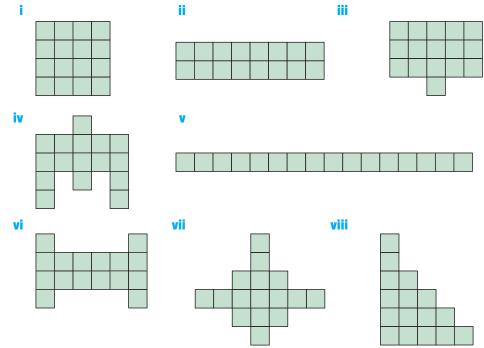

11 cm 8 cm

SQUARE UNITS

As you have seen, it is possible to compare area using a variety of shapes. Some shapes have advantages over others.

The square has been chosen as the universal unit used to measure area.


The area of a closed figure, no matter what shape, is the number of square units (unit² or u^2) it encloses.


 $5 \times 12 = 60$ squares

EXERCISE 19A.1

1 Find the area in square units of each of the following shapes:

- **2** a Check to see that all of the following shapes have the same area.
 - **b** What is the perimeter of each?

• What does this exercise tell you about the area and the perimeter of a shape?

METRIC AREA UNITS

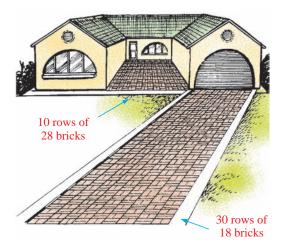
In the metric system, the units of measurement used for area are related to the units we use for length.

1 square millimetre (mm^2) is the area enclosed by a square of side length 1 mm.

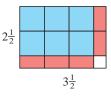
- 1 square centimetre (cm^2) is the area enclosed by a square of side length 1 cm.
- 1 square metre (m^2) is the area enclosed by a square of side length 1 m.
- 1 hectare (ha) is the area enclosed by a square of side length 100 m.
- 1 square kilometre (km²) is the area enclosed by a square of side length 1 km.

EXERCISE 19A.2

- 1 What units of area would most sensibly be used to measure the area of the following?
 - **a** the floor space in a house
 - wheat grown on a farm
 - **e** a freckle on your skin
 - **g** a micro chip for a computer
 - a postage stamp


- **b** an envelope
- d carpet for a doll's house

■ **-**1 mm²


 1 cm^2

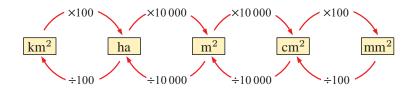
- **f** a large island
- h a bathroom mirror
- a page of a book

- a How many tiles have been used for:
 i the floor ii the walls?
 Do not forget tiles behind and under the sink cabinet and in the shower.
 - **b** There are 25 tiles for each square metre. How many square metres of tiles were used?
- The tiles cost €36.90 per square metre and the tiler charged €18.00 per square metre to glue them. What was the total cost of tiling?
- 3 a In the given picture, how many pavers were used for:
 - i the driveway ii the patio?
 - **b** The pavers in the patio are the same as the pavers in the driveway. If there are 50 pavers for every square metre, how many square metres of paving were laid?
 - If the cost of the pavers is \$16.90 per m², and the cost of laying them is \$14 per m², what is the total cost of the paving?

- 4 Look at the given diagram. It is $3\frac{1}{2}$ units long and $2\frac{1}{2}$ units wide.
 - **a** How many blue full units are there?
 - **b** How many red $\frac{1}{2}$ units are there?
 - What fraction of a unit is the small white square?
 - **d** What is the total area of the rectangle?
 - Calculate $3\frac{1}{2} \times 2\frac{1}{2}$. What do you notice?

B

CONVERSION OF AREA UNITS


We can convert from one unit of area to another using length relationships.

For example: 1 cm = 10 mmso $1 \text{ cm}^2 = 1 \text{ cm} \times 1 \text{ cm}$ $= 10 \text{ mm} \times 10 \text{ mm}$ $= 100 \text{ mm}^2$ $1 \text{ m}^2 = 100 \text{ cm} \times 100 \text{ cm}$ $= 10000 \text{ cm}^2$ $1 \text{ km}^2 = 1000 \text{ m} \times 1000 \text{ m}$ $= 100000 \text{ m}^2$

A hectare is an area 100 m \times 100 m or 10000 m².

$1~\mathrm{cm}^2 = 100~\mathrm{mm}^2$	$1 \text{ ha} = 10000 \text{ m}^2$
$1 \ {\rm m}^2 = 10 \ 000 \ {\rm cm}^2$	$1~\mathrm{km}^2=100~\mathrm{ha}$

AREA UNIT CONVERSIONS

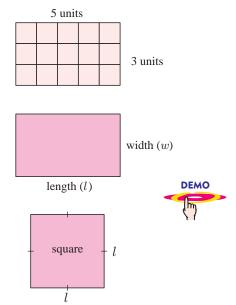
Example 1	
Convert: a 4.2 m^2 to cm^2 b 350000 m^2 to ha	units to smaller units we multiply.
a 4.2 m ² = (4.2×10000) cm ² = 42 000 cm ²	To convert from smaller units to larger units we divide.
b 350000 m^2 to ha = $(350000 \div 10000)$ ha = 35 ha	

units om arger e.

EXERCISE 19B

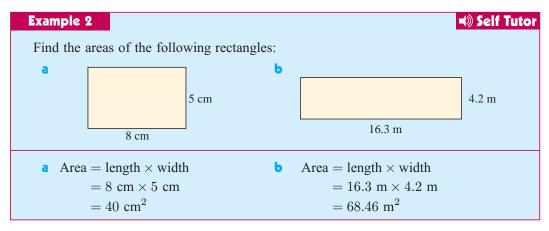
- 1 What operation needs to be done to convert:
- a $\rm cm^2$ to $\rm mm^2$ **b** m^2 to cm^2 \mathbf{c} ha to \mathbf{m}^2 d km² to ha f km² to m² \mathbf{g} mm² to cm² e^{2} m² to mm² **h** cm^2 to m^2 k mm² to m² m^2 to km^2 ha to km^2 m^2 to ha 2 Convert: a 452 mm^2 to cm^2 **b** 7.5 m^2 to cm^2 5.8 ha to m^2 \mathbf{e} 6.3 km² to ha **d** 3579 cm^2 to m^2 f $36.5 \text{ m}^2 \text{ to } \text{mm}^2$ **g** 550 000 mm² to m^2 **h** 5.2 cm^2 to mm² 6800 m^2 to ha $4400 \text{ mm}^2 \text{ to } \text{cm}^2$ \mathbf{k} 0.6 ha to m² 200 ha to km² **m** 0.7 cm^2 to mm² **n** 480 ha to km^2 • 25 cm^2 to mm² \mathbf{p} 0.8 m² to cm² **q** 8800 mm² to cm^2 **r** 6600 cm^2 to m^2 0.5 km^2 to ha \mathbf{u} 10 cm² to m² t 550 ha to km^2

THE AREA OF A RECTANGLE

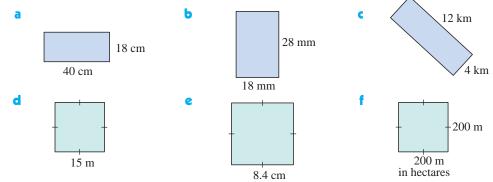

Consider a rectangle 5 units long and 3 units wide.

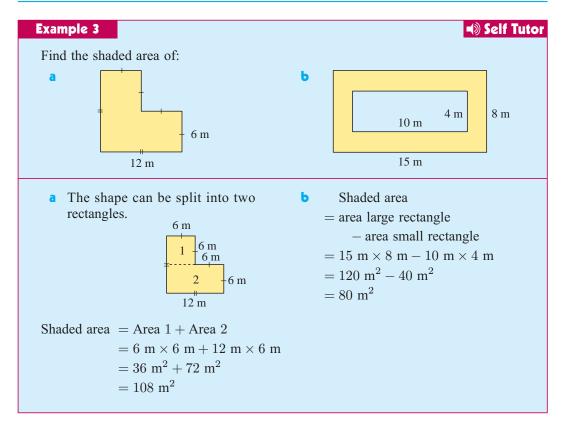
Clearly the area of this rectangle is 15 units², and we can find this by multiplying $5 \times 3 = 15$.

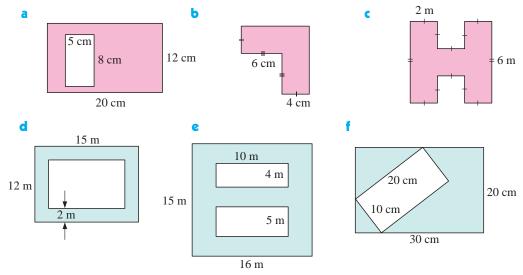
This leads to the general rule:


С

Area of rectangle = length \times width $A = l \times w$


Since a **square** is a rectangle with equal length and width:

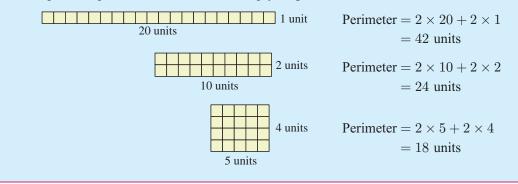

$$A = \text{length} \times \text{length}$$
$$= l \times l$$
$$= l^2$$


EXERCISE 19C

1 Find the areas of the following:

2 Find the shaded areas:

- **3** A rectangular garden bed 3 m by 5 m is dug into a lawn 10 m by 8 m. Find the area of lawn remaining.
- 4 A rectangular wheat field is 450 m by 600 m.
 - **a** Find the area of the field in hectares.
 - **b** Find the cost of seeding the field if this process costs \$180 per hectare.


- **5** A floor 3.5 m by 5 m is to be covered with floor tiles 25 cm by 25 cm square.
 - **a** Find the area of each tile.
 - **b** Find the area of the floor.
 - Find the number of tiles required.
 - **d** Find the total cost of the tiles if each costs $\pounds 3.50$.

Example 4

Self Tutor

Using only whole units of measurement, write all the possible lengths, widths, and perimeters of a rectangle of area 20 units². Use scale drawings to represent your answer.

The possible pairs of factors which multiply to give 20 are: 20×1 , 10×2 , 5×4 .

- Using only whole units, write all the possible lengths, widths and perimeters of the following rectangular areas:
 - **a** 6 units^2 **b** 8 units^2 **c** 12 units^2 **d** 16 units^2
- **7** Using only whole numbers for sides, write all possible areas which can be found from rectangles or squares with perimeters of:
 - **a** 12 m **b** 20 m **c** 36 km

Illustrate the possible answers for **a**.

ACTIVITY

WORKING WITH AREA

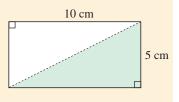
What to do:

- Draw a square metre with chalk. Estimate how many members of your class can stand on the square metre with feet entirely within it. Check your estimate.
- **2** Use a measuring tape to measure the dimensions of any *two* rectangular regions such as the floor area of a classroom, a tennis court, a basketball court, or the sides of a building. Calculate the area in each case.

THE AREA OF A TRIANGLE

INVESTIGATION 2

THE AREA OF A TRIANGLE



You will need:

scissors, ruler, pencil and square centimetre graph paper.

What to do:

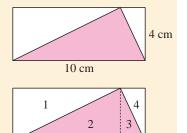
1 Draw a 10 cm by 5 cm rectangle using the graph paper. Draw in the dashed diagonal and colour one triangle green.

Cut out the two triangles, then place one on top of the other so you can see they have identical shape.

Copy and complete: The areas of the two triangles are

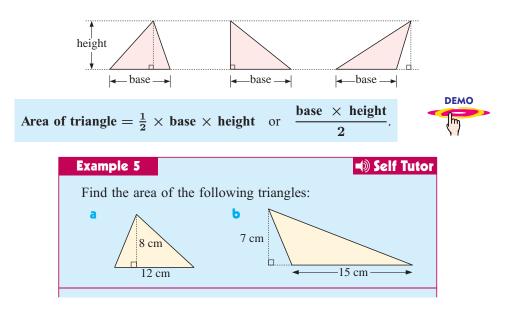
The area of each triangle is a the area of the rectangle.

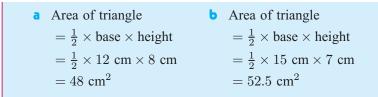
2 Draw a 10 cm by 4 cm rectangle using the graph paper. Construct the triangles shown alongside and colour in the pink region.


Now divide the pink triangle along the dashed line so you form four regions.

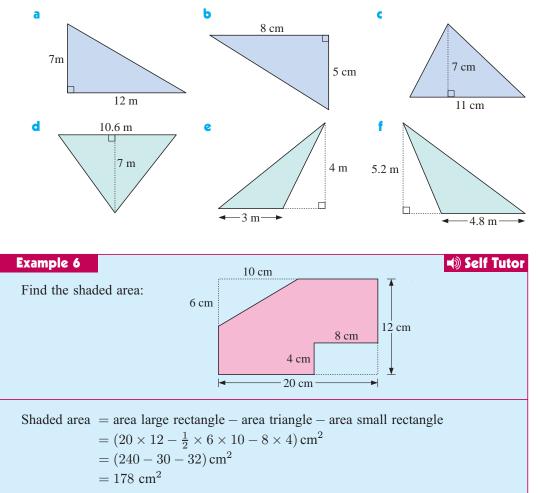
Using what you found in 1, copy and complete:

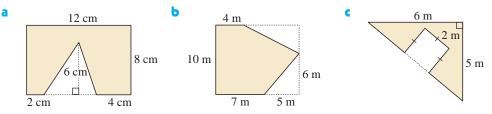
The areas of regions 1 and 2 are


The areas of regions 3 and 4 area


So, area 2 + area 3 = area 1 + area 4.

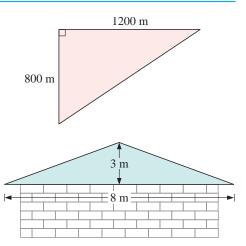
The total area of the pink triangle is a the area of the rectangle.

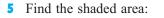

From the **Investigation** you should have found that the area of a triangle is half the area of a rectangle which has the *same base and height* as the triangle.

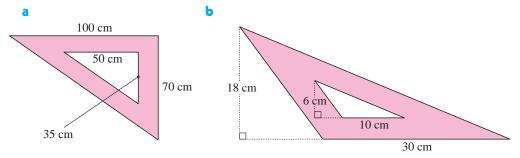


EXERCISE 19D

1 Find the areas of the following triangles:



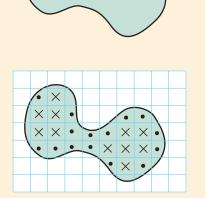

2 Find the shaded area:



360 AREA, VOLUME AND CAPACITY (Chapter 19)

- **a** Find the area in hectares of the triangular field shown.
 - b How much would it cost to fertilise the field if this process costs €360 per hectare?
- 4 The area shaded green is covered with weatherboard on both sides of this house.
 - **a** What is the area of weatherboard used?
 - b What was the total cost if weatherboard costs £13.90 per m²?

INVESTIGATION 3


Have you ever thought how you could determine the area of a shape which is not regular? For example, consider the figure alongside:

At best we can only estimate the answer, and one method of doing this is to draw grid lines across the figure.

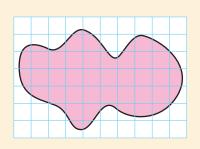
We count all the full squares, and as we do so we cross them out.

Now we have to make a decision about the part squares inside the shape.

For a good approximate answer, we can count squares which are more than half full as 1, and those less than half full as 0.

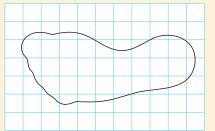
AREAS OF IRREGULAR SHAPES

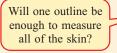
We hope that errors will cancel each other out when we add all of these together.

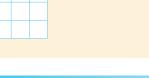

Thus our estimate for the total area is 26 square units.

Ь

What to do:

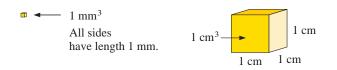

а


1 Estimate the areas of:

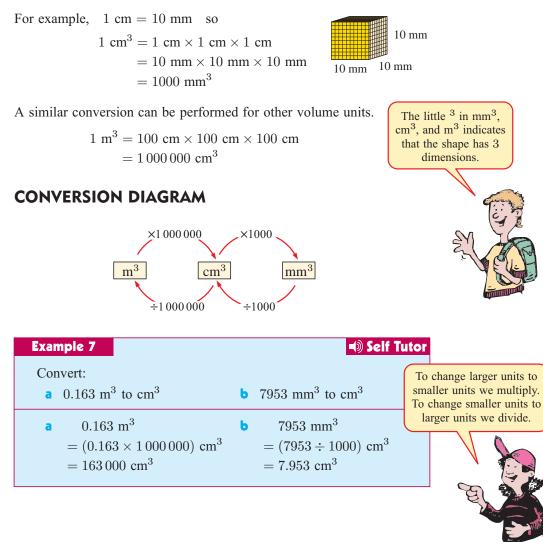

- **2** Place your hand on cm² grid paper and trace around the outside. What is the difference in area between your hand with its fingers together and when the fingers are apart? Why is this?
 - **a** Estimate the area of your hand in cm^2 .
 - **b** Do you think your estimate will be more or less accurate if your fingers are together or apart? Explain your answer.
- **3** a Estimate the area of the sole of your shoe.
 - **b** Estimate the area of your bare foot.

VOLUME

This stone


occupies more space than this pebble.

We say that the stone has greater *volume* than the pebble.


The **volume** of a solid is the amount of space it occupies. This space is measured in **cubic units**. As with area, the units used for the measurement of volume are related to the units used for the measurement of length.

cubic millimetre (mm³) is the volume of a cube with a side of length 1 mm.
 cubic centimetre (cm³) is the volume of a cube with a side of length 1 cm.
 cubic metre (m³) is the volume of a cube with a side of length 1 m.

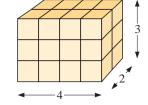
VOLUME UNIT CONVERSIONS

Converting from one unit of volume to another unit of volume can be done by considering a cube of side unit length.

EXERCISE 19E.1

- **1** Perform the following conversions:
 - **a** 8 mm^3 to cm^3
 - **d** $0.64 \text{ cm}^3 \text{ to mm}^3$
- 0.06 m³ to cm³
 3 m³ to mm³
- $11.8 \text{ cm}^3 \text{ to } \text{mm}^3$
- f $0.0075 \text{ m}^3 \text{ to } \text{mm}^3$

- **2** Perform the following conversions:
 - **a** 500 mm^3 to cm^3
 - c $5\,000\,000$ cm³ to m³
 - $2\,000\,000 \text{ mm}^3 \text{ to m}^3$


- **b** $7000 \text{ mm}^3 \text{ to } \text{cm}^3$
- **d** $450\,000 \text{ cm}^3$ to m³
- f $5\,400\,000\,000$ mm³ to m³

RECTANGULAR PRISMS

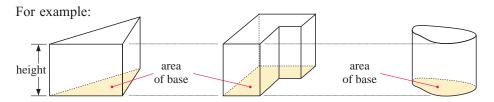
A **rectangular prism** is a 3-dimensional solid with 6 rectangular faces. It has the same rectangular cross-section along its entire length.

For example, a $4 \times 2 \times 3$ prism is shown alongside.

Clearly there are 3 layers and each of these layers contains $4 \times 2 = 8$ cubes.

So, there are $8 \times 3 = 24$ cubes altogether. The volume is $4 \times 2 \times 3 = 24$ units³.

This leads to the following rule for volume:


Volume of a rectangular prism = length \times width \times height

Since length \times width = area of base, we can also write

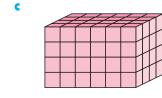
Volume of rectangular prism = area of base \times height

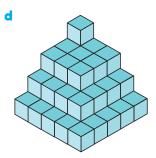
SOLIDS OF UNIFORM CROSS-SECTION

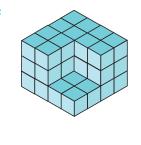
A solid of uniform cross-section has the same size and shape along its entire length.

The volume can be found by multiplying the base area and the height.

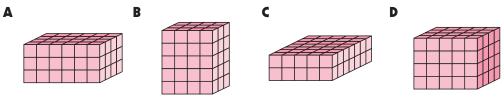
Volume of solid of uniform cross-section = area of base \times height

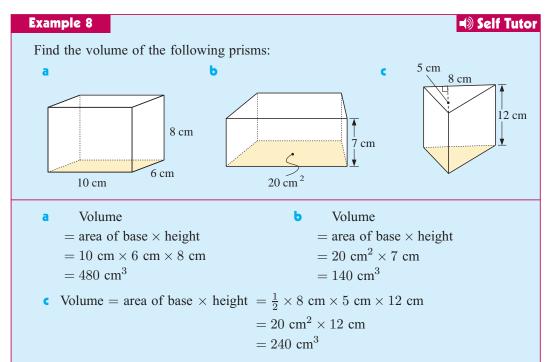

EXERCISE 19E.2

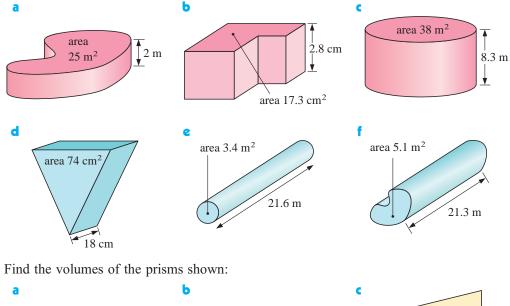

a

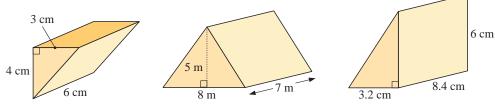

1 Find the number of cubic units in each of the following solids:

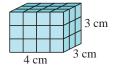
Ь

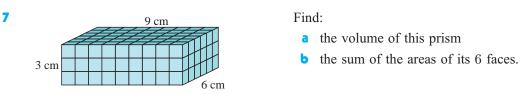





2 Arrange the rectangular prisms with dimensions as given, in ascending order of volumes, from the lowest number of cubic units to the highest:




3 Find the volume of the following rectangular prisms: 5 cm 4 cm 3 cm 5 m 12 m 7 m 10 cm 1 cm 1 cm


4 Find the volume of the following solids of uniform cross-section:

6 The rectangular prism alongside has a volume of 36 cm³. Show that there are exactly 8 different rectangular prisms with whole number sides that have a volume of 36 cm³. There is no need to draw them.

8 Find the volume of this book to the nearest cm^3 .

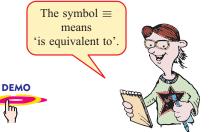
5

CAPACITY

Volume and capacity are very similar terms.

The word capacity is usually used when referring to either a liquid or gas.

The **capacity** of a container is a measure of the amount of fluid it can contain.


The units for capacity are closely related to those of volume.

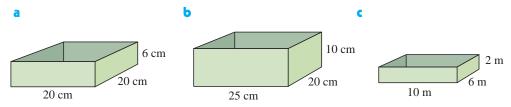
The most commonly used units of capacity are **litre** (L) and **millilitre** (mL). For larger capacities such as reservoirs and swimming pools, the units of kilolitre (kL) and megalitre (ML) are used.

The relationship between capacity units and volume units is:

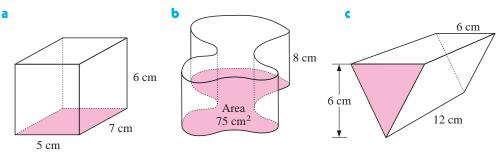
$1 \text{ mL} \equiv 1 \text{ cm}^3$
$1 \text{ L} \equiv 1000 \text{ cm}^3$
$1 \text{ kL} \equiv 1000000 \text{ cm}^3 \equiv 1 \text{ m}^3$

1 L =	1000 mL
1 kL =	1000 L
1 ML =	1000000 L

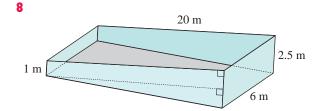
Example 9		Self Tutor
Convert: a 8 L to mL	b 12.4 kL to L	c 3400 cm^3 to L
a 8 L = (8×1000) mL = 8000 mL	b 12.4 kL = (12.4×1000) L = 12 400 L	c 3400 cm^3 $\equiv (3400 \div 1000) \text{ L}$ $\equiv 3.4 \text{ L}$


EXERCISE 19F

1 What units of capacity are most suitable for measuring:


- a a perfume bottle
- c an Olympic pool
- a drinking glass
- **g** a model aeroplane engine
- an ocean tanker
- k domestic gas use

- **b** a thermos flask
- **d** a 6 cylinder car engine
- f household water use
- **h** an oil refinery
- a reservoir
- a baby's bottle?


- 2 Convert:
 - **a** 5.6 kL to L **b** 3540 mL to L **c** 760 000 L to ML 7200 cm^3 to L \mathbf{e} 6.3 kL to m³ **12.4 kL to mL** d 0.0625 L to mL h 400 cm³ to mL 3.5 ML to kL Q
- **3** Find the capacity of the following containers. Express your answers using appropriate units.

Find the capacity in mL of these containers: 4

- 5 Find the capacity in litres of a rectangular box 80 cm by 60 cm by 15 cm.
- 6 How many times could a water container 15 cm by 8 cm by 5 cm be filled from a 40 L container?
- 7 How many 30 cm by 20 cm by 90 cm fuel tanks can a car manufacturer fill from its 27.54 kL storage tank?

Find the amount of water (in kL) required to fill the swimming pool shown alongside.

Hint: Use the dashed line to divide the side of the pool into a rectangle and a triangle.

RESEARCH

In and around your home, look for clues which tell you the capacity of the:

- fridge
- bath tub
 - watering can
- freezer compartment
- washing machine
 - cistern flush
- car engine
- garbage bin
- fuel tank.

If you cannot find the clues, describe ways that you could measure the capacity.

PROBLEM SOLVING

Example 10

A concrete path 1.5 m wide is to be laid around a 20 m by 8 m swimming pool. Concrete of the required depth costs \$41 per square metre.

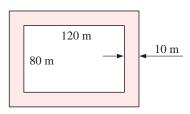
1.5 m 8 m 20 m

Self Tutor

- a Find the area to be concreted.
- **b** Find the cost of the concrete.
- **a** The length of the large rectangle = (20 + 1.5 + 1.5) m = 23 m. The width of the large rectangle = (8 + 1.5 + 1.5) m = 11 m.
 - Area of path = area of large rectangle area of small rectangle

$$= (23 \times 11 - 20 \times 8) \text{ m}^2$$
$$= (253 - 160) \text{ m}^2$$

$$= 93 \text{ m}^2$$


Cost of path =
$$93 \times \$41$$

= \$3813

EXERCISE 19G

Ь

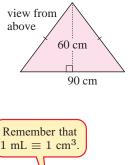
- 1 A room 5 m by 6 m by 3 m high is to have its walls timber panelled.
 - **a** Find the area of timber panelling required.
 - **b** If the timber panelling costs $\notin 67$ per square metre, find the total cost of the panelling.
- **2** A rectangular playing field 120 m by 80 m is to be surrounded by a 10 m wide strip of bitumen.
 - a Find the area of bitumen.
 - **b** If each truckload of bitumen covers 50 m^2 , how many truckloads of bitumen will be required?

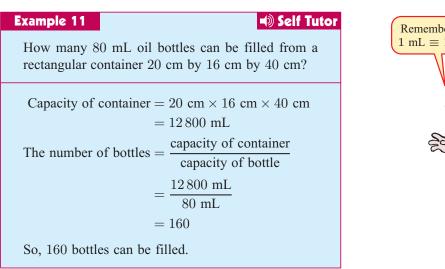
- 3 If each page of a book is 25 cm by 15 cm, find the total area (in m^2) of paper used in a book of 420 pages.
- 4 The area of a rectangle is 1 hectare. Find the width of the rectangle if it has a length of:
 - а 100 m

800 metres

- **b** 1 kilometre 1.25 km
- 250 metresC $\mathbf{9}$ 500 metres

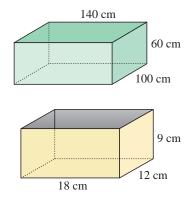
2000 metres d h 12.5 metres


5


e

How much canvas is needed for a tent which has three identical sides like this?

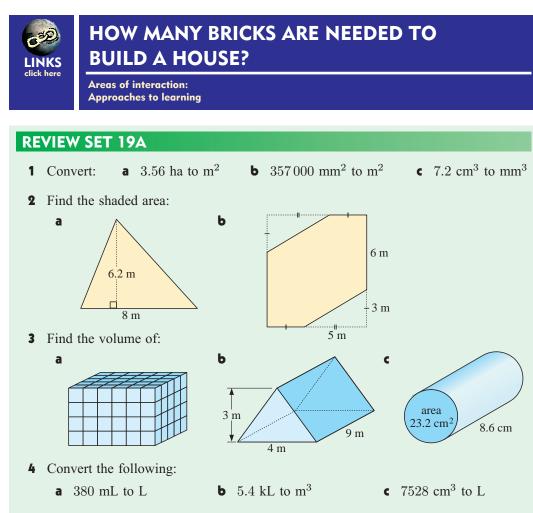
6 To celebrate her 3 years in business, a baker bakes a large triangular cake with the dimensions shown. How much icing must she make if she covers the top of the cake to a depth of 5 mm with icing?



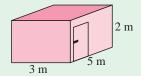
- 7 How many 300 mL spring water bottles can be filled from a rectangular container $3 \text{ m} \times 2 \text{ m} \times 1.5 \text{ m}$?
- 8 Engineers dug a 150 metre × 80 metre × 17 metre deep hole to dump the town's rubbish. How much compacted rubbish can be dumped if the engineers need a depth of at least 2 metres of soil on top once the hole is filled?

6 cm

- 9 a How much water is in this rainwater tank if it is ³/₄ full?
 - How many 8 litre buckets full would it take to empty it?
- 10 Illustrate the best way to pack the smaller prisms into the larger box. How many can be packed?
 3 cm 3 cm 3 cm

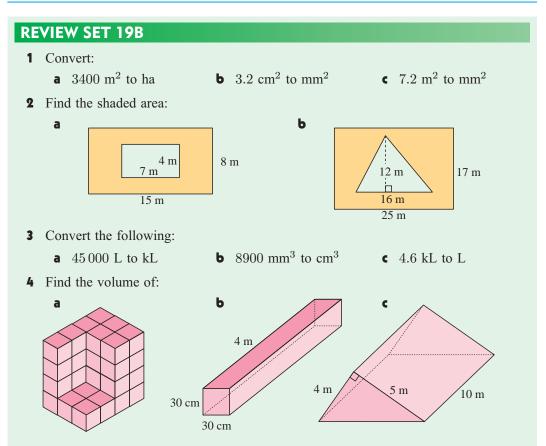


KEY WORDS USED IN THIS CHAPTER


- area
- cubic unit
- rectangular prism
- triangle

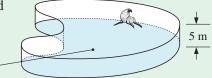
- capacity
- hectare
- square unit
- uniform

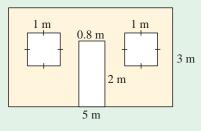
- cross-section
- rectangle
- surface
- volume



- **5** The outside of a shed with the dimensions shown is to be painted.
 - **a** Find the total area to be painted (including the roof).
 - **b** If a litre of paint covers 15 m², what quantity of paint will be required?

- 6 a How many posters 120 cm long by 90 cm high can Lotus stick on her 3.6 m by 3 m high bedroom wall?
 - **b** Lotus wants the space between the posters equal. What is the area of each space if the top row of posters touches the ceiling and the bottom row touches the floor?
- 7 a How many 2 cm by 3 cm stamps can fit on a sheet 200 mm by 300 mm?
 - **b** If each stamp costs 45 pence, what is the cost of half a sheet?
- 8 Determine the capacity of a rectangular rainwater tank 5 m by 3 m by 4.5 m.




- 5 How many 10 cm × 5 cm × 10 cm containers can be filled from a container with dimensions 1 m × 1 m × ¹/₂ m?
- Using only whole units, how many different rectangular prisms can be made with volume 63 cm³?

area of base 346.2 m²

7 How many kilolitres of sea water are needed to fill this seal's enclosure at the zoo?

8 A wall of a house has two windows and a door with the dimensions illustrated. If the wall is wallpapered and the wallpaper costs $\pounds 8.75$ per square metre, find the cost of papering the wall.

9 Find the area of exposed floorboards if a 5 m by 3 m carpet is placed on the floor of a 6.5 m by 8 m room.

ACTIVITY

MEASUREMENT MESSAGE

Match each metric measurement in the first column with the item in the second column which would best be measured in that unit. Transfer the letter to the table below to find the message.

	1	mm	Ν	your age
	2	cm	С	the time between meals
	3	m	U	the time until the weekend
	4	km	S	the volume of a small teaspoon of sand
	5	mm^2	R	the time to spell your name
	6	cm^2	Ι	the volume of a block of chocolate
	7	m^2	М	the capacity of a can of soft drink
	8	hectare	М	the area of a small toenail
	9	mm ³	F	the length of an ant
PRINTABLE	10	cm ³	S	the mass of a train
WORKSHEET	11	m ³	Ν	the volume of a truckload of soil
(m)	12	mL	Κ	the area of a paddock
	13	L	Ι	the mass of your pencil
	14	ML	Е	the capacity of a bucket
	15	second	R	the area of your driveway
	16	minute	Т	the capacity of a lake
	17	hour	Т	your own mass
	18	day	Α	the area of a handkerchief
	19	year	L	the distance from home to school
	20	g	Ι	the time to swim 1500 m
	21	kg	U	the length of a pencil
	22	t	L	the width of your house

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Equations

- A What are equations?
- **B** Solving simple equations
- C Maintaining balance
- D Inverse operations
- **E** Solving equations
- F Problem solving with equations

OPENING PROBLEM

Ilse and six friends go out to have icecreams. Ilse's mum has given her \$11 to help pay the bill, and the 7 girls decide to divide the remainder of the bill between them. The total bill is \$25.

Things to think about:

- If each of the girls pays x, can you explain why the total amount paid is (7x + 11) dollars?
- Can you explain why 7x + 11 = 25?
- Given the equation 7x + 11 = 25, how can we find the exact value of x?
- How much does each girl pay?

In this chapter we look at algebraic equations and methods used to solve them.

A

WHAT ARE EQUATIONS?

An **equation** is a mathematical sentence which indicates that two expressions have the same value. An equation always contains an *equal* sign =.

A simple equation may be a true numerical statement like $3 \times 5 = 7 + 8$.

LHS equals RHS

Notice that an equation has a **left hand side (LHS)** and a **right hand side (RHS)** and these are separated by the **equal sign**.

An algebraic equation like 3x + 2 = 11 has an unknown or variable in it, in this case x. To solve an equation is to find the value of the variable which makes the equation true.

If we were to replace x by a variety of numbers, most of them would make the equation false.

For example,	if $x = 1$	the LHS is	$3 \times 1 + 2 = 3 + 2 = 5$	but	the $RHS = 11$
	if $x = 5$	the LHS is	$3 \times 5 + 2 = 15 + 2 = 17$	but	the $RHS = 11$
However,	if $x = 3$	the LHS is	$3 \times 3 + 2 = 9 + 2 = 11$	and	the RHS = 11 .
So,	x = 3	makes the e	quation $3x + 2 = 11$ true,		
and we sa	ay $x = 3$	is the soluti	on of the equation $3x + 2 =$	11.	

Example 1			Self Tutor
What number can re	eplace \Box to make the e	equation true?	
a $3 + \Box = 10$	b $3 \times \Box = 18$	$ c 20 \div \Box = 4 $	d $\Box - 8 = 4$
a $3+7=10$	b $3 \times 6 = 18$	c $20 \div 5 = 4$	d $12 - 8 = 4$
so $\Box = 7$	so $\Box = 6$	so $\Box = 5$	so $\Box = 12$

EXERCISE 20A

- 1 State whether each of the following is an equation or an expression:
 - **a** x-3=7 **b** 2(x+4) **c** $3\div 7+x-1$ **d** x-2=7-x **e** 2(x-1)=3**f** 3-2(1+x)
- **2** What number can be used to replace \Box to make the equation true?

a $5 + \Box = 15$	b $\Box + 9 = 22$	c $15 - \Box = 2$
d $\Box - 9 = 10$	$\bullet 5 \times \Box = 30$	f $\Box \div 3 = 8$
9 $75 \div \Box = 15$	h $\Box \times 4 = 22 + 2$	$\Box \times 2 + 1 = 11$

- 3 Find each of the following, suppose x is the number. Use the statement to write an equation involving x.
 - **a** Seven added to a number is equal to ten.
 - **b** Five subtracted from a number is equal to eleven.
 - A number multiplied by four is equal to twelve.
 - **d** A number when divided by ten is equal to two.

B

SOLVING SIMPLE EQUATIONS

In this chapter we will be dealing with equations which have one unknown.

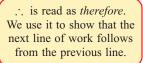
Remember that in algebra:

•	the \times sign is omitted where possible.	For example,	$5 \times x$	is written	5x.
•	the \div sign is usually written as a fraction.	For example,	$x \div 3$	is written	$\frac{x}{3}$.

In **Chapter 18** we saw that given an expression involving x, we can substitute a value for x to evaluate the expression.

For example, consider the expression 4x - 3.

When x = 2, $4x - 3 = 4 \times 2 - 3 = 5$.

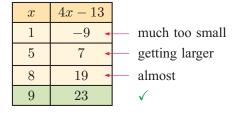

In this chapter we are now presented with equations such as 4x - 3 = 5. Our task is to work out that x must be 2.

SOLVING BY INSPECTION

Some simple equations can be solved by inspection.

For example, for the equation x + 2 = 8we notice that since 6 + 2 = 8, x must be 6.

We write: x + 2 = 8 $\therefore x = 6$



Example 2	Self Tutor
Solve by inspection:	
a $a + 6 = 11$	b $\frac{b}{3} = 8$
c $14 - x = 8$	d $7p = 49$
a $a + 6 = 11$	b $\frac{b}{3} = 8$
$\therefore a=5 \qquad \{\text{as} 5+6=11\}$	$\therefore b = 24 \qquad \{\text{as} 24 \div 3 = 8\}$
• $14 - x = 8$ ∴ $x = 6$ {as $14 - 6 = 8$ }	d $7p = 49$ $\therefore p = 7$ {as $7 \times 7 = 49$ }

SOLVING BY TRIAL AND ERROR

Another method of solving simple equations is to use trial and error. This involves substituting different numbers in place of x until the correct solution is obtained.

For example, to solve 4x - 13 = 23 we substitute different values for x and summarise our trials in a table.

So, x = 9 is the solution.

1 Solve by inspection:

EXERCISE 20B

a $7 + a = 15$	b $48 \div p = 6$	c $18 = 25 - n$
d $t \div 4 = 10$		f $3 \times d = 18$
g $n+7 = 14$	h $8a = 200$	$b \div 7 = 9$
t+3=3	k $7+m=19$	t+9=4
m $x - 7 = -2$	$\mathbf{n} 6 + \Box = 9$	• $y \times 2 = -6$
\mathbf{p} $x \times x = 0$	q $3 - x = 7$	5t = -15
3x = 60	4x = -12	u $7x = 91$
$ \frac{6}{n} = 2 $	$\mathbf{w} 6 = \frac{x}{8}$	x $\frac{55}{t} = 11$

2 One of the numbers in the brackets is the correct solution to the equation. Find it using *trial and error*.

a $3x + 8 = 23$	$\{2, 3, 5, 9\}$	b $4x + 11 = 29$	$\{3, 4, 4\frac{1}{2}, 5\}$
5x - 1 = 34	$\{6, 7, 8, 9\}$	d $3x - 5 = 13$	$\{6, 7, 8, 9\}$
2 7x + 4 = -3	$\{3, 2, 1, -1\}$	f $11x + 6 = -16$	$\{4, 0, -4, -2\}$

- **3** Solve by *trial and error*:
 - a 3x + 11 = 32
 - **d** 4x + 11 = 21

- **b** 4x 7 = 33
- e 8x = 10

5x - 22 = 23

f 2-5x = -18

MAINTAINING BALANCE

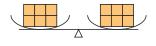
The **balance** of an **equation** can be likened to the **balance** of a **set of scales**. Changing one side of the equation without doing the same thing to the other side will upset the balance.

PERFORMING OPERATIONS ON EQUATIONS

The equal sign represents the balancing point of the equation. The left hand side must balance the right hand side.

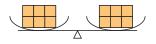
For example, 5 = 5

If 6 is added to both sides, the statement remains true:


$$5+6 = 5+6$$

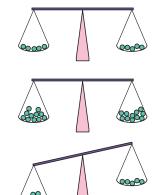
 $\therefore 11 = 11$

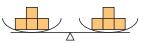

If 6 were added to one side only, then the statement would become false: $5+6 \neq 5$

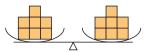

 \therefore 11 \neq 5

To maintain the balance, whatever is done on one side of the *equal* sign must also be done on the other side.

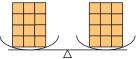
Imagine a set of scales with six identical blocks on each side. The scale is **balanced**.

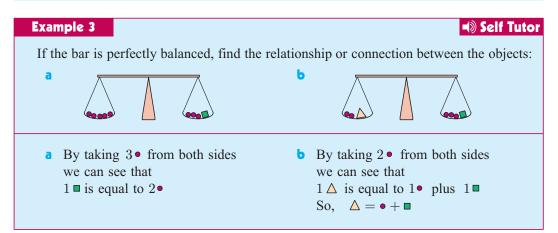


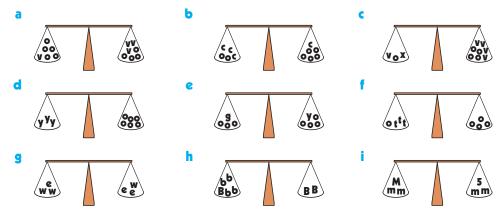

If we subtract 2 blocks from each side we get:

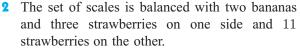

If we add 1 block to each side we get:

If we divide the number of blocks on each side by 3 we get:

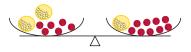

If we multiply the number of blocks on each side by 2 we get:






Notice that the scales are still balanced in each case!

EXERCISE 20C.1


1 These scales are perfectly balanced. Find the relationship between the objects.

- a If three strawberries are taken from the left Δ side, what must be done to the right side to keep the scales balanced?
- **b** There are now two bananas on the left hand side. How many strawberries balance their weight?
- How heavy is one banana in terms of strawberries?
- **3** The set of scales is balanced with two golf balls and six marbles on the left and one golf ball and nine marbles on the right.

- a If 6 marbles are taken from the left side, what must be done to the right side to keep the scales balanced?
- **b** If the golf ball on the right side is removed, what must be done to the left side to keep the scales balanced?
- **c** Redraw the scales if both **a** and **b** occur.
- **d** How heavy is one golf ball in terms of marbles?

BALANCE

The **balance** of an equation will be maintained if we:

- add the same amount to both sides
- subtract the same amount from both sides
- multiply both sides by the same amount
- divide both sides by the same amount.

Observation

Self Tutor

Example 4

Consider the equation x + 5 = 10. What equation results when we perform the following on both sides of the equation:

a add 3 b subtract 3	c divide by 2 d multiply by 4?
a $x + 5 = 10$	b $x + 5 = 10$
$\therefore x+5+3 = 10+3$	$\therefore x+5-3 = 10-3$
$\therefore x+8=13$	$\therefore x+2=7$
x + 5 = 10	d $x + 5 = 10$
$\therefore \frac{x+5}{2} = \frac{10}{2}$	$\therefore 4(x+5) = 4 \times 10$
	$\therefore 4(x+5) = 40$
$\therefore \frac{x+5}{2} = 5$	

EXERCISE 20C.2

1 Find the equation which results from <i>adding</i> :
a 3 to both sides of $x = 4$ b 5 to both sides of $x + 7 = 5$
c 5 to both sides of $x-5=8$ d 7 to both sides of $2x-7=3$
2 Find the equation which results from <i>subtracting</i> :
a 2 from both sides of $x = 8$ b 5 from both sides of $x + 5 = -2$
c 5 from both sides of $5-x=9$ d 6 from both sides of $3x+6=-1$
3 Find the equation which results from <i>multiplying</i> both sides of:
a $x = 6$ by 2 b $2x = 1$ by 3 c $\frac{x}{2} = 5$ by 2
d $x+1=9$ by 7 e $\frac{x+1}{2}=-1$ by 2 f $\frac{1-x}{3}=4$ by 3
4 Find the equation which results from <i>dividing</i> both sides of:
a $2x = 6$ by 2 b $3(x+2) = 6$ by 3
c $2x + 6 = 0$ by 2 d $3x + 9 = 15$ by 3
e $3x = 14$ by 3 f $6(x-1) = 18$ by 6
g $4x - 16 = -4$ by 4 h $8(x+2) = 24$ by 8

INVERSE OPERATIONS

\$60

-10

\$50

Imagine starting with \$50 in your pocket. You find \$10 and then pay someone \$10. You still have \$50.

\$50 This can be illustrated by a flowchart such as +10

Observe that adding 10 and subtracting 10 have the opposite effect. One undoes the other.

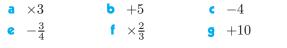
We say that addition and subtraction are inverse operations.

Now imagine you start with \$50, and your friend gives you the same amount. Your money is now doubled. If you decide to give half to your brother, you will be back to your original \$50.

We again illustrate the process by a flowchart: \$50 $\times 2$ \$100 $\div 2$ \$50

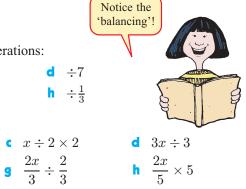
Observe that multiplying by 2 and dividing by 2 undo each other.

multiplication and division are inverse operations. We say that


We can solve simple equations using *inverse operations*, but we must remember to keep the equation *balanced* by performing the same operation on *both sides* of the equation.

For example,

consider x + 3 = 7where 3 has been added to x. \therefore x+3-3=7-3 {subtracting 3 is the inverse of adding 3} $\therefore x = 4$ {simplifying}


EXERCISE 20D

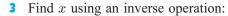
1 State the inverse of each of the following operations:

2 Simplify the following expressions:

a
$$x + 7 - 7$$

b $x - 3 + 3$
e $\frac{x}{5} \times 5$
f $\frac{2x}{2}$

Self Tutor


Example 5

Solve for x using a suitable inverse operation: x + 5 = 11

2

x + 5 = 11x+5-5=11-5 {The inverse of +5 is -5, so we take 5 from both sides.} $\therefore x = 6$

 $x \div 2 \times 2$

a x + 7 = 10 **b** x + 15 = 6 **c** x + 3 = 0 **d** x + 11 = -4 **e** 7 + x = 9**f** 8 + x = 14

Example 6 4) Self Tuto
Solve for y using a suitable inverse operation: $y - 6 = -2$
y-6 = -2 $\therefore y-6+6 = -2+6 \text{{The inverse of } -6 is +6, so we add 6 to both sides.}}$ $\therefore y = 4$

4 Find y using an inverse operation:

a $y - 7 = 4$	b $y - 2 = 0$	y - 6 = -1
d $y - 11 = 32$	y - 8 = -8	f $y - 15 = -32$

Example 7 Self Tutor
Solve for t using a suitable inverse operation: $3t = -12$
3t = -12 $\therefore \frac{3t}{3} = \frac{-12}{3} \text{{The inverse of } \times 3 \text{ is } \div 3, \text{ so we divide both sides by 3.}}$ $\therefore t = -4$

5 Find t using an inverse operation:

a $4t=8$	b $6t = 30$	2t = 4
d $3t = 15$	2 5t = 20	f $3t = -9$
9 $7t = -56$	h $7t = 56$	8t = -56

Example 8 Self Tutor Solve for d using a suitable inverse operation: $\frac{d}{7} = 8$ $\frac{d}{7} = 8$ $\frac{d}{7} = 8$ $\therefore \quad \frac{d}{7} \times 7 = 8 \times 7$ {The inverse of $\div 7$ is $\times 7$, so we multiply both sides by 7.} $\therefore \quad d = 56$

382 EQUATIONS (Chapter 20)

6 Find *d* using an inverse operation:

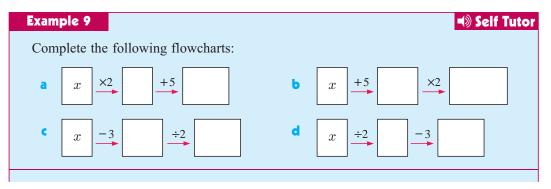
a
$$\frac{d}{2} = 3$$

b $\frac{d}{4} = 7$
c $\frac{d}{2} = 8$
d $\frac{d}{5} = 6$
e $\frac{d}{3} = -4$
f $\frac{d}{7} = -1$

7 Find the unknown using a suitable inverse operation:

a $x + 7 = 0$	b $x - 5 = 6$	d + 9 = -1
d $p-6=8$	e $3g = 15$	f $\frac{x}{4} = 8$
g $7m = 28$	h $\frac{y}{2} = 4$	k + 6 = -2
11s = -44	t - 4 = 0	4t = -36
p - 15 = 23	n $y + 11 = 7$	• $\frac{k}{7} = -2$
p $9n = -72$	q $\frac{e}{13} = 1$	n + 13 = 4
$\frac{d}{-6} = 12$	t $w - 19 = -6$	u $\frac{y}{-7} = -7$

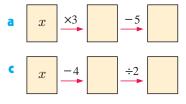
SOLVING EQUATIONS

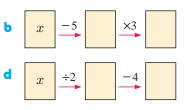

So far we have solved simple equations by:

- inspection
- trial and error
- using one inverse operation.

To solve more complicated equations it is important to understand how expressions are **built up**. We can then **undo** them using **inverse operations**.

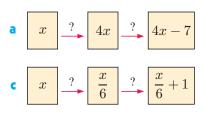
ALGEBRAIC FLOWCHARTS

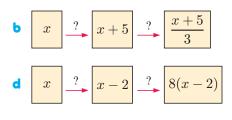

Algebraic flowcharts help us to see how expressions are built up. By reversing the flowchart we can *undo* the expression and find the value of the unknown.



a
$$x \xrightarrow{\times 2} 2x \xrightarrow{+5} 2x + 5$$

b $x \xrightarrow{+5} x + 5 \xrightarrow{\times 2} 2(x + 5)$
c $x \xrightarrow{-3} x - 3 \xrightarrow{\div 2} \frac{x - 3}{2}$
d $x \xrightarrow{\div 2} \frac{x}{2} \xrightarrow{-3} \frac{x}{2} - 3$


EXERCISE 20E.1


1 Copy and complete the following flowcharts:

2 Copy and complete the following flowcharts by inserting the missing operations:

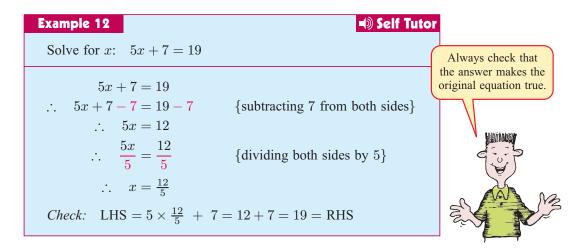
	Self Tutor rt to show how $5x + 2$ is 'built up'. undo' the expression.
Build up:	$x \xrightarrow{\times 5} 5x \xrightarrow{+ 2} 5x + 2$
Undoing:	$5x+2$ -2 $5x$ $\div 5$ x
Example 11	Self Tutor
Use a flowchar	rt to show how $\frac{x+3}{2}$ is 'built up'. undo' the expression.
	1
Build up:	$x + 3 + 3 \div 2 \qquad \frac{x+3}{2}$

3 Use a flowchart to show how to 'build up' and then 'undo' the following expressions:

a	3x + 4	b	2x - 5	c	7x + 11	d	8x - 15
e	12x + 5	f	23x + 10	9	$\frac{x}{2} + 1$	h	$\frac{x+1}{2}$
i	$\frac{x}{3} - 2$	j	$\frac{x-2}{3}$	k	$\frac{x}{4} + 5$	ï	$\frac{x+5}{4}$
m	2x + 5	n	2(x+5)	0	3x - 1	p	3(x-1)

SOLVING BY ISOLATING THE UNKNOWN

We have already seen how an expression is 'built up' from an unknown.


When we are given an equation to solve which contains a *built up* expression, we need to do the reverse.

We use **inverse operations** to undo the build-up of the expression in the **reverse order** and thus **isolate** the unknown.

For example, to solve 3x + 7 = 19 we look at 3x + 7 and its 'build up'

We $\times 3$ and then +7 in the build up, so we -7 and then $\div 3$ to isolate x.

EXERCISE 20E.2

1 Solve the following equations:

a
$$4x - 3 = 9$$

- **d** 7x + 6 = -15
- 5x + 7 = 17
- 3x + 14 = -1
- **h** 2x + 3 = 3**k** 4x - 6 = -2

10x - 6 = 19

b 3x + 7 = -11

- c 5x 5 = 0f 2x + 1 = 0i 5x - 7 = 13
- 7x + 9 = -10

Example 13	Self Tutor
Solve for x : $\frac{x}{3} - 4 = -3$	
$\frac{x}{3} - 4 = -3$	
$\therefore \frac{x}{3} - 4 + 4 = -3 + 4$	{adding 4 to both sides}
$\therefore \frac{x}{3} = 1$	
$\therefore \frac{x}{3} \times 3 = 1 \times 3$	{multiplying both sides by 3}
$\therefore x=3$	
<i>Check:</i> LHS $= \frac{3}{3} - 4 = 1 - 4$	4 = -3 = RHS

2 Solve for x:

a $\frac{x}{2} + 3 = 8$	b $\frac{x}{3} - 1 = 4$	$\frac{x}{5} + 2 = -3$
d $\frac{x}{6} + 3 = -4$	$\frac{x}{7} - 2 = 4$	f $\frac{x}{10} - 6 = -1$

Example 14	Self Tutor
Solve for x : $\frac{x-3}{7} = -3$	
$\frac{x-3}{7} = -3$	
$\therefore 7\left(\frac{x-3}{7}\right) = 7 \times -3$	{multiplying both sides by 7}
$\therefore x - 3 = -21$ $\therefore x - 3 + 3 = -21 + 3$	{adding 3 to both sides}
$\therefore x = -18$	
<i>Check:</i> LHS $= \frac{x-3}{7} = \frac{-1}{7}$	$\frac{8-3}{7} = \frac{-21}{7} = -3 = \text{RHS}$

3 Solve for *x*:

a
$$\frac{x+3}{5} = 8$$

b $\frac{x-2}{7} = -8$
c $\frac{x+4}{2} = 0$
d $\frac{x+4}{-2} = 3$
e $\frac{x-2}{5} = 1$
f $\frac{x+6}{8} = -2$
g $\frac{x+8}{-7} = -12$
h $\frac{x-5}{-6} = 3$
i $\frac{x-11}{15} = -4$

Example 15	Self Tutor
Solve for x : $3(x-4) = 3$	39
3(x-4) = 39	
$\therefore \frac{3(x-4)}{3} = \frac{39}{3}$	{dividing both sides by 3}
$\therefore x-4=13$	
$\therefore x - 4 + 4 = 13 + 4$	{adding 4 to both sides}
$\therefore x = 17$	
<i>Check:</i> LHS = $3(x - 4)$	$= 3(17 - 4) = 3 \times 13 = 39 = $ RHS.

4 Solve for x:

5

a $4(x+1) = 12$	b $3(x+5) = 24$	5(x-2) = 35
d $2(x+11) = 14$	● $7(x-4) = 63$	f $8(x-7) = 0$
g $2(x-1) = 8$	h $3(x+2) = 15$	i $3(x-4) = -30$
4(x+11) = 48	k $5(x-7) = -80$	3(x-2) = 40
Solve for <i>x</i> :		
a $11x - 3 = 19$	b $3x + 11 = -9$	5x - 15 = 0
d $4x - 6 = 8$	e $\frac{x}{2} = -6$	f $\frac{x}{3} - 1 = 7$
g $\frac{x}{4} + 2 = -3$	h $\frac{x}{8} - 1 = 4$	i $\frac{x+2}{3} = 8$
$\frac{x-3}{4} = 7$	k $\frac{x+4}{-5} = 2$	$\frac{x-6}{-2} = 11$
m $\frac{x+2}{8} = -4\frac{1}{2}$	n $2(x+5) = 26$	• $3(x-2) = -15$
p $2(x+7) = 14$	q $12(x-4) = 9$	5(x-6) = 0

F PROBLEM SOLVING WITH EQUATIONS

Worded problems can often be translated into an algebraic equation. We then solve the equation to solve the original problem.

For example, in the **Opening Problem** on page **374**, each of the girls pays the same amount. If we suppose this amount is x, then together they pay 7x.

When we add on the \$11 from Ilse's mother, we have (7x + 11) dollars.

This amount must equal the total bill, so 7x + 11 = 25.

We now have an equation which describes the worded problem.

$$7x + 11 = 25$$

$$\therefore 7x + 11 - 11 = 25 - 11 \qquad {\text{subtracting 11 from both sides}}$$

$$\therefore 7x = 14$$

$$\therefore \frac{7x}{7} = \frac{14}{7} \qquad {\text{dividing both sides by 7}}$$

$$\therefore x = 2$$

So, each of the girls pays \$2.

Example 16

Self Tutor

Callum has a collection of badges. His aunt gives him 9 which she finds in a box at home. Then, while Callum is on holidays, he collects enough to double his collection. He now has 132 in total. How many badges did Callum have to start with?

Let x be the number of badges Callum has to start with. He is given 9 by his aunt, so the number is now x + 9.

Callum doubles his collection, so he now has 2(x+9).

So, 2(x+9) = 132 $\therefore \frac{2(x+9)}{2} = \frac{132}{2}$ {dividing both sides by 2} $\therefore x+9 = 66$ $\therefore x+9-9 = 66-9$ {subtracting 9 from both sides} $\therefore x = 57$

Callum had 57 badges to start with.

EXERCISE 20F

- 1 A packet of lollies is shared equally between six friends. Debbie eats three of her lollies and has four lollies left. How many lollies were in the packet?
- 2 Mrs Jones lives by herself, but she has a number of pet cats. There are a total of 30 legs in the house. How many cats does Mrs Jones own?
- **3** Pino won a sum of money in a lottery. He spent \$50 on a new shirt, and shared the rest equally between his five children. Each child received \$40. How much did Pino win in the lottery?
- 4 Yvonne bought some cartons of eggs and there were 6 eggs in every carton. When she got home from the shop, Yvonne realised that 7 of the eggs were broken. She still had 17 eggs that were not broken. How many cartons of eggs did Yvonne buy?
- **5** Don takes a certain amount of money to the horse races. He finds $\pounds 5$ on the ground, and then doubles his money by winning a bet. He now has $\pounds 40$. How much money did Don take to the races?
- **6** The average of two numbers if 14. If one of the numbers is 9, find the other number.

- 7 In a basketball match, Vince scored some field goals worth two points each, and also one goal worth three points. He scored a total of 19 points for the game. How many field goals did he score?
- 8 In a class of students, 13 are girls. The class is split into 4 equal teams for a hockey competition. If each team consists of 8 players, how many boys are in the class?
- 9 Each day a salesman is paid €50 plus one fifth of the sales he makes for the day. If the salesman is paid €110 one day, what value of sales did he make that day?
- 10 Simone sold cakes at her school fete for \$4 each. At the end of the day she had sold all but 3 of the cakes she baked. Simone received \$48 in total. How many cakes did she bake?
- 11 Lucien is training to be a cyclist. There is a training course 2 km from his house. Every day he cycles to the training course, completes a lap of the training course, then cycles home again. Over the course of one week he cycles 84 km. How long is the training course?

KEY WORDS USED IN THIS CHAPTER

• balance

INKS

- expression
- inspection
- trial and error
- build up
- flowchart
- inverse operation
- undo

- equation
- identity
- solution
- unknown

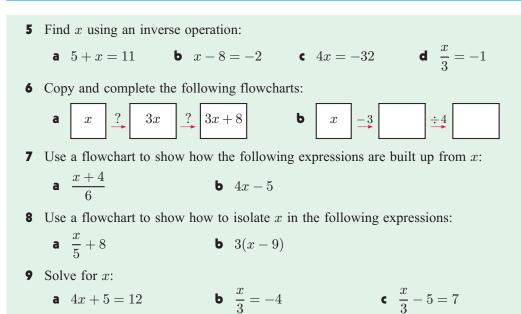
HOW ARE DIVING SCORES CALCULATED?

Areas of interaction: Human ingenuity

REVIEW SET 20A

- **1** A number multiplied by three is equal to eighteen. Find the number.
- **2** a Is 2x + 5y = 7 an equation or an expression?
 - **b** State the inverse of $\times 6$.
 - Find the result of adding 8 to both sides of 3x 8 = 5.
 - **d** Solve 2x = -4 by inspection.
- **3** One of the numbers $\{1, 2, 5, 8\}$ is the solution to the equation 3x + 7 = 22. Find the solution by trial and error.
- **4** The following scales are perfectly balanced. Find the relationship between the objects:

b



а

f 6(x+3) = 54

10 Anneke has €13. She is promised the same amount for washing the dishes each night. After seven nights of dishwashing she has €55. How much was she paid each night?

REVIEW SET 20B

1 What number can be used to replace \Box to make the equation true?

a $\Box \div 9 = 5$ **b** $7 \times \Box = 25 + 3$

d 11x - 6 = 2 **e** 4(x - 2) = 20

- **2** a Solve by inspection: $a \div 6 = 7$.
 - **b** Find the equation which results from adding 6 to both sides of 3x 6 = 11.
 - State the inverse of dividing by 7.
 - **d** Solve $\frac{x}{8} = -3$ using a suitable inverse operation.
- **3** One of the numbers $\{2, 3, 5, 10\}$ is the solution to the equation 3x + 5 = 14. Find the solution by trial and error.
- 4 Find the equation which results from multiplying both sides of $\frac{3-x}{2} = 5$ by 2.
- **5** State the inverse of the following operations: **a** -5 **b** $\times \frac{1}{2}$ **c** $\div 6$.
- 6 Find t using an inverse operation:
 - **a** t+9=5 **b** t-6=0 **c** 4t=20 **d** $\frac{t}{-3}=8$
- 7 Copy and complete the following flowcharts:

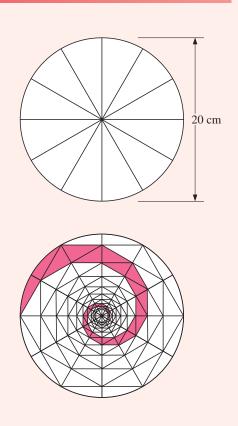
a
$$x \xrightarrow{?} \frac{x}{4} \xrightarrow{?} \frac{x}{4} - 7$$
 b $x \xrightarrow{+6} \xrightarrow{\times 5}$

8 Use a flowchart to show how the following expressions are built up from x:

- **a** 2(3x-7) **b** $\frac{2x+3}{6}$
- **9** Use a flowchart to show how to isolate x in the following expressions:

a
$$\frac{5x-3}{4}$$
 b $6(2x+1)$

10 Solve for x:


- **a** 4x 11 = 25 **b** 5 + 4x = 11 **c** $\frac{x}{3} - 5 = 8$ **d** $\frac{x}{5} + 11 = 9$ **e** 3(x + 7) = 30**f** 4(x - 8) = 52
- **11** Julian has been given a bag of chocolate truffles for his birthday. He decides to eat them all by himself. After eating 6 of them, however, he starts feeling ill and does not want any more. He shares the rest with his three sisters. If each of Julian's sisters is given 4 truffles and there is one left over, how many truffles were originally in the bag?

ACTIVITY

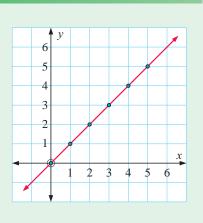
What to do:

- 1 Start with a large circle at least 20 cm across, and divide it into 12 sectors of equal size.
- 2 Make a series of hexagons as shown in the diagram below.Continue the pattern for as long as you can.
- **3** Six spirals can be coloured. One of these is shown. On your figure colour all six spirals in different colours.
- **4** Repeat the above steps by first dividing the spiral into 16 sectors. Form octagons and octagonal spirals.

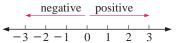
POLYGONAL SPIRALS

Coordinates and lines

- A The number plane
- **B** Points on a straight line
- C Graphing straight lines
- D Special lines
- **E** The x and y-intercepts


OPENING PROBLEM

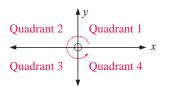
The graph alongside shows the points (0, 0), (1, 1), (2, 2), (3, 3) and (4, 4). A straight line has been drawn through them.

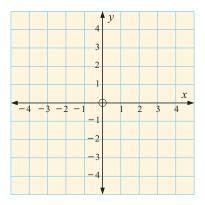

Things to think about:

- What is the point on the line with *x*-coordinate 5?
- How can we represent points on the line with *x*-coordinates that are negative?
- Can we write an equation which all points on the line satisfy?

THE NUMBER PLANE

In **Chapter 13** we saw how the **number line** was extended in two directions to represent positive and negative numbers.


To extend the **number plane** we extend both the x-axis and the y-axis in two directions.


In the centre of the number plane is the origin O.

The *x*-axis is positive to the right of O and negative to the left of O.

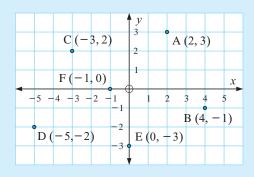
The *y*-axis is positive above O and negative below O.

This number plane is called the **Cartesian plane**, which takes its name from **René Descartes**.

The Cartesian plane is divided into four **quadrants** by the x and y axes.

The four quadrants are numbered in an anticlockwise direction.

The first quadrant is the upper right hand region in which x and y are both positive.


We can now describe and plot points in any of the four quadrants or on either axis. As always, the x-coordinate is given first and the y-coordinate is given second.

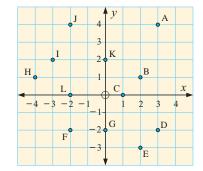
Self Tutor

Plot the following points on a Cartesian plane:

$$A(2, 3), B(4, -1), C(-3, 2), D(-5, -2), E(0, -3), F(-1, 0).$$

C(-1, 0)

k K(3, -4)


EXERCISE 21A

- 1 Draw a set of axes, then plot and label the following points:
 - **a** A(2, 3) **b** B(5, 1)
 - **e** E(0, -2) **f** F(5, 0)
 - I(-4, 3) J(4, 0)
- **f** F(5, 0) **g** G(3, -1)
 - J(4, 0)
- **2** Write down:
 - a the x-coordinates of A, D, E, G, H, J, L and O
 - b the y-coordinates of B, C, F, G, I, K, L and O
 - c the coordinates of all points.
- **3** Which of the points in question **2** lie:
 - a in the first quadrant
 - **b** in the second quadrant
 - c in the third quadrant
 - **d** in the fourth quadrant
 - on the *x*-axis
 - f on the *y*-axis?
- 4 On a set of axes plot the points with coordinates given below. Join the points by straight line segments in the order given:

 $(0, 3), (6, 1), (6, 0), (0, 0), (0, -4), (2, -5), (2, -6), (-3, -6), (-3, -5), (-1, -4), (-1, 0), (-7, 0), (-7, 1), (-1, 3), (-1, 5), (-\frac{1}{2}, 6), (0, 5), (0, 3).$

- **5** In which quadrant would you find a point where:
 - a both x and y are positive
 c x is negative and y is positive
- **b** both x and y are negative
- **d** x is positive and y is negative?

- **d** D(-3, -3)
 - **h** H(0, 4)
 - L(6, 1)

POINTS ON A STRAIGHT LINE

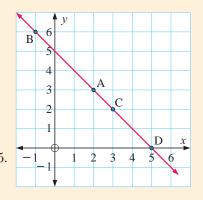
INVESTIGATION

Consider the points A(2, 3), B(-1, 6), C(3, 2) and D(5, 0).

These points are plotted on the number plane. We notice that they lie in a **straight line**.

If we look carefully at the points we can see that the *x*-coordinate and *y*-coordinate of each point add to 5.

This means that the **equation** of the line is x + y = 5.

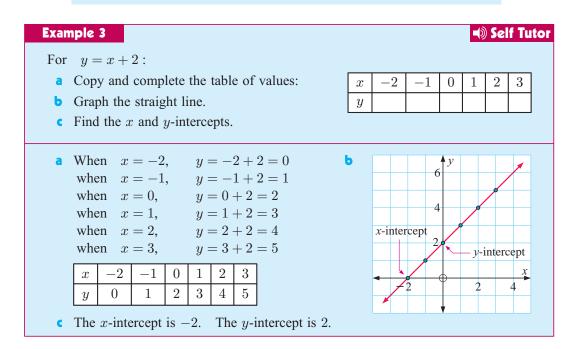

What to do:

- 1 Give the coordinates of *four* other points which lie on the line. Check that x + y = 5 for each of these points.
- **2** Plot each of the following sets of points on a separate set of axes and draw a line which passes through the points:
 - **a** A(1, 2), B(3, 0), C(2, 1) and D(4, -1)
 - **b** A(1, 1), B(2, 2), C(5, 5) and D(-2, -2)
 - **c** A(-1, 1), B(-2, 2), C(-4, 4) and D(3, -3)
 - **d** A(1, 3), B(2, 4), C(3, 5) and D(5, 7)
 - **e** A(2, 4), B(3, 6), C(4, 8) and D(-1, -2)
 - f A(2, 1), B(4, 2), C(-6, -3) and D(8, 4).
- **3** For each set of points in **2**, find the equation of the line.

Suppose we know the equation of a straight line. We can **substitute** a value of x to find the point on the line with that x-coordinate.

Example 2				Self Tutor
A line has equation <i>x</i> -coordinate:	y = x + 2.	Find the coo	ordinates	s of the point on the line with
a 1	b 4	c	-2	d 1.6
a When $x = 1$, y = 1 + 2 = 3. So, the point is (y = 4 - So, the	x = 4, + 2 = 6. point is (4, 6).
• When $x = -2$, y = -2 + 2 = 0. So, the point is (d	y = 1.6	x = 1.6, 3 + 2 = 3.6. point is (1.6, 3.6).

POINTS WHICH FORM A LINE


EXERCISE 21B

1 A line has equation y = x - 1. Find the coordinates of the point on the line with *x*-coordinate: **d** -2**a** 1 **c** 0 Ь 3 **2** A line has equation y = 2x - 3. Find the coordinates of the point on the line with *x*-coordinate: **c** -1 **d** $\frac{1}{2}$ **a** 3 **b** 0 **e** 1.7 3 A line has equation $y = \frac{1}{2}x + 3$. Find the coordinates of the point on the line with *x*-coordinate: **a** 4 **b** -2**c** 100 **d** 5 **2**.6 4 A line has equation y = -2x + 5. Find the coordinates of the point on the line with *x*-coordinate: **b** -4 **c** 3 **d** $-\frac{1}{2}$ **e** $\frac{3}{5}$ **a** 0 **GRAPHING STRAIGHT LINES**

y = 2x + 3, y = 3x - 1, $y = \frac{1}{2}x + 5$, $y = -\frac{1}{4}x - 2$ are the equations of four different straight lines. In fact, any equation of the form y = mx + c where m and c are numbers is the equation of a straight line.

For any straight line graph:

- the *y*-intercept is the value of *y* when the graph crosses the *y*-axis
- the *x*-intercept is the value of *x* when the graph crosses the *x*-axis.

EXERCISE 21C

- 1 For y = 2x 1, copy and complete: Hence draw the graph of y = 2x - 1.
- 2 For y = -2x + 1, copy and complete: Hence draw the graph of y = -2x + 1.
- **3** Construct a table of values and hence draw the graph of:
 - **a** y = x 2 **b** y = 2x + 2
 - **d** y = -2x + 4
 - **g** $y = \frac{1}{2}x 2$ **h** $y = -\frac{1}{2}x + 1$ **i** y = -4x + 2
- 4 For each graph in 3 find the x and y-intercepts.
- **5** The following tables of values are all for straight line graphs. Complete each table, drawing a graph to help you if necessary.

e y = 3x + 3

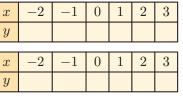
- x -2 -1 0 1 2 3

 y 5 7 9 11 15

Ь	x	-2	-1	0	1	4	2	3	
	y	8		4	2				
d	x	-3	-2	-1		0		1	2
	y	-2]	10	
f	x	-3	-1	1	2		3	4	1
	y			1	3	ļ	5	7	

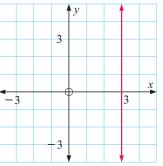
SPECIAL LINES

The illustrated line is **vertical** and it cuts the *x*-axis at 3.


Every point on the line has x-coordinate 3, so the line has equation x = 3.

y is not mentioned in this equation as y can take any value.

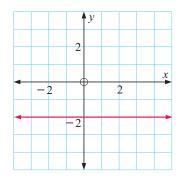
Points such as (3, 2.791) and (3, -0.678) also lie on this line.

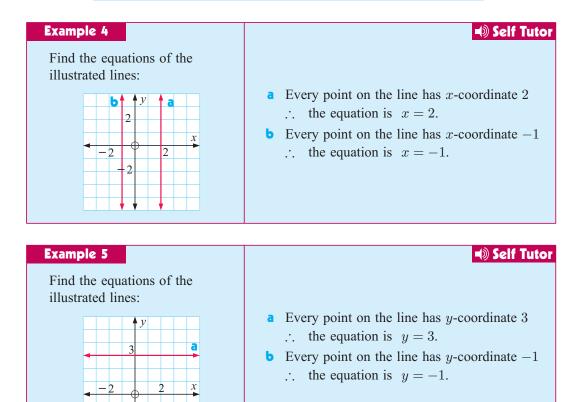

There are *infinitely many* points on the line.

We use arrowheads at the end of the line to show that it stretches on forever in each direction.

y = -x + 1

f $y = \frac{1}{2}x$




We can describe horizontal lines in a similar way.

For example, every point on the line illustrated has y-coordinate -2.

The equation of the line is therefore y = -2.

A vertical line which cuts the x-axis at k has equation x = k. A horizontal line which cuts the y-axis at k has equation y = k.

EXERCISE 21D

1 On the same set of axes, graph the lines with equations:

a x = 4 **b** x = -2 **c** x = 0 **d** $x = 1\frac{1}{2}$.

y = -3

2 On the same set of axes, graph the lines with equations:

a y = 2

b y = 0

d $y = -\frac{1}{2}$.

398 COORDINATES AND LINES (Chapter 21)

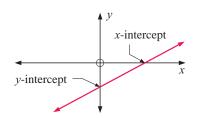
3 a Copy and complete the table of values for this line:

x	-4	-3	-2	-1	0	1	2	3	4
y									

- **b** Find the equation of the line.
- State the *y*-coordinate of the point on the line with *x*-coordinate 1.4.
- a Copy and complete the table of values for this line:

x	-4	-3	-2	-1	0	1	2	3	4
y									

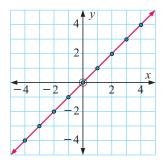
- **b** Find the equation of the line.
- A point on the line has x-coordinate -2.31. What is its y-coordinate?
- **5** Copy and complete:
 - a Any vertical line has an equation of the form
 - **b** Any horizontal line has an equation of the form
 - The line at 45° to the axes in quadrants (1) and (3) has equation
 - **d** The line at 45° to the axes in quadrants (2) and (4) has equation

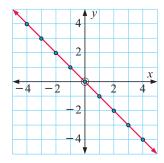

THE x AND y-INTERCEPTS

The x and y-intercepts for the graph of a straight line can be found without actually graphing the line.

We use algebra to do this, noting that:

- the y-intercept occurs when x = 0
- the x-intercept occurs when y = 0.





Self Tutor

Find the x and y-intercepts of the line with equation y = 2x - 3.

The line cuts the x-axis when y = 0The line cuts the y-axis when x = 0 $\therefore 2x - 3 = 0$ $\therefore y = 2(0) - 3$ $\therefore 2x = 3$ $\therefore y = 0 - 3$ $\therefore x = \frac{3}{2}$ $\therefore y = -3$ So, the x-intercept is $1\frac{1}{2}$.So, the y-intercept is -3.

EXERCISE 21E

1 Find the *y*-intercept of the line with equation:

a $y=2x-4$	b $y=x-5$	y = 2x + 6
d $y = 3x - 9$	e y = 2x - 1	f $y = 2x + 1$
g $y = -2x + 3$	h $y = -x + 7$	y = 7x - 10
$y = \frac{1}{2}x + 5$	k $y = -\frac{1}{2}x - 2$	$y = \frac{1}{3}x + \frac{3}{2}$

2 What is the y-intercept of the line with equation y = mx + c?

3 Find the *x*-intercept of the line with equation:

a $y = 2x - 4$	b y = x - 5	y = 2x + 6
y = 3x - 9	y = 2x - 1	f $y = 2x + 1$
g $y = -2x + 3$	h $y = -x + 7$	y = 7x - 10
$y = \frac{1}{2}x + 5$	k $y = -\frac{1}{2}x - 2$	$y = \frac{1}{3}x + \frac{3}{2}$

Example 7

Self Tutor

- a Find the x and y-intercepts of the line with equation y = 2x + 1.
- **b** Use the axes intercepts to draw the graph of y = 2x + 1.

a When x = 0, y = 2(0) + 1 = 1 \therefore the *y*-intercept is 1 When y = 0, 2x + 1 = 0 $\therefore 2x = -1$ $\therefore \quad x = -\frac{1}{2}$ \therefore the x-intercept is $-\frac{1}{2}$

x

- **4** For each of the following lines:
 - find the *y*-intercept
 - ii find the *x*-intercept
 - draw the graph using the axes intercepts.
 - **a** y = 2x 2 **b** y = 4x 1 **c** y = 5x 2 **d** y = -2x + 3 **e** y = -x + 4 **f** y = -3x + 5 **g** $y = \frac{1}{2}x 2$ **h** $y = -\frac{1}{2}x + 2$

Ь

KEY WORDS USED IN THIS CHAPTER

- Cartesian plane • number plane
- horizontal line
- quadrant
- vertical line
- *x*-intercept
- line graph
 - straight line
 - y-intercept

REVIEW SET 21A

- 1 On the same set of axes, plot and label the following points: A(3, -2), B(2, 4), C(-4, 1), D(0, -3).
- **2** Write down:
 - a the x-coordinates of A and D
 - **b** the *y*-coordinates of B and C
 - **c** the coordinates of A, B, E and F.

		- 4	у			
		_2		А		
	В	2				
		0		F		x
			Е	3	3	
					С	
D						
		,	,			

- 3 In which quadrants do the following points lie:
 - **a** (-2, 3) **b** (5, 7)

c (0, −3)?

- 4 Are (2, 3) and (3, 2) the same point on the number plane? Illustrate your answer.
- Find the equation connecting x and y given the following set of points: A(-1, -2), B(1, 0), C(2, 1), D(3, 2).
- 6 On the same set of axes, graph the lines with equations: x = 3, y = 5, x = -1 and $y = -1\frac{1}{2}$.
- For the line with equation y = 3x 2, copy and complete:
 Hence draw the graph of y = 3x 2.

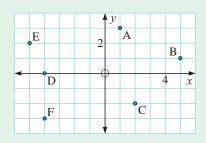
x	-2	-1	0	1	2	3
y						

d $\frac{3}{5}$

- 8 A line has equation y = 3x 1. Find the coordinates of the point on the line with x-coordinate:
 - **a** 0

c -2

9 Copy and complete the table of values for this straight line:


b 5

x	-2	-1	0	1	2	3
y	2		-1			$-5\frac{1}{2}$

- **10** Sketch the graph of the line with equation y = x.
- **11** For the line with equation y = 2x 5:
 - a find the y-intercept
 - **b** find the *x*-intercept
 - c graph the line using the axes intercepts only.

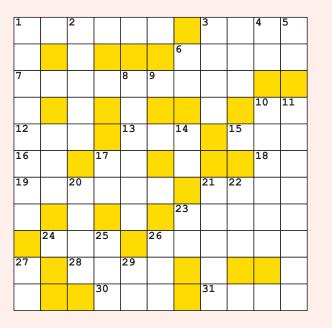
REVIEW SET 21B

- On a set of axes, plot and label the following points: A(-4, 2), B(5, 7), C(6, -3), D(-2, 0).
- **2** Write down the:
 - **a** x-coordinates of D and F
 - **b** *y*-coordinates of C and E
 - c coordinates of A, B, C and D.

- **3** How many points have x-coordinate 4 and y-coordinate 5?
- 4 In which quadrant would I find a point with:
 - a positive x-coordinate b negative x and y-coordinates?
- **5** Write an equation describing all points with *y*-coordinate 2.
- The points on a line all obey the rule y = x 5.
 Find the y-coordinate of the points on the line with x-coordinate:
 - **a** 2 **b** 0 **c** -2
- 7 On the same set of axes, graph the lines with equations y = 1, $x = 2\frac{1}{2}$, y = -3 and x = -4.
- 8 Construct a table of values and hence draw the graph of $y = \frac{1}{2}x + 3$.
- **9** Fill in the missing values for this straight line graph:

x	-2	-1	0	1	2	3
y	-9			-3	-1	

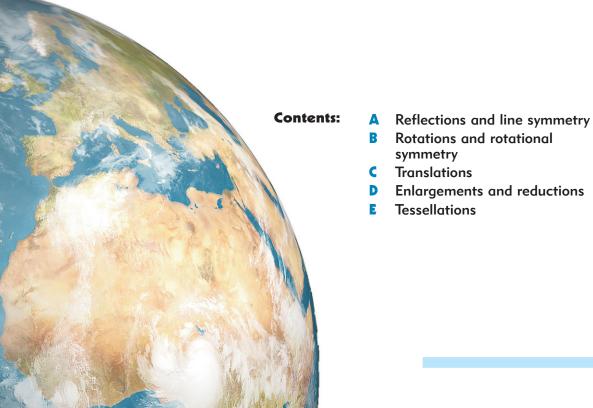
- **10** Sketch the graph of the line with equation y = -x.
- **11** For the line with equation y = 3x + 2:
 - **a** find the *y*-intercept
 - **b** find the *x*-intercept
 - c graph the line using the axes intercepts only.


PUZZLE

Solve this puzzle, writing all answers in Roman numerals:

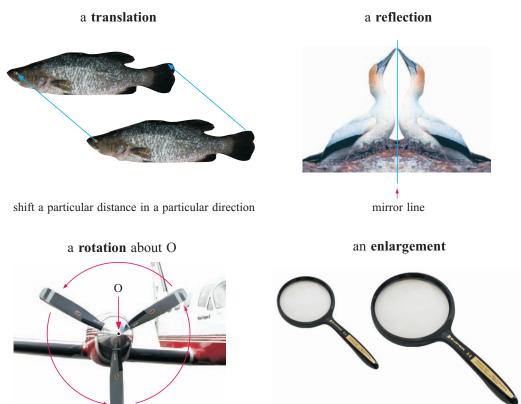
ROMAN CROSSWORD

Across


- 1 One thousand six hundred and fifty six
- **3** 1509
- 6 One thousand subtract 404
- 7 $(8 \times 10^2) + (6 \times 10^1) + (7 \times 10^0)$
- 10 2×10^3
- **12** The difference between 936 and 531
- 13 9×5
- **15** The sum of 800 and six hundred
- **16** The product of fifty and four
- **17** Half of 1020
- **18** 999 999 999 909
- **19** Twelve times seven
- **21** Ten lots of (eleven times four)
- **23** 937, 948,, 970, 981
- **24** Nine more than one thousand
- **26** 44 000 subtract 43 466
- **28** The dividend when the divisor is 2 and the quotient is 47
- **30** The quotient of 63 and 9
- **31** 12×2^3

Down

- 1 MMM minus CXL
- **2**(II times X²) minus VI
- 3 Double DVII
- $4 \quad XXXVI \div IX$
- 5 V + VI
- 6 CCCII + CCIII
- 8 From C subtract XI
- **9** C divided by X
- 10 M + CX + XII
- **11** MM CCCXXXIII
- **14** C XC IV
- **20** VII²
- **21** The difference between M and LXXXI
- **22** The product of LXX and VIII
- **25** LXXX, LXXXV, XC,, C, CV
- **26** The sum of CCXCIX, CXLIII and LXIV
- **27** The product of CI and X
- **29** $I^2 + I^2$

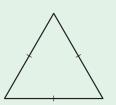

Transformations

TRANSFORMATIONS

Translation, reflection, rotation, and enlargement are all transformations.

For example:

When we perform a transformation, the original shape is called the **object**. The shape which results from the transformation is called the **image**.


OPENING PROBLEM

Consider an equilateral triangle.

Things to think about:

• Can you draw a mirror line on an equilateral triangle? The figure must fold onto itself along that line, so it matches exactly.

How many of these mirror lines can you draw?

- Can you find the centre of rotation of an equilateral triangle? The figure must rotate about this point and fit exactly onto itself in less than one full turn. How many times would an equilateral triangle fit onto itself in one full turn?
- Make a pattern using equilateral triangles so there are no gaps between the triangles and the edges meet exactly.

CONGRUENT FIGURES

Two figures are **congruent** if they have exactly the same size and shape.

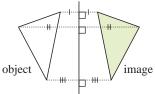
If one figure is cut out and it can be placed exactly on top of the other, then these figures are congruent.

The image and the object for a translation, rotation, or reflection are always congruent. The image and the object for an enlargement are not congruent because they are not the same size.

ACTIVITY 1

TRANSFORMING CATS

Following is a fabric pattern which features cats and pairs of cats. The rows and columns have been numbered to identify each individual picture.Col. 1Col. 2Col. 3Col. 4Col. 5Col. 6Row 1EEEEEEERow 2EEEEEEERow 3EEEEEEERow 4EEEEEEERow 5EEEEEEERow 5EEEEEEE

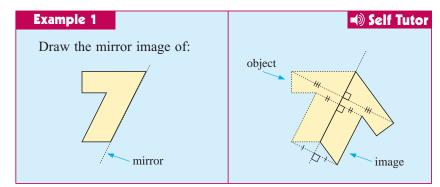

What to do:

- **1** Start with row 1 and column 1 cat.
 - **a** Give the row and column numbers for *translations* of this cat.
 - **b** Give the row and column numbers for *rotations* of this cat.
 - Give the row number in column 1 for an *enlargement* of this cat.
 - **d** Give the row numbers in column 3 for cats *congruent* to this cat.
- **2** Start with row 1 column 2 cat.
 - a Give the row and column numbers for *translations* of this cat.
 - **b** Discuss why row 4 column 2 is not a rotation of this cat.
 - Give the row and column numbers for *rotations* of this cat.
 - **d** Give the row number in column 1 for a *reflection* of this cat.

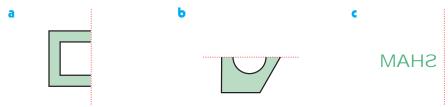
- **3** Start with row 4 column 5 cat.
 - **a** Give the row numbers for any column 2 cats *congruent* to this one.
 - **b** Give the row and column numbers of any cats that are a *rotation* of this cat.
 - Give the row and column numbers for any cats that are a *reduction* of this cat.
- **4** What is the transformation shown in the pair of cats?
- 5 Which *two* transformations are used to move the cats in
 - a row 1 column 1 to row 1 column 5
 - row 2 column 5 to row 5 column 5
- **b** row 2 column 4 to row 5 column 4
- **d** row 3 column 6 to row 2 column 6?

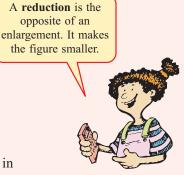
REFLECTIONS AND LINE SYMMETRY

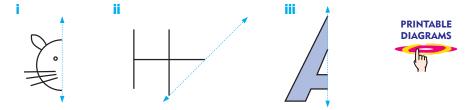
REFLECTIONS



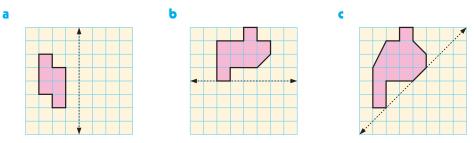
To reflect an object in a mirror line we draw lines at right angles to the mirror line which pass through key points on the object. The images of these points are the same distance away from the mirror line of


same distance away from the mirror line as the object points, but on the opposite side of the mirror line.

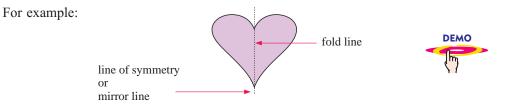

mirror line


EXERCISE 22A.1

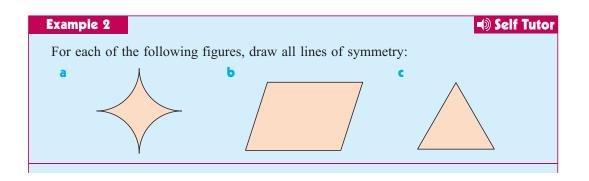
1 Place a mirror on the mirror line shown using dashes, and observe the mirror image. Draw the object and its mirror image in your work book.

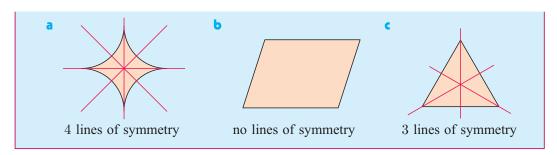


2 a Draw the image of the following if a mirror was placed on the mirror line shown:


b Check your answers to **a** using a mirror.

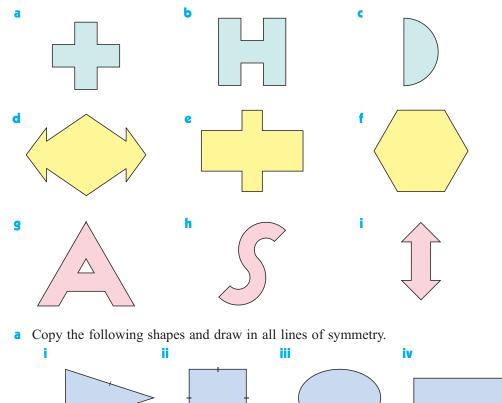
3 On grid paper, reflect the geometrical shape in the mirror line shown:


LINE SYMMETRY


A line of symmetry is a line along which a shape may be folded so that both parts of the shape will match.

If a mirror is placed along the line of symmetry, the reflection in the mirror will be exactly the same as the half of the figure "behind" the mirror.

A shape has **line symmetry** if it has at least one line of symmetry.



EXERCISE 22A.2

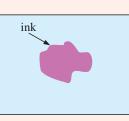
2

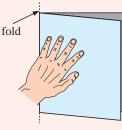
a

1 Copy the following figures and draw the lines of symmetry. Check your answers using a mirror.

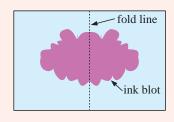
- **b** Which of these figures has the most lines of symmetry?
- **3** How many lines of symmetry do these patterns have?

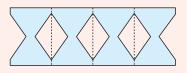
- **a** How many lines of symmetry can a triangle have? Draw all possible cases.
 - **b** How many lines of symmetry can a quadrilateral have? Draw all possible cases.



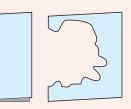

You will need: paper, scissors, pencil, ink or paint

- **1** Take a piece of paper and fold it in half.
- **2** Cut out a shape along the fold line.
- **3** Open out the sheet of paper and observe the shapes revealed.
- **4** Record any observations about symmetry that you notice.
- **5** Try the following:
 - **a** Fold the paper twice before cutting out your shape.
 - **b** Fold the paper three times before cutting out your shape.


In each case record your observations about the number of lines of symmetry.

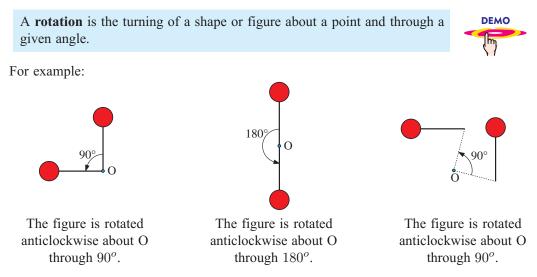

• Place a blob of ink or paint in the centre of a rectangular sheet of paper. Fold the paper in half and press the two pieces together. Open the paper and comment on the symmetry observed.

7 Make symmetrical patterns by folding a piece of paper a number of times and cutting out a shape. How many folds would you need and what shape would you need to cut out to get the result shown?


ROTATIONS AND ROTATIONAL SYMMETRY

We are all familiar with things that rotate, such as the hands on a clock or the wheels of a motorbike.

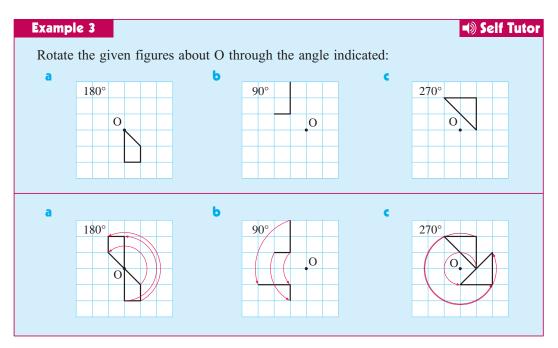
B

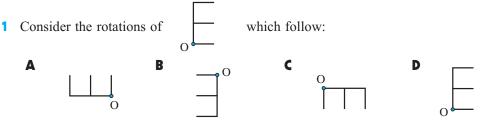


The point about which the hands of the clock, or the spokes of the wheel rotate, is called the **centre of rotation**.

The angle through which the hands or the spokes turn is called the **angle of rotation**.

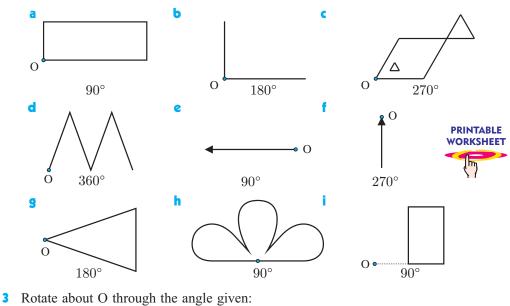
The globe of the world rotates about a line called the axis of rotation.

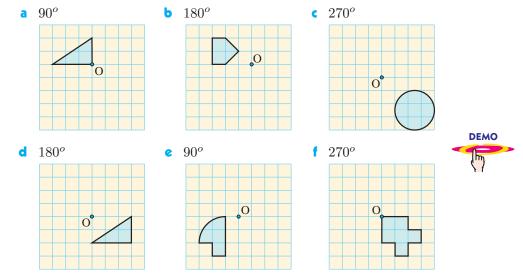

During a rotation, the distance of any point from the centre of rotation does not change.


You will notice that under a rotation, the figure does not change in size or shape.

In mathematics we rotate in an anticlockwise direction unless we are told otherwise.

You should remember that 90° is a $\frac{1}{4}$ -turn, 180° is a $\frac{1}{2}$ -turn, 270° is a $\frac{3}{4}$ -turn, and 360° is a full turn.


EXERCISE 22B.1



Which of A, B, C, or D is a rotation of the object through:

a 180° **b** 360° **c** 90° **d** 270° ?

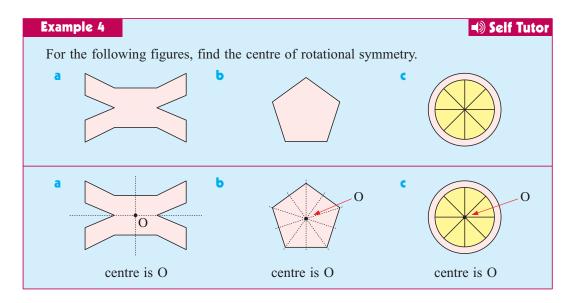
2 Copy and rotate each of the following shapes about the centre of rotation O, for the number of degrees shown. You could use tracing paper to help you.

ROTATIONAL SYMMETRY

A shape has **rotational symmetry** if it can be fitted onto itself by turning it through an angle of **less than 360^{\circ}**, or one full turn.

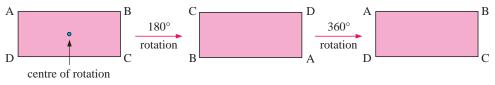
The **centre of rotational symmetry** is the point about which a shape can be rotated onto itself.

The 'windmill' shown will fit onto itself every time it is turned about O through 90° . O is the centre of rotational symmetry.


This fabric pattern also shows rotational symmetry.

A full rotation does not mean that a shape has rotational symmetry. Every shape fits exactly onto itself after a rotation of 360°.

If a figure has more than one line of symmetry then it will also have rotational symmetry. The centre of rotational symmetry will be the point where the lines of symmetry meet.

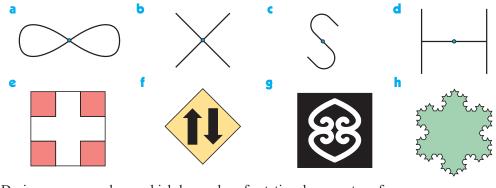


THE ORDER OF ROTATIONAL SYMMETRY

The **order of rotational symmetry** is the number of times a figure maps onto itself during one complete turn about the centre.

For example:

The rectangle has order of rotational symmetry of 2 since it moves back to its original position under rotations of 180° and 360° .


Click on the icon to find the order of rotational symmetry for an equilateral triangle.

EXERCISE 22B.2

1 For each of the following shapes, find the centre of rotational symmetry:

2 For each of the following shapes find the *order* of rotational symmetry. You may use tracing paper to help you.

3 Design your own shape which has order of rotational symmetry of:
a 2
b 3
c 4
d

ACTIVITY 3

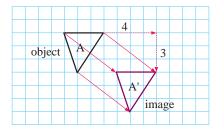
USING TECHNOLOGY TO ROTATE

6

In this activity we use a computer package to construct a shape that has rotational symmetry.

What to do:

- 1 Click on the icon to load the software.
- 2 From the menu, choose an angle to rotate through.
- 3 Make a simple design in the sector which appears, and colour it.
- **4** Press finish to see your creation.

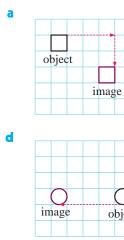

TRANSLATIONS

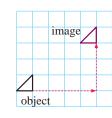
A translation of a figure occurs when every point on the figure is moved the same distance in the same direction.

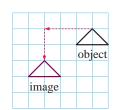
Under a translation the original figure and its image are congruent.

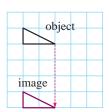
b

e

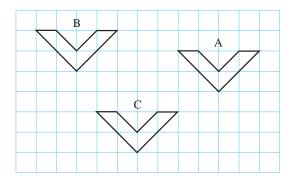


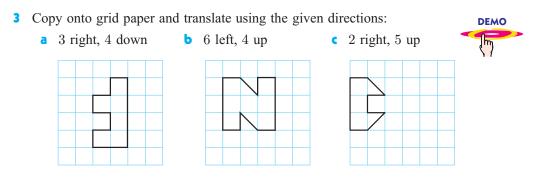

In the translation shown, the original figure has been translated 4 units right and 3 units down to give the image.


C


EXERCISE 22C

1 Describe each of the following translations:



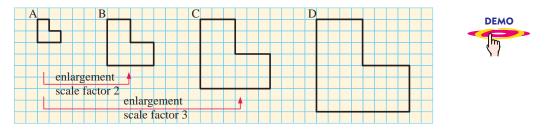


For the given figures, describe the 2 translation from:

object

- **a** A to B **b** B to A
- d C to B • B to C
- A to C C to A

ENLARGEMENTS AND REDUCTIONS


We are all familiar with enlargements in the form of photographs or looking through a microscope or telescope. Plans and maps are examples of **reductions**. The size of the image has been reduced but the proportions are the same as the original. Most photocopiers can perform enlargements and reductions.

The following design shows several enlargements:

In any enlargement or reduction, we multiply the lengths in the object by the **scale factor** to get the lengths in the image.

Look at the figures in the grid below:

For the enlargement with scale factor 2, lengths have been doubled.

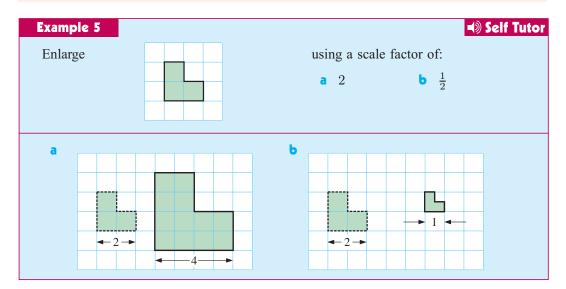
For the enlarement with scale factor 3, lengths have been trebled.

If shape B is reduced to shape A, the lengths are *halved* and the scale factor is $\frac{1}{2}$.

If shape D is reduced to shape A, the lengths are *quartered* and the scale factor is $\frac{1}{4}$.

A scale factor is: • greater than 1 for an enlargement • less than 1 for a reduction.

ACTIVITY 4

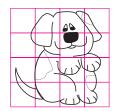


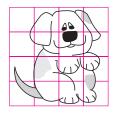
You will need: Paper, pencil, ruler

What to do:

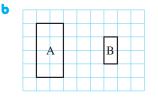
- **1** Copy the picture alongside.
- 2 Draw a grid 5 mm by 5 mm over the top of the dog as shown alongside:
- **3** Draw a grid 10 mm by 10 mm alongside the grid already drawn.
- **4** Copy the dog from the smaller grid onto the larger grid. To do this accurately, start by transferring points where the drawing crosses the grid lines. Then join these points and finish the picture.
- **5** Use this method to change the size of other pictures. You may like to try making the picture smaller as well as larger, by making your new grid smaller than the original.

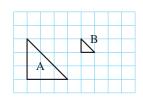
EXERCISE 22D


1 In the following diagrams, A has been enlarged to B. Find the scale factor.



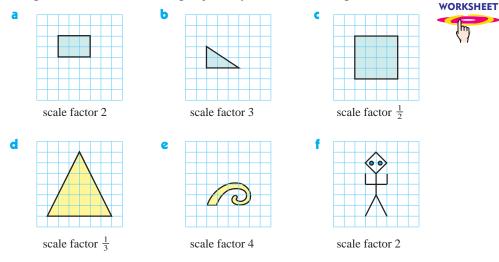
ENLARGEMENT BY GRIDS

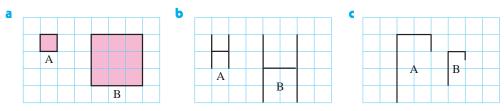



C

2 In the following diagrams, A has been reduced to B. Find the scale factor.

				В	
	А				


a



PRINTABLE

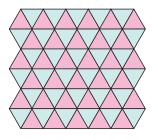
3 Enlarge or reduce the following objects by the scale factor given:

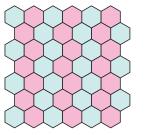
4 Find the scale factor when A is transformed to B:

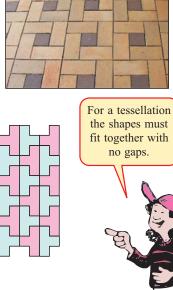
5 For each grid in **4**, write down the scale factor which transforms B into A.

TESSELLATIONS

A **tessellation** is a pattern made using figures of the same shape and size. They must cover an area without leaving any gaps.


The photograph alongside shows a tessellation of bricks used to pave a footpath.


Tessellations are also found in carpets, wall tiles, floor tiles, weaving and wall paper.



This brick design is **not a tessellation** as it is constructed from two different brick sizes.

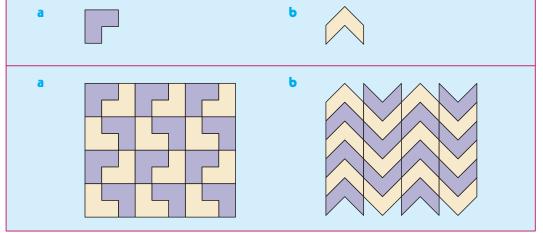
The following tile patterns are all tessellations:

ACTIVITY 5

What to do:

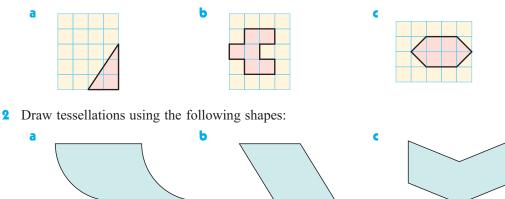
Using the "2 × 1" rectangle □ , form at least two different tessellation patterns. One example is:

			_	 		 		 		 		


2 Repeat **1** using a " 3×1 " rectangle .

Example 6

Self Tutor


PAVING BRICKS

Draw tessellations of the following shapes.

EXERCISE 22E

1 Draw tessellations using the following shapes:

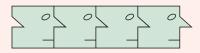
ACTIVITY 6

What to do:

Follow these steps to create your own tessellating pattern.

Step 1: Draw a square.

Step 3: Rub out any unwanted lines and add features.



Step 2: Cut a piece from one side and 'glue' it onto the opposite side.

CREATING TESSELLATIONS

Step 4: Photocopy this several times and cut out each face. Combine them to form a tessellation.

Make your own tessellation pattern and produce a full page pattern with 3 cm by 3 cm tiles. Be creative and colourful. You could use a computer drawing package to do this activity.

DISCUSSION

- Research the shape of the cells in a beehive. Explain why they are that shape.
- **2** Look at the shapes of paving blocks. Explain what advantage some shapes have over others. When building walls, what are the advantages of rectangular bricks over square bricks?

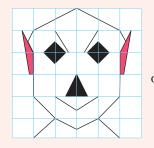
IN GOOD SHAPE

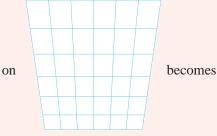
ACTIVITY 7

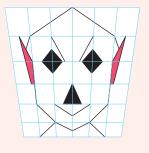
COMPUTER TRANSFORMATIONS

What to do:

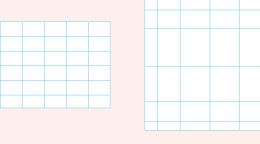
1 Pick a shape and learn how to translate, reflect and rotate it.

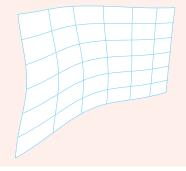

- 2 Create a tessellation on your screen and colour it.
- **3** Print your final masterpiece.


ACTIVITY 8


DISTORTION TRANSFORMATIONS

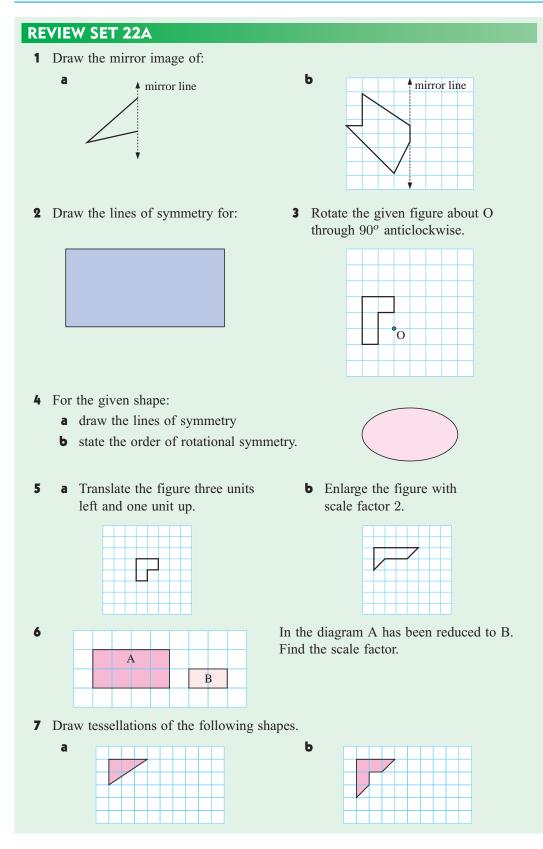
In this activity we copy pictures onto unusual graph paper to produce distortions of the original diagram. For example,





What to do:

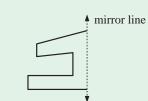
- 1 On ordinary squared paper draw a picture of your own choosing.
- 2 Redraw your picture on different shaped graph paper. For example:

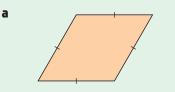


KEY WORDS USED IN THIS CHAPTER

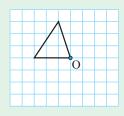
- angle of rotation
- congruent
- line of symmetry
- reflection
- scale factor

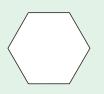
- axis of rotation
- enlargement
- mirror line
- rotation
- tessellation


- centre of rotation
- image
- object
- rotational symmetry
- translation

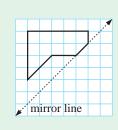

REVIEW SET 22B

a


1 Draw the mirror image of:

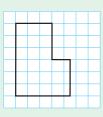

2 Draw the lines of symmetry for:

a Rotate the figure shown through 90° anticlockwise about O.

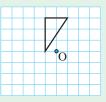


4 a Find the order of rotational symmetry for:

5 Translate the given figure one unit to the right and 3 units down.



b


Ь

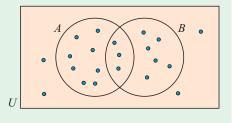
b Enlarge the figure with scale factor $\frac{1}{3}$.

b Rotate the given figure 180° about O.

• Draw a tessellation using the given shape.

Sets

A Sets and their members


- **B** The intersection of sets
- **C** The union of sets
- Venn diagrams

OPENING PROBLEM

In the diagram alongside, how many dots are there in:

- a circle A
- **b** circle B
- \bullet circle A and circle B
- **d** circle A or circle B
- **e** neither circle A nor circle B
- f exactly one of the two circles?

A

SETS AND THEIR MEMBERS

A set is a group of objects or symbols.

For example, the prime numbers less than 13 are 2, 3, 5, 7 and 11.

We could write them as the set $A = \{2, 3, 5, 7, 11\}$

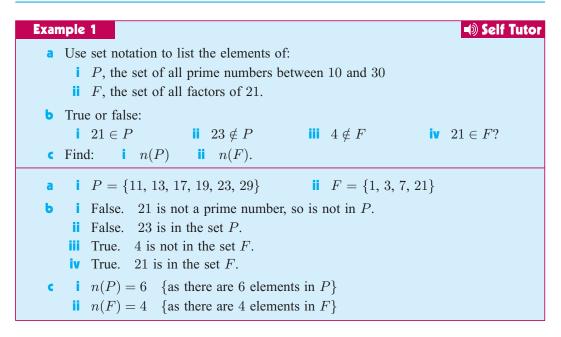
A set is usually given a letter like A to identify it, especially when two or more sets are being considered.

We can also use words to help define a set. For example, the set of all multiples of three which are less than 13 could be written as

 $M = \{ \text{multiples of 3 which are } < 13 \}$ or $M = \{ 3, 6, 9, 12 \}.$

Other examples of sets are:

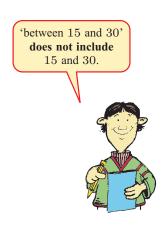
- {blue, grey, hazel, brown, green} is the set of all eye colours.
- $\{a, e, i, o, u\}$ is the set of all vowels in the English alphabet.


The objects or symbols in a set are called the elements or members of the set.

SET NOTATION

- \in means: *'is a member of'* or *'is an element of'* or *'is in'* or *'belongs to'*
- ∉ means: *'is not a member of'* or *'is not an element of'* or *'is not in'* or *'does not belong to'*.
- n(A) means: *'the number of elements in set A'*.

For example, if $A = \{2, 3, 5, 7, 11\}$ then $5 \in A$, $8 \notin A$, and n(A) = 5.



EXERCISE 23A.1

- 1 List the members of the set of all:
 - a positive even numbers less than 14
 - **b** positive odd numbers between 15 and 30
 - c prime numbers less than 23
 - d even prime numbers
 - e prime factors of 12
 - f multiples of 7 which are less than 50
 - **g** common multiples of 2 and 5 which are less than 40
 - **h** square numbers between 20 and 100.
- **2** Which of the following are true?
 - a $17 \in \{\text{prime numbers less than } 30\}$
 - $1 \in \{\text{prime numbers}\}$
 - 91 \notin {prime numbers}
 - g $u \in \{\text{English vowels}\}$
 - **h** $3 \in \{ \text{multiples of } 3 \}$ and $3 \in \{ \text{factors of } 6 \}$
- List the elements of the following sets. State the number of elements in each set using n(.....) notation:

For example, if $M = \{$ multiples of 11 which are less than 50 $\}$, then $M = \{$ 11, 22, 33, 44 $\}$ and n(M) = 4.

- **a** $P = \{ \text{prime numbers less than } 25 \}$
- **b** $M = \{$ multiples of 7 between 20 and 60 $\}$
- $D = \{$ numbers which divide exactly into $32 \}$

- **b** $14 \notin \{ \text{multiples of } 4 \}$
- d $257 \in \{\text{odd numbers}\}$
- f $\frac{9}{3} \notin \{\text{whole numbers}\}$

- 4 Suppose P is the set of all prime numbers between 0 and 15, Q is the set of all factors of 27, and R is the set of all multiples of 3 which are less than 18.
 - **a** List the elements of the sets P, Q and R using set notation.
 - **b** Find x if:

b $x \in A$ and $x + 6 \in A$

- **5** Suppose $A = \{2, 5, 8, 11, 14\}$. Find all values of x for which:
 - **a** $x \in A$ and $x + 3 \in A$
 - $x \in A$ and $x 3 \in A$.

EQUAL SETS

Two sets are **equal** if they have exactly the same elements.

For example,

if $A = \{2, 3, 8\}$ and $B = \{3, 8, 2\}$, then A = B.

EXERCISE 23A.2

- 1 If $A = \{3, 5, 1, 4\}$, $B = \{1, 3, 4, x\}$ and A = B, find x.
- 2 If $P = \{$ even numbers between 10 and 20 $\}$ and $Q = \{$ multiples of 2 between 11 and 19 $\},$ is P = Q?
- 3 If $K = \{1, 3, x, y\}$, $L = \{9, 5, 1, 3\}$ and K = L what can be said about x and y?
- 4 True or false:
 - **a** If A = B, then n(A) = n(B).
 - **b** If n(A) = n(B), then A = B.

If two sets A and B are equal then every element of A also belongs to B**and** every element of Balso belongs to A.

SUBSETS

If $M = \{2, 7, 8\}$ and $N = \{1, 2, 3, 5, 7, 8, 11\}$ we notice that every element of M is also an element of N. We say that M is a *subset* of N.

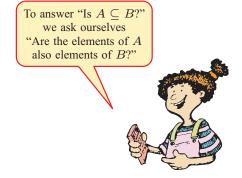
Set A is a **subset** of set B is every element of A is also in B.

If A is a subset of B, we write $A \subseteq B$.

EMPTY SETS

An **empty set** is a set which contains no elements.

The symbols $\{ \}$ or \emptyset are used to represent an empty set.


For example, the set of all whole numbers between 2 and 3 could be written as \emptyset .

Notice that the empty set is always a subset of any given set.

DISC	USSION SUBSETS
	 Discuss the truth of these statements: The empty set Ø is a subset of {*, #}. Any set is a subset of itself. For example {1, 2, 3} ⊆ {1, 2, 3}.
	Example 2 Self Tutor List all the subsets of {1, 2, 3}.
	The subsets of $\{1, 2, 3\}$ are: \emptyset , the empty set
	$\{1\}, \{2\}, \{3\}$ {the subsets containing one element}
	$\{1, 2\}, \{2, 3\}, \{1, 3\}$ {the subsets containing two elements}
	$\{1, 2, 3\}$ {any set is a subset of itself}
	There are 8 subsets in all.

EXERCISE 23A.3

- 1 True or false?
 - **a** $\{1, 2, 3, 4\} \subseteq \{1, 2, 3, 4, 5, 6\}$
 - **b** $\{1, 2, 3, 4\} \subseteq \{4, 3, 2, 1\}$
 - $\{1, 2, 3, 4\} \subseteq \{2, 3, 4\}$
 - d $\{2, 4, 6\} \subseteq \{\text{even numbers}\}$
 - $A \subseteq A for any set A$

- 2 If $M = \{3, 4, 5\}$, list the subsets of M which contain exactly:
 - a one element b two elements c
 - three elements.
- 3 If $N = \{1, 2, 3, 4\}$, list the subsets of N which contain exactly:
 - a two elements b three elements.
- 4 Suppose A and B are two sets. Copy and complete: A = B if $A \subseteq B$ and B......

B

THE INTERSECTION OF SETS

Self Tutor

In a class of students, $P = \{Adam, Bert, Con, Dina, Eva\}$ is the set of piano players and, $V = \{Con, Eva, Mandy, Quenda\}$ is the set of violin players.

We notice that Con and Eva play both instruments, as they belong to both set P and set V. The set {Con, Eva} is called the *intersection* of sets P and V.

The intersection of two sets A and B is the set of all elements which are common to both sets A and B.

The intersection of sets A and B is written $A \cap B$.

Example 3

If $P = \{+, *, \blacktriangleright, \#, @\}$ and $Q = \{-, \times, *, \blacktriangleleft, @, \bullet\}$, list the set $P \cap Q$.

* and @ are in both sets P and Q, so $P \cap Q = \{*, @\}$

Example 4 Self TutorIf $A = \{ \text{factors of } 12 \}$ and $B = \{ \text{factors of } 18 \}$, find $A \cap B$.What does $A \cap B$ represent? $A = \{1, 2, 3, 4, 6, 12\}$ and $B = \{1, 2, 3, 6, 9, 18\}$ So, $A \cap B = \{1, 2, 3, 6\}$ This set represents all common factors of 12 and 18.

EXERCISE 23B

- 1 List the set $A \cap B$ for $A = \{a, e, i, o, u\}$ and $B = \{a, r, e, s, t\}$
- 2 Let *M* be the set of all letters used to write the word *apartment* and *N* be the set of all letters used to write the word *prospector*.
 - **a** List the sets M and N.
 - Write down the set $M \cap N$.
- 3 If $M = \{ \text{multiples of } 4 \text{ less than } 16 \}$ and $F = \{ \text{factors of } 16 \}$:
 - **a** list the sets M and F
 - **b** list the set $M \cap F$ and find $n(M \cap F)$.
- 4 If $P = \{ \text{prime numbers less than } 18 \}$ and $F = \{ \text{factors of } 35 \}$:
 - **a** list the sets P and F
 - **b** list the set $P \cap F$ and find $n(P \cap F)$.

5 List these intersections:

C

- **a** $\{1, 3, 5, 7\} \cap \{2, 4, 6, 8\}$
- **b** {factors of 12} \cap {factors of 8}
- {multiples of 5 that are < 100} \cap {multiples of 15 that are < 100}

THE UNION OF SETS

The elements

we have to

cross out form the **intersection**

of the sets.

Self Tutor

We never list a

particular element of a set twice.

The **union of sets** A and B is the set of all elements which are in A or B. Elements in both A and B are **included** in the union of A and B.

The union of sets A and B is written $A \cup B$.

The union of two sets is made up by combining the elements of the two sets, then removing any elements which have been listed twice.

For example, suppose $A = \{3, 5, 6, 7, 9\}$ and $B = \{1, 2, 3, 4, 5\}$.

To find $A \cup B$, we first list the elements of both A and B, then cross out the elements listed twice: {3, 5, 6, 7, 9, 1, 2, 3, 4, 5}

We can then list the numbers in order:

 $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$

One advantage of this method is that the numbers we cross out are the elements of the **intersection** of A and B. So, $A \cap B = \{3, 5\}$.

Example 5

If $P = \{1, 3, 5, 7, 9\}$ and $Q = \{2, 4, 5, 6, 7, 8\}$, list the sets: **a** $P \cup Q$ **b** $P \cap Q$

a $P \cup Q = \{1, 3, 5, 7, 9, 2, 4, 5, 6, 7, 8\}$ = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ **b** $P \cap Q = \{5, 7\}$

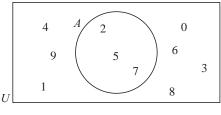
EXERCISE 23C

- **a** $A = \{1, 2, 3, 4\}$ and $B = \{4, 5, 6, 7, 8\}$
- **b** $A = \{a, c, d, f, m\}$ and $B = \{b, c, e, f, g\}$
- $A = \{2, 4, 6, 8\}$ and $B = \{1, 3, 5, 7, 9\}$
- **d** $A = \{*, \#, !, \times\}$ and $B = \{\#, :, 5, \times, +\}$

2 If A = {1, 5, 6, 8} and B = {1, 2, 4, 5, 9}, find:
a A ∪ B
b A ∩ B
3 If P = {2, 5, 7, 9} and Q = {3, 6, 7, 11, 13}, find:
a P ∪ Q
b P ∩ Q.
4 If R = {6, 8, 10, 12} and S = {5, 7, 9, 11, 13}, find:
a R ∪ S
b R ∩ S.

VENN DIAGRAMS

In any problem dealing with sets:


The universal set is the set which contains all of the elements we are considering.

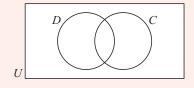
For example, consider the set $A = \{2, 5, 7\}$, which is a subset of the set of all single digit numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

In this case the universal set is $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

A **Venn diagram** shows the relationship between sets. The universal set is represented by a rectangle and the other sets are represented by circles within it.

For $A = \{2, 5, 7\}$ and $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, the Venn diagram is:

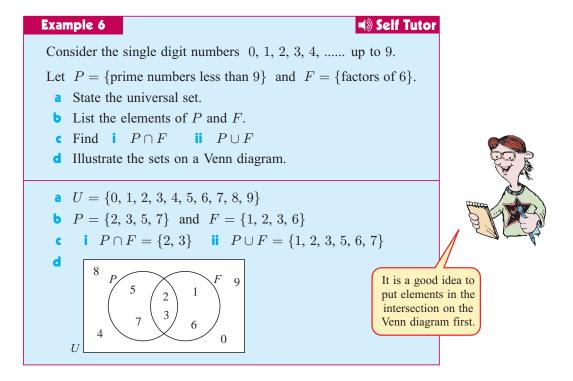
ACTIVITY


VENN DIAGRAMS

DEMO

Click on the icon to load a demonstration of a Venn diagram. 20 people are asked whether they own a cat or a dog or both. The information is sorted onto a **Venn diagram** which consists of two overlapping circles within a rectangle.

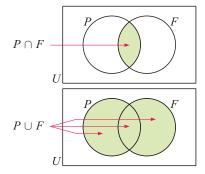
Circle D represents the people who own a dog and circle C represents the people who own a cat. The circles overlap because some people own both a cat *and* a dog.



What to do:

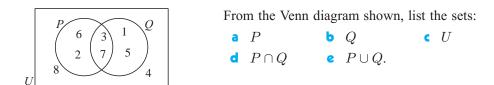
- 1 Start the demonstration. Press continue to see how each person's response is added to the diagram.
- 2 Identify which region of the Venn diagram represents people who own:
 - a dog
- a cat

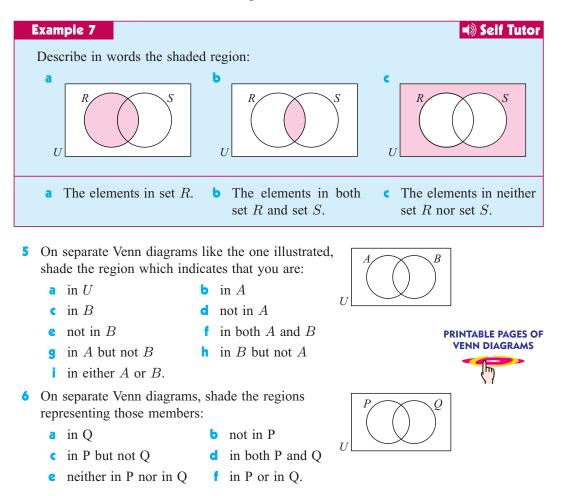
- a dog and a cat
- neither a dog nor a cat a dog but not a cat
- a cat but not a dog


• a dog or a cat

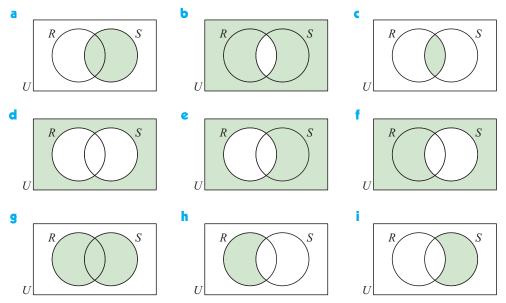
From **Example 6** we can see that the **intersection** of two sets is represented by the intersection or overlap of the two circles.

The union of the two sets is shown in the second Venn diagram alongside.


An element in the union could be in one set or the other or in both sets. It must lie within at least one of the circles.


EXERCISE 23D

- 1 Consider the sets $U = \{0, 1, 2, 3, \dots, 9\}, A = \{3, 5, 6, 7, 9\}, and B = \{1, 4, 6, 8, 9\}.$
 - **a** Find: **i** $A \cap B$ **ii** $A \cup B$
 - **b** Illustrate the sets on a Venn diagram.


2

- 3 $U = \{1, 2, 3, 4, 5, 6, \dots, 17\}, M = \{$ multiples of 3 which are less than 16 $\},$ and $F = \{$ factors of 15 $\}.$
 - **a** List the elements of M and F.
 - **b** Find: **i** $M \cap F$ **ii** $M \cup F$ **iii** $n(M \cap F)$ **iv** $n(M \cup F)$
 - Illustrate the sets on a Venn diagram.
- 4 Suppose $U = \{a, b, c, d, e, f, g, h, i, j, k\}$, $A = \{b, c, e, g, i, k\}$ and $B = \{a, b, d, e, f, g, k\}$.
 - **a** List the sets: **i** $A \cap B$ **ii** $A \cup B$
 - **b** Illustrate the sets on a Venn diagram.

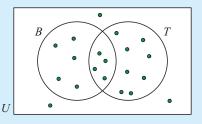
7 Describe in words the shaded region:

Example 8

The Venn diagram shows the sports played by the students in a class. Each dot represents one person. B represents the students who play basketball and T represents the students who play tennis.

a How many students are there in the class?

(8)


• How many students play:

(5) ((4)

U

Ь

- i basketball
- iii basketball and tennis
- **v** basketball but not tennis

Self Tutor

- tennis
- iv neither basketball nor tennis
- vi basketball or tennis?

The numbers in brackets are counts for each region.

The (3) means that 3 students were not in either set *B* or *T*.

a There are 5+4+8+3=20 students in the class.

(3)

- i There are 5+4=9 students who play basketball.
 - ii There are 4+8=12 students who play tennis.
 - iii There are 4 students who play basketball and tennis.
 - iv There are 3 students who play neither sport.
 - ♥ 5 students play basketball but not tennis.
 - vi 5+4+8=17 play basketball or tennis.

- 8 Suppose $U = \{ all letters of the English alphabet \}, A = \{a, d, m, n, p, x, z\}$ and $B = \{b, c, d, f, h, n, q, y, z\}.$
 - **a** Display A, B and U on a Venn diagram.
 - **b** Shade the region represented by A in blue.
 - Shade the region represented by B in yellow.
 - What are the elements of $A \cap B$?
 - In words, what is represented by the unshaded region?
- **9** The Venn diagram represents the people at a conference.
 - J represents those who understand Japanese.
 - F represents those who understand French.
 - **a** How many people are at the conference?
 - **b** How many people at the conference understand:
 - Japanese
 - **iii** both Japanese and French
 - **v** neither Japanese nor French
- **10** A youth club in Xi'an has 32 members. The Venn diagram alongside shows those who play badminton (B)and tabletennis (T).
 - **a** Find x.
 - **b** How many of the club's members play:
 - badminton table tennis badminton but not table tennis **iv** both of the sports v neither of the sports?

KEY WORDS USED IN THIS CHAPTER

element

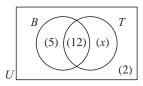
• subset

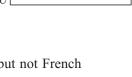
empty set • member

union

- intersection
- Venn diagram

REVIEW SET 23A


- 1 Using set notation, list the elements of the set of all:
 - **a** multiples of 8 which are less than 50 **b** prime numbers between 25 and 40.
- **2** Let $A = \{$ even numbers between 25 and 35 $\}$.
 - **a** List the elements of A. **b** Find n(A).
- **3** Suppose $A = \{2, 4, 6, 11\}$ and $B = \{3, 6, 9, 15\}$. Find the possible values of x for which:
 - **a** $x \in A$ and $x \in B$
 - **c** $x \in B$ and $x 2 \in A$

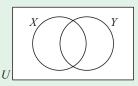

- equal sets
- set

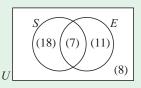
b $x \in A$ and $x + 3 \in B$

universal set

- (29)((11))(20)(10)
- French
- **iv** Japanese but not French
- vi Japanese or French?

- **4** Suppose $C = \{1, 6, 7, x, 8\}$ and $D = \{7, y, 8, 1, 4\}$. If C = D, find x and y.
- **5** True or false?
 - **a** {multiples of 4 less than 30} \subseteq {positive even numbers less than 30}
 - **b** {prime numbers} \subseteq {odd numbers}
- **6** Suppose $U = \{1, 2, 3, ..., 20\}$, $E = \{\text{positive even numbers less than 20}\}$ and $F = \{\text{factors of 20}\}$.
 - **a** List the elements of the sets: **i** E **ii** F **iii** $E \cap F$ **iv** $E \cup F$
 - **b** Illustrate the sets on a Venn diagram.
- **7** Suppose $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{2, 3, 6, 8, 9\}$ and $B = \{1, 3, 5, 7, 8\}$.
 - **a** Illustrate A, B and U on a Venn diagram.
 - **b** Find: **i** $A \cap B$ **ii** $A \cup B$ **iii** $n(A \cap B)$ **iv** $n(A \cup B)$.
- **8** On separate Venn diagrams, shade the regions representing:
 - **a** in X **b** not in Y
 - **c** in both X and Y **d** in neither X nor Y.
- **9** The Venn diagram represents the people attending a convention on climate control.

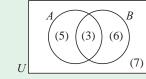

S represents all the scientists and E represents all the environmentalists.


- **a** How many people are at the convention?
- **b** How many people at the convention are:
 - i scientists
 - iii both scientists and environmentalists
 - iv neither scientists not environmentalists
 - environmentalists but not scientists?

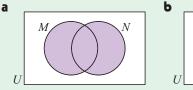
REVIEW SET 23B

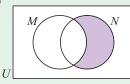
- **1** Using set notation, list the elements of the set of all:
 - **a** square numbers between 10 and 60
- **2** Which of the following are true?
 - **a** $23 \in \{\text{prime numbers less than } 20\}$
 - **c** $63 \in \{\text{multiples of } 7\}$
- **3** Let $M = \{$ multiples of 3 less than 40 $\}$ and $N = \{$ multiples of 4 less than 40 $\}$.
 - **a** List the sets M and N.
 - Copy and complete: {multiples of 3} \cap {multiples of 4} = {multiples of}

b Find $M \cap N$.

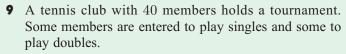


ii environmentalists

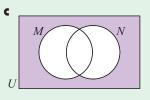

- **b** factors of 18.
- **b** $36 \notin \{\text{square numbers}\}$

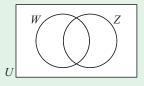

- 4 If $K = \{1, 5, 7, 9\}$, list all the subsets of K which contain:
 - **a** two elements

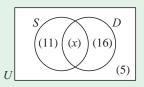
- **b** three elements.
- **5** For the Venn diagram shown, find:
 - a n(A) b n(B)
 - c $n(A \cap B)$ d $n(A \cup B)$
 - e n(U)



- 6 Consider the positive integers 1, 2, 3,, 12. Let $F = \{\text{factors of } 12\}$ and $P = \{\text{prime numbers less than } 12\}$. Represent these two sets on a Venn diagram.
- 7 What is represented by these shaded regions?

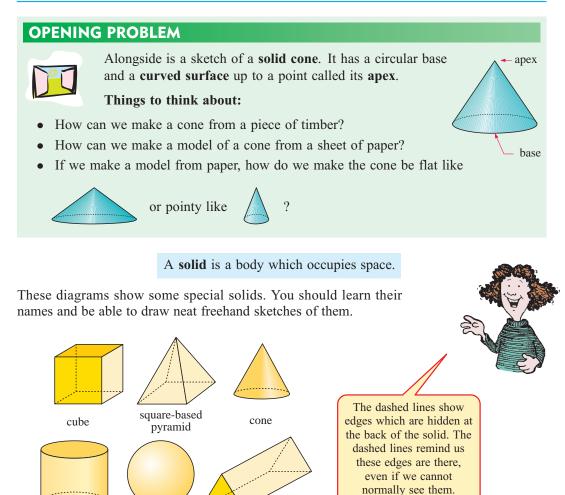



- 8 On separate Venn diagrams, shade the regions represented by:
 - **a** in Z
 - **c** in W or in Z



- **a** Find the value of x.
- **b** How many members are entered to play:
 - i singles ii doubles
 - iii both singles and doubles iv singles but not doubles
 - **v** at least one of the events **vi** exactly one of the events?

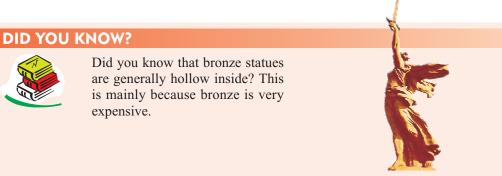
b in W and in Z



Solids and polyhedra

- A Types of solids
- **B** Freehand drawings of solids
- **C** Isometric projections
- D Constructing block solids
- E Nets of solids

cylinder sphere


The boundaries of a solid are called **surfaces**. These surfaces may be flat surfaces, curved surfaces, or a mixture of both.

Which of the above solids have only flat surfaces, only curved surfaces or a combination of both types?

triangular prism

DEMO

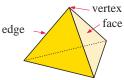
Click on the icon to obtain models of the solids above. Rotate them to help you appreciate their 3-dimensional nature.

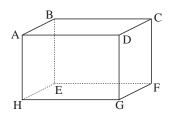
TYPES OF SOLIDS

POLYHEDRA

A **polyhedron** is a solid which contains all flat surfaces. The plural of polyhedron is **polyhedra**.

Cubes and pyramids are examples of polyhedra. Spheres and cylinders are not.

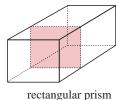

Each flat surface of a polyhedron is called a **face** and has the shape of a polygon. Each corner point of a polyhedron is called a **vertex**. Each intersection of two faces is called an **edge**.

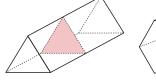

The solid opposite is a triangular-based pyramid, often called a **tetrahedron**.

Labelling a figure helps describe its features. For example:


A, B, C, D, E, F, G and H are all vertices of this polyhedron. ABCD is one face. There are five other faces.

[AB] is one edge. There are eleven other edges.





PRISMS

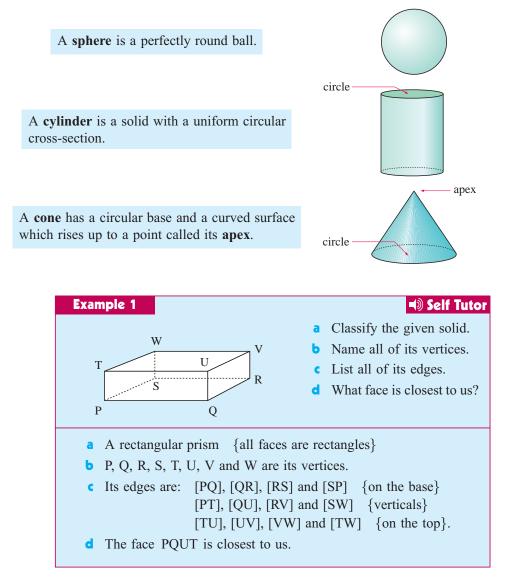
Examples of prisms:

triangular prism

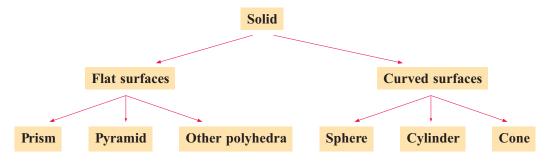
A **cube** is a rectangular prism with 6 square faces. All of its edges are the same length.

PYRAMIDS

A **pyramid** is a solid with a polygon for a base, and triangular faces which come from the base to meet at a point called the **apex**.


Examples of pyramids:

square-based pyramid


triangular-based pyramid

SOLIDS WITH CURVED SURFACES

CLASSIFYING SOLIDS

The following flowchart gives us a way of classifying solids:

EXERCISE 24A 1 Draw a neat diagram to represent a: a cube **c** cylinder **b** cone f triangular-based pyramid **d** sphere *e* rectangular prism **2** Name the shape which best resembles: a a basketball the top part of a funnel **c** Ь a tennis ball container **d** a six-faced die a cereal box f a broom handle e **3** Classify these solids: d Ь a C h f e g i. i В С **a** Name all the vertices of this cube. 4 Name all of its faces. Ь A D • Name all of its edges. E Η G **5** What shapes are the side faces of: a a prism **b** a pyramid? For the given pyramid, name and count the: 6 Е a faces **b** vertices c edges. D C A

В

FREEHAND DRAWINGS OF SOLIDS

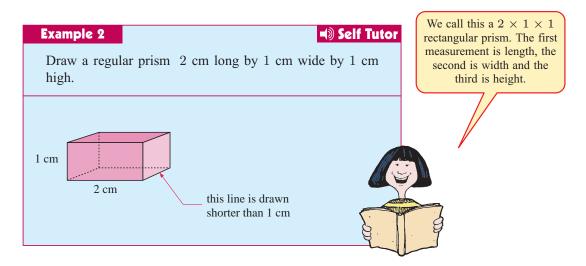
Making freehand sketches of special solids is not easy. Following are step by step instructions on how to do them accurately.

RECTANGULAR PRISM

Step 1:

P

Draw a rectangle for the **front face**.



From each of the vertices draw lines back to create the edges. Their lengths are drawn slightly shorter than their real length to give perspective.

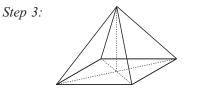
Step 3:

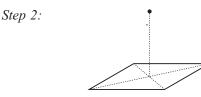
Complete the drawing by joining the appropriate vertices. Use dotted lines for the hidden edges.

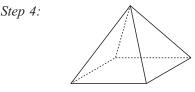
PYRAMIDS

In the picture of the pyramid alongside, only five edges, four vertices and two faces can be seen.

In fact, this pyramid has a square base and four triangular faces.


To draw a pyramid we use the following steps:


Step 1:


Draw a parallelogram to represent the base.

Join each vertex of the base to the apex to complete the pyramid.

To find the centre of the parallelogram, draw its diagonals and find their point of intersection. Draw a point above the centre to represent the **apex** of the pyramid.

Looking at the picture of the pyramid above, not all edges can be seen at the one time. We show hidden edges as dotted lines.

CYLINDERS

You are probably familiar with cylinders such as tin cans. You would be aware that their top and bottom is a circle, but when we look at it on an angle it will *appear* as an **ellipse** or oval.

To draw a cylinder we use the following steps.

Step 1:

Draw the sides of

the cylinder from

the "ends" of the

Step	3:	
	<	

Complete the cylinder

by drawing another

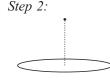
ellipse on the top.

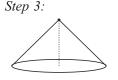
We use a dashed

curve to show the part of the base that is hidden.

CONES

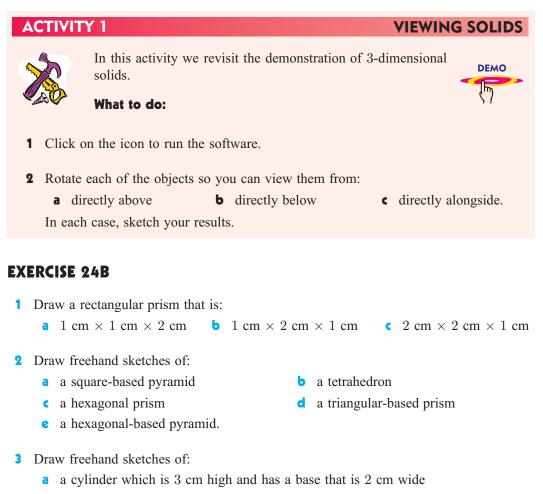
Draw an ellipse to


represent the base.

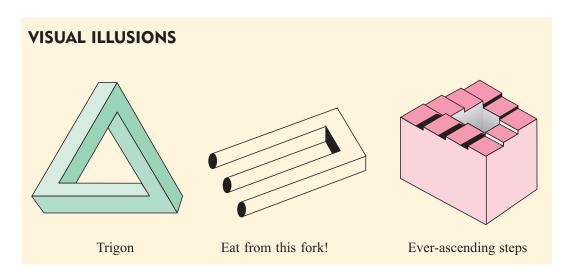

Just like a cylinder, we represent the circular base of a cone using an ellipse.

To draw a cone we use the following steps:

ellipse.

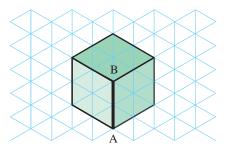


Draw an ellipse to represent the base.


Mark a point directly above the centre of the ellipse. This will be the apex of the cone. Join the "ends" of the ellipse to the apex to complete the cone.

We use a dashed curve to show the part of the base that is hidden.

- **b** a cone which is 4 cm high and has a base that is 3 cm wide.
- 4 Sketch a sphere. Use shading to show how it curves.



С

ISOMETRIC PROJECTIONS

When drawing a rectangular object, we can also use an **isometric projection**. This uses special graph paper made up of equilateral triangles.

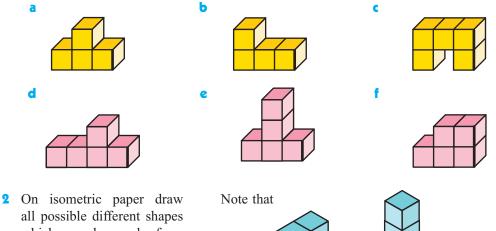
The diagram alongside shows the isometric projection of a cube. The edge [AB] appears closest to us, and this is often the **starting edge** of the figure, or the first edge drawn.

Self Tutor

PRINTABLE

ISOMETRIC PAPER

are the same.

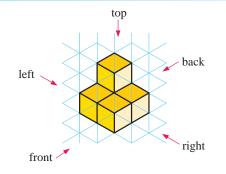

and

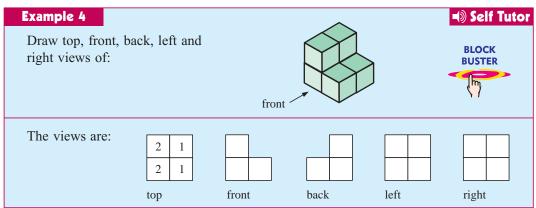
Example 3

On isometric graph paper, draw the only two different shapes which can be made from three cubes of the same size and which have at least one face in full contact with one of the other cubes.

EXERCISE 24C

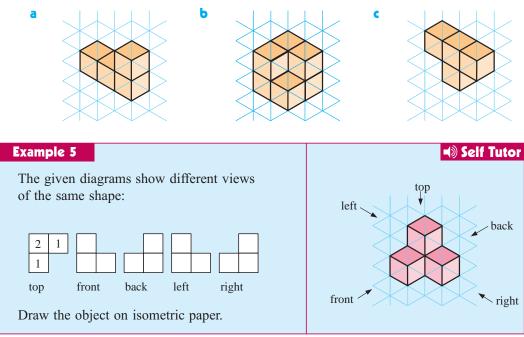
1 Redraw the following figures on isometric graph paper:

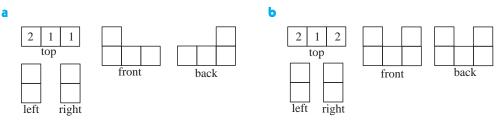

all possible different shapes which can be made from four cubes of the same size and which have at least one face in full contact with one of the other cubes.


CONSTRUCTING BLOCK SOLIDS

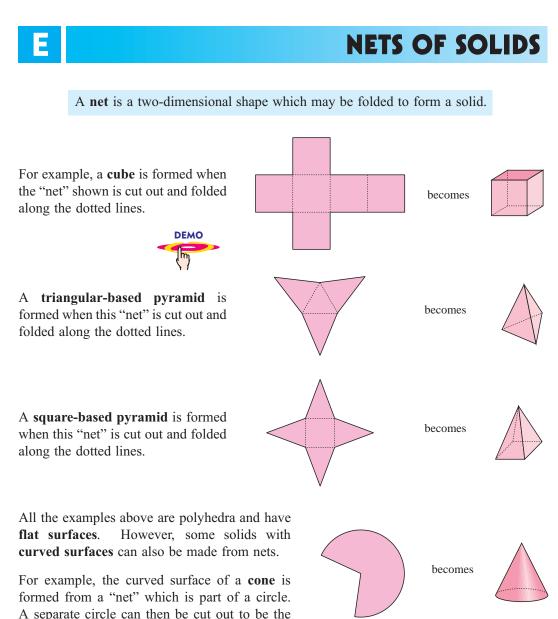
When an architect draws plans of a building, separate drawings are made from several viewing directions.

Given a drawing on isometric graph paper, there are 5 directions we consider:


The top view is also called the **plan**. We use numbers on the plan to indicate the height of each pile.


EXERCISE 24D

1 Draw top, front, back, left and right views of:



2 Draw the 3-dimensional object whose views are:

base of the cone.

3 Draw four different objects made from five cubes whose view from the top is They must be free standing and not glued together.

ACTIVITY 2

X

Click on the solid for which you want a printable net. If possible print it on light card rather than ordinary paper.

What to do:

- **1** Construct the solids from the nets provided.
- **2** Make a mobile from the solids to hang in your classroom.

EXERCISE 24E

1 Match the net given in the first column with the correct solid and the correct name:

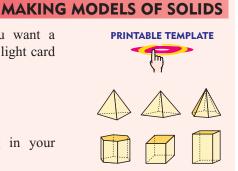
	Net		Solid	Name
a		A		(1) Pentagonal-based pyramid
ь		В	$() \qquad ()$	(2) Triangular prism
c		С	\bigwedge	(3) Square-based pyramid
d		D		(4) Cylinder

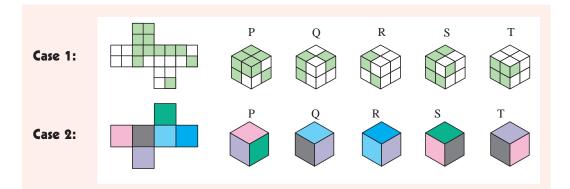
2 Click on the icon to obtain nets for the solids in 1. They have extra tabs to help you glue the solid together.

Is

a possible net for a triangular-based pyramid?

ACTIVITY 3


WHICH CUBE IS IT?



What to do:

For each of the cases following:

- 1 Carefully study the nets and the sets of cubes given.
- **2** Determine which cube can be made from the net and write down your answer.
- Construct an actual net showing the exact same patterns on the faces. Make the cube and hence check your answer to 2.

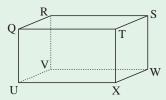
KEY WORDS USED IN THIS CHAPTER

- apex
- cylinder
- isometric projection
- prism
- sphere
- triangular prism

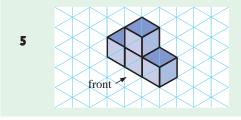
- cone
- edge
- net
- pyramid
- square-based pyramid
 - vertex

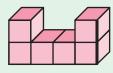
• cube

- face
- polyhedron
- solid
- tetrahedron



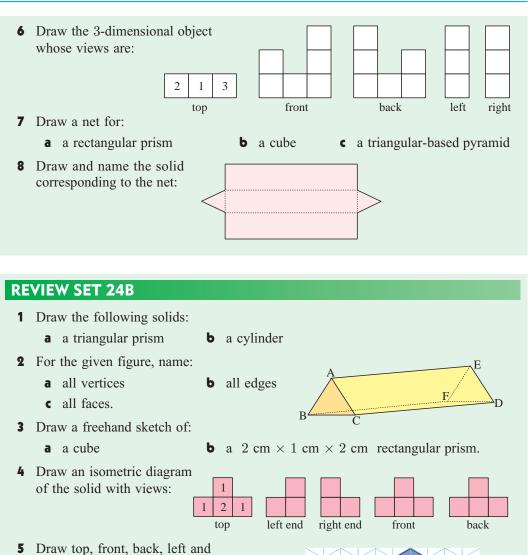
PLATONIC SOLIDS


Areas of interaction: Human ingenuity, Approaches to learning


REVIEW SET 24A

- **1** Draw the following solids:
 - **a** a cube **b** a cone.
- **2** For the rectangular prism shown, name all of the:
 - a vertices **b** faces **c** edges.

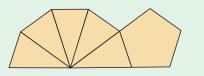
- **3** Draw a freehand sketch of a cylinder which is 45 mm high and has a base 12 mm wide.
- **4** Draw the following object as an isometric projection:



For the solid shown, draw views from the:

- a top b left
- c right d front
- e back.
 - ck.

450 SOLIDS AND POLYHEDRA (Chapter 24)



- 6 On isometric graph paper, draw 5 of the possible arrangements of 4 identical blocks
- where every block is in full contact with at least one full face of another block.

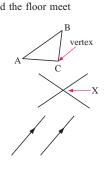
7 Draw a net for:

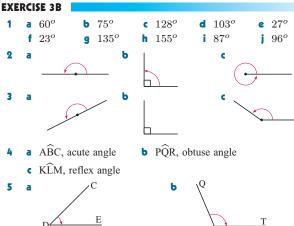
right views of:

- **a** a cone **b** a square-based pyramid.
- 8 Draw and name the solid which corresponds to the following net:

front <

EXE	RCISE	E 1A.1				EXERCISE 1B
1	a 2	7 b 000	00000		1111	1 a 8 b 80 c 8 d 800 e 80 f 8000 g 800
			$\leq /// $			h 8000 i 8 j 80000 k 8000 l 80000 2 a 3 thousands, 5 ten thousands, 8 tens
2	a 3					 a 5 thousands, 5 ten flousands, 8 tens b 3 thousands, 5 hundreds, 8 tens
_		1A.2	1120 120			c 3 units, 5 ten thousands, 8 tens
1			04 d 3240	e 723	f 5259	d 3 hundreds, 5 thousands, 8 hundred thousands 3 a 864 b 974 210 c 997 722
2	a			$ \Delta $		d 345, 354, 435, 453, 534, 543 (6 numbers)
	d	т <u>а</u> т ХХ э Пан		∧∥ f		4 a 8, 16, 19, 54, 57, 75 b 6, 60, 600, 606, 660
	I			11		c 1008, 1080, 1800, 1808, 1880
EXE		1A.3	d 31 e	110 6 9	1 - 195	d 40 561, 45 061, 46 051, 46 501, 46 510 e 207 653, 227 635, 236 705, 265 703
	a 8 h 2		1156 k 550	110 f 81 0605 l 7	1 g 125 720 m 419	f 545 922, 554 922, 594 522, 595 242
		55 501 • 2 30				5 a 631, 613, 361, 316, 163, 136
2				CCLXXIX MMDLI		 b 9877, 9787, 8977, 8779, 7987, 7897, 7789 c 498 321, 498 231, 492 813, 428 931, 428 391
3		8 = LXXXVIII			CMXCIX	d 675 034, 673 540, 607 543, 576 304, 563 074
4	a I	OCCVIII swords	b MCC2	KCIV denari	i	6 a 86 b 674 c 9638 d 50 240 e 27 003 f 73 298 g 500 375 h 809 302
		1A. 4				7 a $9 \times 100 + 7 \times 10 + 5 \times 1$ b $6 \times 100 + 8 \times 10$
1	a	•	b	c	••••	c $3 \times 1000 + 8 \times 100 + 7 \times 10 + 4 \times 1$ d $9 \times 1000 + 8 \times 10 + 3 \times 1$
	d		e —		_	e $5 \times 1000 + 6 \times 100 + 7 \times 10 + 4 \times 10 + 2 \times 1$
	u	—	•		•••	f $7 \times 10000 + 5 \times 1000 + 7 \times 1$ g $6 \times 100000 + 8 \times 100 + 2 \times 10 + 9 \times 1$
2	a 1	4 b 120 c	218 d 168	e 313	f 380	h $3 \times 100000 + 5 \times 10000 + 4 \times 1000 + 7 \times 100 + 1 \times 10 + 8 \times 100000 + 5 \times 100000 + 4 \times 1000 + 7 \times 100 + 1 \times 10 + 8 \times 100000 + 100000000 + 100000000 + 100000000000000000000000000000$
EXE	RCISE	1A.5				8 a 27 b 80 c 608 d 1016 e 8200 f 19538
1	a 7	65 b 3248	c 9999			g 75403 h 602818 9 a 7 b 13 c 21 d 299 e 4007 f 9997
2	а	巴	• ^	C _	1	g 400 004 h 209 026
		百	Ŧ	_	<u>F</u>	10 a 1000 times larger b 1000 times smaller
		h		ī	<u>5</u>	• The 4 which is left of the second 7. 100 times larger.
		1	百	-	<u></u> +	
		t		-	7	1 a 80 b 50 000 000 c 600 d 400 000 e 70 000 f 2
3		words	HindArab.	Roman	$\begin{array}{c} Egypt. \\ \land \land \land \land \\ \end{array}$	 a 3 000 000, 600 000, 40 000, 8000, 500, 90, 7 b 30 000 000, 4 000 000, 800 000, 60 000, 5000, 200, 70, 1
	a	thirty seven	37	XXXVII		3 a 37 000 000 b 200 000 000, 17 000 000
	Ь	one hundred and four	104	CIV	9111	c 150 000 000 d \$111 240 463.10 e 21 240 657 f 415 000 000 g 1 048 576 bytes
	c	one hundred	159	CLIX	20000	4 Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
		and fifty nine	80	LVVV		Pluto
	d	eighty	80	LXXX		5 a i Asia ii Africa, Asia, North Americab Antarctica, Australia
		words	Mayan	hinese panese		REVIEW SET 1A
	a	thirty seven	•	= +		1 a 165 b 2634
	a	unity seven	<u> </u>	t		² ^a AAIIIIII ^b 99999AAAAAAIIIIIIII
	ь	one hundred	<u> </u>	T		3 a 18 b 79 4 MMXII 5 a ·· b
		and four				6 a 476 b 359 ·
	c	one hundred	·	百 五		7 a 400 b 40000 8 a 800 b 800000 9 87410
		and fifty nine	<u> </u>			10 79 562, 96 572, 569 207, 652 097, 795 602 11 2497
	d	eighty		^ +		12 17 304 13 4 000 000, 500 000, 30 000, 2000, 600, 80, 1
l						14 9 984 700 square kilometres

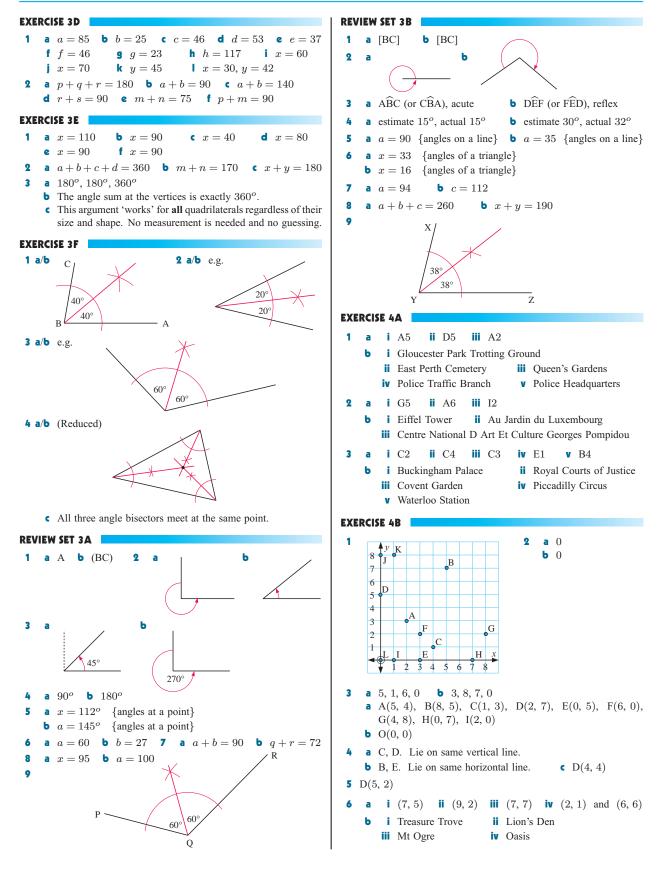

REVIEW SET 1B	EXERCISE 2C
$^{1} \bullet PAAC \to HHAAAC$	1 \$26 2 RM 201 3 11 oranges 4 54 5 £11
2 a 253 b 122305 3 CLXXVIII	6 €30 7 \$1.44 8 \$1860 9 €743
4 a ≛ b − 5 a 70 b 7000	10 No, he was €10 short. 11 \$550 12 60 km 13 600 g
$\vec{a} = \frac{f}{16} \vec{b} \cdot \vec{b} $	EXERCISE 2D
$\begin{array}{cccc} t & \underline{b} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$	1 a 1 i i i i i i i i i
8 a $2 \times 1000 + 1 \times 100 + 5 \times 10 + 9 \times 1$ b $3 \times 100\ 000 + 6 \times 1000 + 4 \times 100 + 2 \times 10 + 8 \times 1$	b 1 0 13 14 15 16 18 19 20
9 a 23 b 991	
10 30 000, 7 000 000, 400 000, 5000, 900, 20, 2	
11 5 890 000 km 12 a 2 billion b 2000 13 a 1000 times b 10 times c the first 6; 10 times	d 0 25 75 100 125 200 250
EXERCISE 2A.1	
1 a 807 b 1330 c 3995 d 1644 e 1597	2 a $3+6+9=18$ b $11+9-13=7$
f 13059	20 + 30 - 10 - 10 - 10 - 10 - 10 = 0
2 a 79 b 107 c 748 d 696 e 2155 f 6565 g 814 h 4955 i 4619	d $250 + 400 - 350 = 300$ e $70 - 40 + 20 = 50$
3 a 82 b 44 c 109 d 453 e 665 f 3656	f $17 - 4 - 4 - 4 - 5 + 4 = 4$
4 a 34 b 48 c 6 d 22 e 182 f 476 g 376 h 3767	
EXERCISE 2A.2	9 + 8 - 6 = 11
1 22 m 2 \$432 3 6 kg 4 €41 5 22	b
6 3923 km 7 1178 cm	$\begin{array}{c} \bullet & \bullet & \bullet \\ 0 & & 10 & 20 \\ 2+4+8-2 = 12 & & \end{array}$
EXERCISE 2B.1	2+4+8-2=12
1 a 500 b 5000 c 50000 d 6900 e 69000 f 690000 g 12300 h 246000	
i 96 000 j 490 000 k 49 000 l 490 000	40 + 70 + 90 - 50 = 150
2 a 120 b 148 c 496 d 1272 e 405	d
f 2744 g 14580 h 23112 i 5754 j 45026	
k 10413 26864	55 + 60 + 75 - 40 = 150
EXERCISE 2B.2 1 a 200 b 20 c 2 d 5700 e 570	
f 57 g 24300 h 2430 i 243 j 4500	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
k 450 l 45 m 72 000 n 7200 o 720	
p 600 000 q 60 000 r 6000	
2 a 14 b 54 c 21 d 75 e 901 f 619 3 a 6 b 25 c 52 d 48 e 208 f 817	$4 \times 6 \div 5 = 4$ remainder 4
EXERCISE 2B.3	EXERCISE 2E.1
1 1000 hours 2 10 000 hours 3 90 4 \$80 5 82 min	1 a 20 b 50 c 70 d 80 e 90 f 200 g 460
6 2450 mm 7 672 km 8 81 min 9 20 000 hours	h 790 i 1730 j 2800 k 3950 l 6980 2 a 40 b 70 c 90 or 100 d 130 e 460
10 20 of them 11 240 bags	f 730 or 740 g 820 h 1220 or 1230 i 6740
12 a 20 000 b 4000 c 2500 d 500 e 10 000 f 12 500 g 8000 h 25 000	3 a 20 b 40 c 50 d 70 e 100 f 210 g 310
	h 500 i 890 j 3660 k 7440 l 8710 m 9610 n 14080 o 30120 p 47780 q 69570 r 70100
EXERCISE 2B.4 1 a $375 + 836 \approx 1200$ b $79 \times 8 \approx 640$	4 a 100 b 300 c 800 d 1700 e 3000 or 3100
c $978 - 463 = 515$ d $7980 \div 20 \approx 400$	f 6200
e $455 + 544 = 999$ f $50 \times 400 = 20000$	5 a 500 b 7600 c 3000 6 a 100 b 200 c 600 d 800 e 1100
g $2000 - 1010 = 990$ h $3000 \div 300 = 10$	f 2700 g 7000 h 13200 i 27700 j 38500
2 a $5268 - 3179 < 4169$ b $29 \times 30 < 900$ c $672 + 762 < 1444$ d $720 \div 80 > 8$	k 55 400 l 85 100
e $20 \times 80 > 160$ f $700 \times 80 > 54000$	7 a 1000 b 0 c 1000 d 5000 e 8000 f 7000 g 10000 h 9000 i 13000 j 8000 k 246000
g $5649 + 7205 > 12844$ h $6060 - 606 > 5444$	3 10 000 11 5000 11 15 000 1 15 000 1 240 000

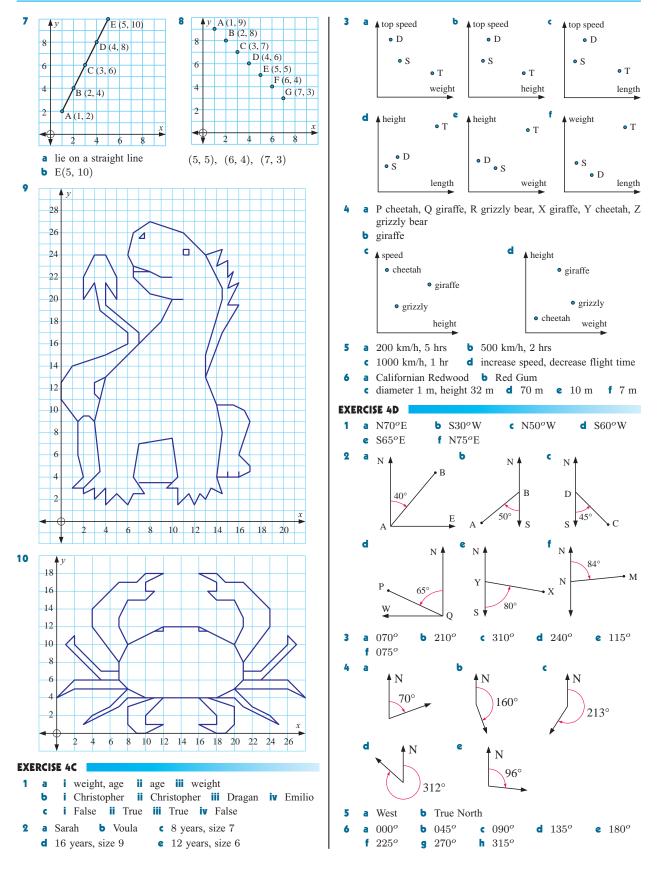

EXERCISE 3A

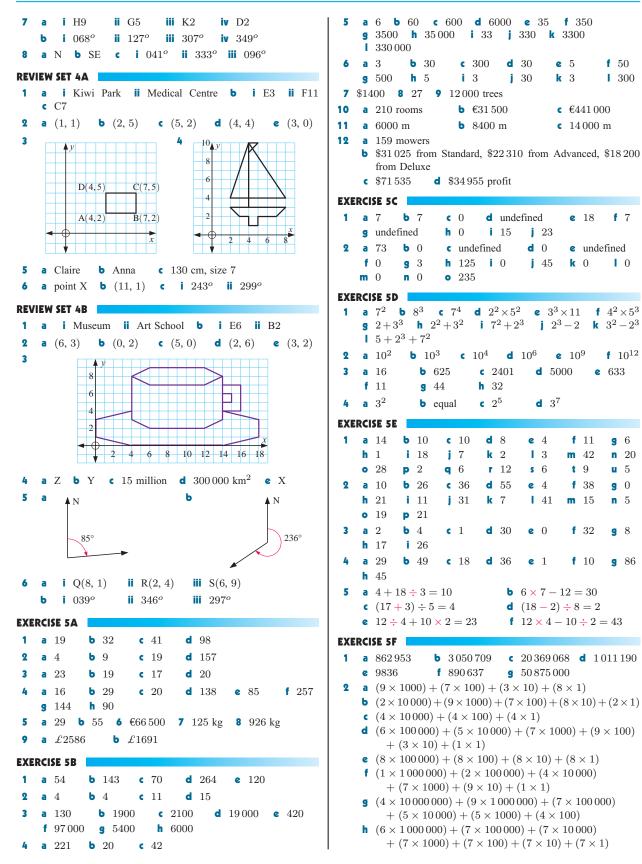
3

- **a** (1) a speck of dust
 - (2) corner where two walls and the floor meet
 - b (1) where two walls meet(2) bottom of blackboard
- A vertex is a corner point of figure A, B and C are all vertices.
- **b** A point of intersection is the point where two lines meet.
- **c** Two lines which are always the same distance apart.

- **a** (LM) or (ML) **b** (CD), (CE), (DE), (DC), (EC), (ED)
- **a** B **b** C **5 a** B **b** [AB]
- a Q b [QR] c [QR]




- $\begin{array}{c} \mathbf{c} \\ \mathbf{m} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{r} \\ \mathbf{$
- **a** $\widehat{BAC} = 83^{\circ}$, $\widehat{ACB} = 31^{\circ}$, $\widehat{ABC} = 66^{\circ}$
 - **b** $\widehat{\text{FDE}} = 119^{\circ}, \ \widehat{\text{DEF}} = 32^{\circ}, \ \widehat{\text{DFE}} = 29^{\circ}$
 - **c** $A\widehat{B}C = 94^{\circ}$, $B\widehat{C}D = 78^{\circ}$, $C\widehat{D}A = 78^{\circ}$, $D\widehat{A}B = 110^{\circ}$
 - **d** $P\widehat{Q}R = 54^{\circ}$, $Q\widehat{R}S = 127^{\circ}$, $R\widehat{S}T = 127^{\circ}$, $S\widehat{T}P = 91^{\circ}$, $T\widehat{P}Q = 141^{\circ}$
- 7 Your answer might look like this:

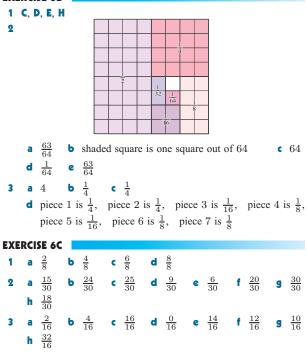

	Estimate	Actual
а	50^{o}	53°
b	90°	92 ^o
C	20^{o}	17^{o}

9 ABC is larger as its degree measure is larger.

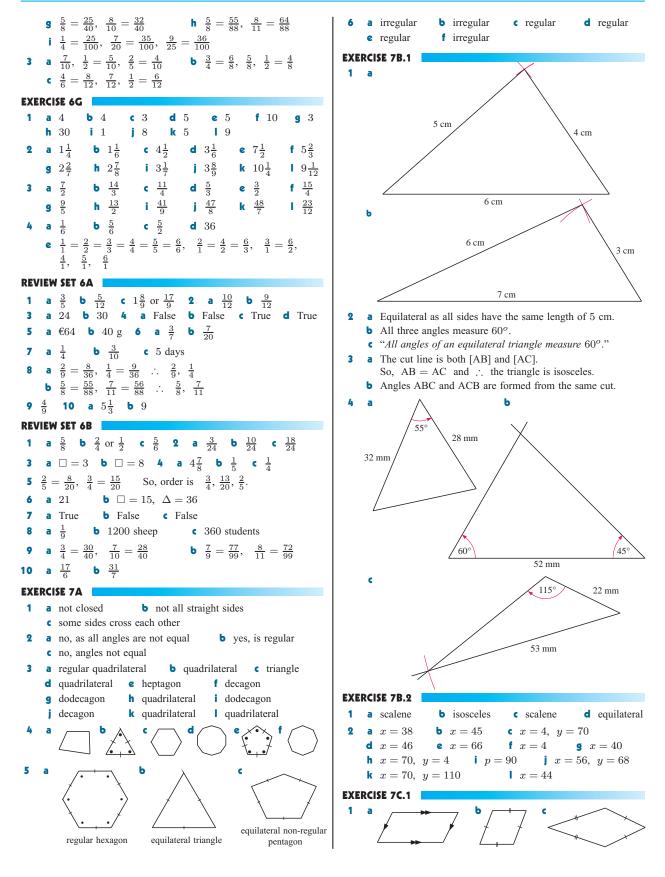
EXE	RCISE 3C			
1	a $x=25$	b $y = 45$	c $a = 30$	d $n = 107$
	p = 50	f $x = 60$	g $x = 90$	h $b = 45$
	m = 36			
2	a $a = 270$	b $b = 120$	c = 318	d $d = 89$
	e = 120	f $f = 81$	g $x = 90$	h $y = 135$
	x = 148	g = 112	k $h = 95$	i = 67

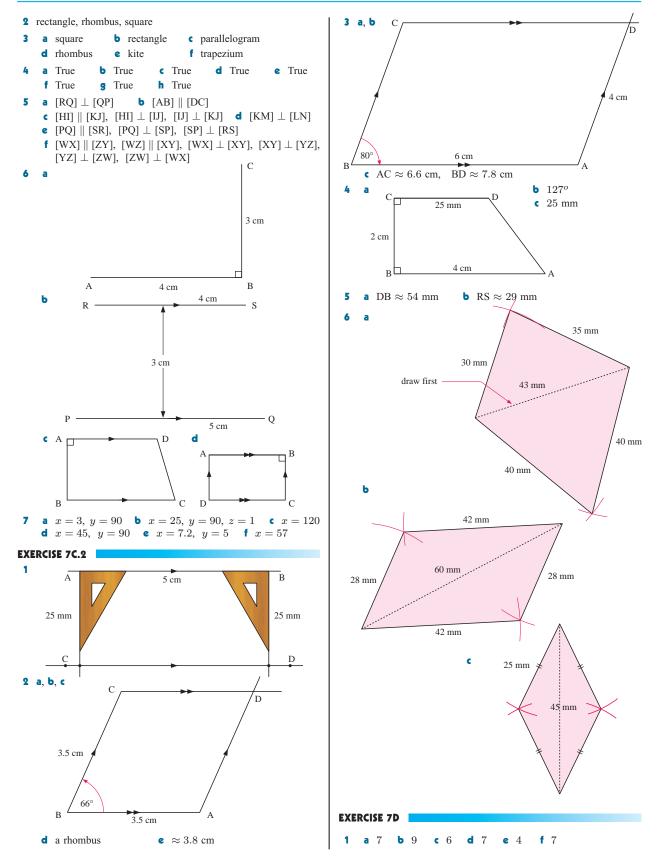
3 a $(6 \times 10^2) + (5 \times 10^1) + (8 \times 1)$ **b** $(3 \times 10^3) + (8 \times 10^2) + (7 \times 10^1) + (4 \times 1)$ 6 $(9 \times 10^4) + (5 \times 10^3) + (6 \times 10^2) + (3 \times 10^1) + (6 \times 1)$ 7 **d** $(1 \times 10^5) + (1 \times 10^2)$ $(5 \times 10^5) + (5 \times 10^3) + (7 \times 10^2) + (5 \times 10^1)$ f $(1 \times 10^6) + (2 \times 10^5) + (7 \times 10^4) + (4 \times 10^3)$ $+ (9 \times 10^{2}) + (4 \times 10^{1}) + (7 \times 1)$ **g** $(3 \times 10^7) + (6 \times 10^6) + (6 \times 10^5)$ **h** $(4 \times 10^6) + (2 \times 10^5) + (9 \times 10^4) + (3 \times 10^3)$ $+ (3 \times 10^2) + (7 \times 10^1) + (5 \times 1)$ i $(4 \times 10^5) + (6 \times 10^2) + (8 \times 10^1) + (7 \times 1)$ $(2 \times 10^7) + (3 \times 10^6) + (6 \times 10^5) + (9 \times 10^4)$ $+(7 \times 10^3) + (5 \times 10^2)$ 2 EXERCISE 5G 1 **a** 16 **b** 25 **c** 49 **d** 100 **e** 20 **f** 36 **g** 21 **h** 9 2 **a** 0, 1, 4, 5, 6, 9 b no 3 **b** 4 **c** 6 **d** 9 **a** 1 **e** 12 4 a 7 **b** 8 **c** 10 **d** 0 **e** 20 5 5 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000 **b** 120 **c** 72 6 **a** 4 **d** 294 7 а 1 4³ blocks 2 **b** Each block is n units long $\times n$ units wide $\times n$ units high $= n \times n \times n$ $= n^3$ **a** 3 **b** 4 **c** 5 **d** 10 2 91 **EXERCISE 5H a i** 1, 2 **ii** 1, 3 **iii** 1, 2, 4 **iv** 1, 5 **v** 1, 7 1 vi 1, 2, 4, 8 vii 1, 3, 9 viii 1, 2, 5, 10 ix 1, 11 **x** 1, 13 **xi** 1, 2, 7, 14 **xii** 1, 3, 5, 15 **xiii** 1, 2, 4, 8, 16 **xiv** 1, 17 **xv** 1, 2, 3, 6, 9, 18 xvi 1, 19 xvii 1, 2, 4, 5, 10, 20 xviii 1, 3, 7, 21 **b** 2, 3, 5, 7, 11, 13, 17, 19 **c i** 6, 8, 10, 14, 15, 21 **i** 12, 16, 18, 20 6 **2** a 1, 23 **b** 1, 2, 3, 4, 6, 8, 12, 24 **10** 25 **c** 1, 2, 4, 5, 10, 20, 25, 50, 100 15 **d** 1, 3, 5, 9, 15, 45 e 1, 2, 4, 8, 16, 32, 64 17 **f** 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 **a** 8, 10, 12 **b** 17, 19, 21, 23, 25 3 **a** 2 and 8 **b** 1 and 19, 3 and 17, 5 and 15, 7 and 13 **c** 2, 4, 14 and 2, 6, 12 and 2, 8, 10 and 4, 6, 10 3 **a** even **b** even **c** odd d odd even f odd g even 7 EXERCISE 51 10 1 a yes b yes c no d yes € yes 2 a yes **b** yes c no d yes e yes 12 3 a yes d no 13 **b** no c yes ℭ yes a no **b** yes c no d yes e no

5 a yes b no c yes d no € yes **a** 0 to 9 **b** 1, 4 or 7 **c** 0, 2, 4, 6 or 8 **d** 1, 4 or 7 **a** $2^3 - 1^3 - 1 = 6$ $3^3 - 2^3 - 1 = 18$ $4^3 - 3^3 - 1 = 36$ $5^3 - 4^3 - 1 = 60$ **b** $10^3 - 9^3 - 1 = 270$ All of the answers in **a** and **b** are divisible by 6. **8 a** 1, 4 or 7 **b** 2, 5 or 8 **c** 1, 4 or 7 **d** 2, 5 or 8 EXERCISE 5J.1 **1 a** 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 **b** 1 has only one factor and so cannot be a prime. • One, only the number 2. i 31, 37 ii 61, 67 iii 97, 101, 103, 107, 109 d **b** 2, 3 **c** 2, 5 **d** 2, 3, 7 **e** 2, 3 **f** 2, 3, 5, 7 a 7 **b** Is divisible by 5. **a** Is even. • Is even. Is divisible by 3. **d** Is divisible by 3. f Is divisible by 3. $a 2^2$ **b** 3^2 5^2 **d** 2^3 f 2⁵ **g** 3⁴ e 3³ **h** 2^6 5^{3} 3^{5} $k 2^7$ 73 a $2^3 \times 3^2$ **b** $2^5 \times 5^1$ $2^2 \times 3^2 \times 5^1$ **d** $2^3 \times 11^2$ $2^4 \times 5^1 \times 7^2$ $12^2 \times 3^3 \times 5^3$ EXERCISE 5J.2 **a** 1 **b** 2 **c** 6 **d** 4 **f** 9 2 18 **g** 14 **h** 8 12 24 **k** 11 26 **a** 1 **b** 4 **c** 6 **d** 6 EXERCISE 5K **a** 6, 12, 18, 24, 30, **b** 11, 22, 33, 44, 55, **c** 12, 24, 36, 48, 60, **d** 15, 30, 45, 60, 75, **2** 20, 40, 60, 80, 100, **f** 35, 70, 105, 140, 175, **3** a 12 **b** 8 **c** 24 **d** 35 **e** 45 f 12 **g** 24 **h** 12 **4** 198 **5** 495, 585, 675, 765, 855 or 945 **REVIEW SET 5A** 32 0 **c** 338 **d** 0 **2** 297 **3** 14 Ь **a** 3 **b** 8 5 **c** 10 4 **b** 1700 **c** 4600 **7** 345 books **a** 0 **8** $32 \div 8 + 4 + 4 = 12$ **9** 1, 2, 3, 6, 9, 18, 27, 54 **11** 23. 29 **12** 42 **13** 8 **14** 24 **a** 2, 5, 8 **b** 0, 2, 4, 6, 8 **16** 72 **a** $3^2 \times 5^1$ **b** $2^4 \times 3^2$ **REVIEW SET 5B** a 18 b 78 c 104 d 23 2 236 0 **b** 0 **c** undefined **d** 417 **4** \$50 **a** 36 **b** 27 **c** 27 **6** $2 \times 8 \div 4 + 2 = 6$ **a** 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 **b** 53, 59 **c** 14, 21 8 $2^2 \times 23^1$ 9 288 **a** an even number **b** an odd number **11** 25 students **a** 1, 4 or 7 **b** 1 to 9 **c** 1, 4, 7 **a** 16 **b** 27 **c** 9 **d** 5 **14** 503806 **15** 2 and 7, $392 = 2^3 \times 7^2$

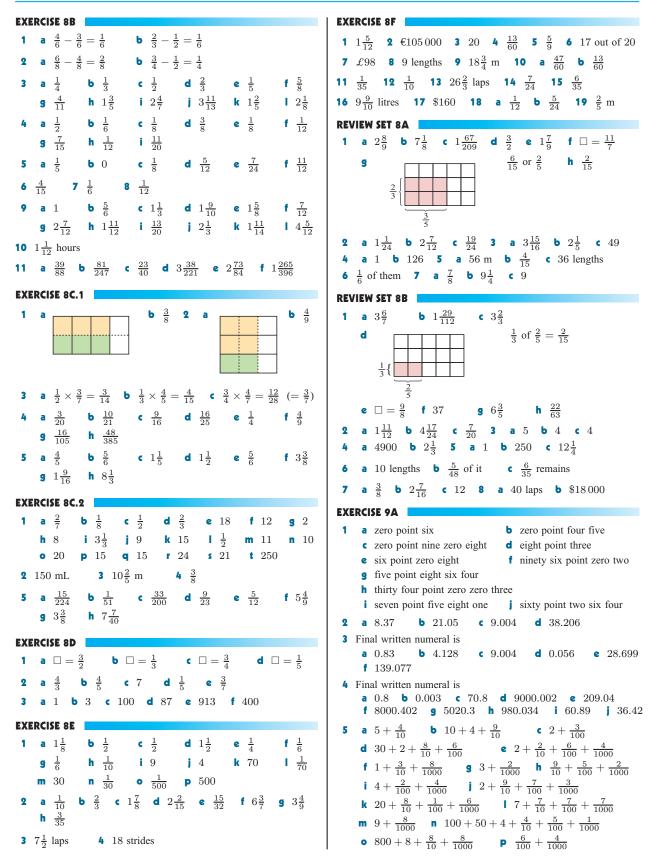

EXERCISE 6A

1


	Symbol	Words	Num.	Denom.
а	$\frac{1}{2}$	one half	1	2
b	$\frac{3}{4}$	three quarters	3	4
c	$\frac{2}{3}$	two thirds	2	3
d	$\frac{2}{7}$	two sevenths	2	7
e	$\frac{7}{9}$	seven ninths	7	9
f	<u>5</u> 8	five eighths	5	8
9	$\frac{7}{11}$	seven elevenths	7	11


	Meaning	Number line
a	One whole divided into two equal parts and one is being considered.	0 1 one half
ь	One whole divided into four equal parts and three are being considered.	0 1 three quarters
c	One whole divided into three equal parts and two are being considered.	0 1 two thirds
d	One whole divided into seven equal parts and two are being considered.	0 1 two sevenths
e	One whole divided into nine equal parts and seven are being considered.	o 1 seven ninths
f	One whole divided into eight equal parts and five are being considered.	five eighths
9	One whole divided into eleven equal parts and seven are being considered.	0 1 seven elevenths


EXERCISE 6B

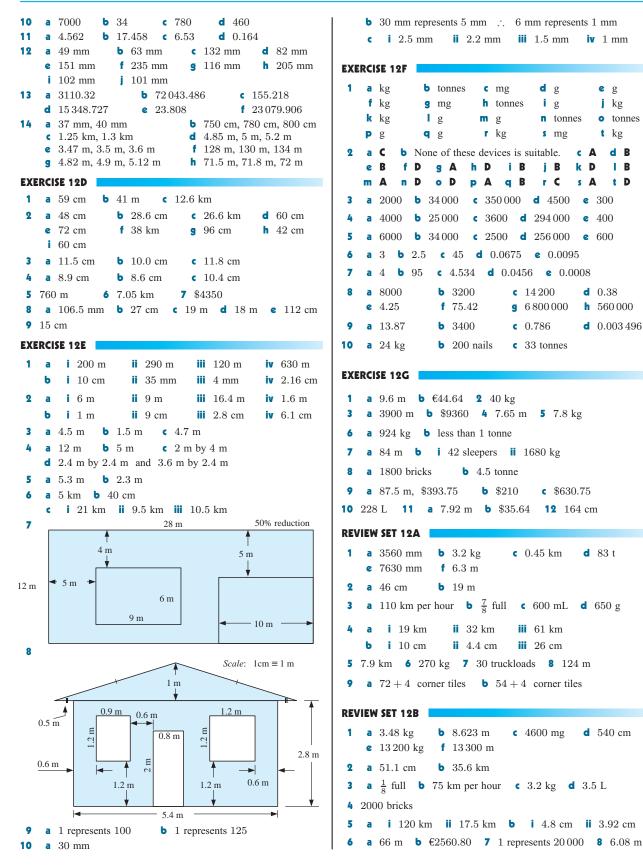


4	a $\frac{50}{100}$ b $\frac{25}{100}$ c $\frac{80}{100}$ d $\frac{90}{100}$ e $\frac{25}{100}$ g $\frac{100}{100}$ h $\frac{85}{100}$	$\frac{28}{100}$ f $\frac{26}{100}$
5	a $\frac{5 \times 2}{6 \times 2} = \frac{10}{12}$ b $\frac{8 \times 3}{9 \times 3} = \frac{24}{27}$ c $\frac{57}{7}$ d $\frac{3 \times 8}{4 \times 8} = \frac{24}{32}$ e $\frac{4 \times 10}{5 \times 10} = \frac{40}{50}$ f $\frac{7}{8}$	
6	a $\frac{6\div 2}{8\div 2} = \frac{3}{4}$ b $\frac{8\div 2}{10\div 2} = \frac{4}{5}$ c $\frac{1}{1}$ d $\frac{18\div 3}{21\div 3} = \frac{6}{7}$ e $\frac{15\div 5}{25\div 5} = \frac{3}{5}$ f $\frac{1}{2}$	· · ·
7	a $\square = 1$ b $\square = 4$ c $\square = 8$ e $\square = 3$ f $\square = 1$ g $\square = 3$	10.2 10
8	a $\Delta = 20$ b $\Delta = 120$ c $\Delta = 8$ e $\Delta = 40$ f $\Delta = 81$ g $\Delta = 69$	d $\Delta = 25$
EXI	RCISE 6D.1	
1	a 9 b 10 c 3 d 2 e 3 f	2 9 2
	h 1 i 4	•
EXI	RCISE 6D.2	
1	a $\frac{4}{5}$ b $\frac{1}{4}$ c $\frac{3}{4}$ d $\frac{3}{7}$ e $\frac{4}{7}$	<u>t</u> f <u>5</u> 7
1		, 7
		7 . 2
2		$\frac{7}{13}$ f $\frac{3}{4}$
	g $\frac{3}{4}$ h $\frac{3}{11}$ i $\frac{41}{100}$ j $\frac{7}{8}$	
3	a $\frac{8}{11}$ b $\frac{9}{16}$ c $\frac{3}{5}$ d $\frac{1}{3}$ e $\frac{1}{4}$	$\frac{1}{1}$ f $\frac{1}{17}$
	g $\frac{8}{27}$ h $\frac{1}{4}$ i $\frac{1}{15}$ j $\frac{3}{8}$	
4	b, c, h, j, k	
EXI	RCISE 6E	
1	a $\frac{9}{20}$ b $\frac{8}{15}$ c $\frac{5}{12}$	
2	a $\frac{1}{2}$ b $\frac{1}{4}$ c $\frac{1}{13}$ d $\frac{3}{13}$ e $\frac{3}{14}$	<u>4 (5</u>
3	a $\frac{1}{5}$ b $\frac{39}{100}$ c $\frac{1}{2}$ d $\frac{2}{7}$ e $\frac{1}{2}$	$\frac{5}{24}$ f $\frac{1}{15}$
	g $\frac{1}{10}$ h $\frac{27}{100}$	
4	a $\frac{1}{2}$ b $\frac{1}{6}$ c $\frac{3}{4}$ d $\frac{1}{5}$	
5	a $\frac{1}{24}$ b $\frac{1}{6}$ c $\frac{1}{48}$ d $\frac{1}{1440}$	
6	$\frac{7}{10}$ 7 $\frac{13}{40}$ 8 $\frac{4}{9}$ 9 $\frac{1}{3}$	
10		11 g 6
	h 24 i 5 j 21 k 6 l 50	•
11	$\frac{53}{60}$ 12 $\frac{1}{19}$	
	a 4 people b 5 lollies c 7 drinks	d 65 grams
	e €19 f 15 min	U
14	5 games 15 49 students 16 37	cars
17	312 RMB 18 84 plants	
19	a i 90° ii 180° iii 270° b i $\frac{1}{12}$	$\frac{1}{6}$ $\frac{1}{3}$ $\frac{2}{3}$
20	18 children 21 2 h 22 14 goals	
23	a 1875 kg b 50 boxes 24 a $\frac{1}{7}$ b $\frac{3}{7}$	c €200 000
1	a 21 b 15 c 6 d 36 e 7	2 f 30
-	g 330 h 36	
2	a $\frac{1}{4}$, $\frac{1}{2} = \frac{2}{4}$ b $\frac{2}{3} = \frac{8}{12}$, $\frac{3}{4} = \frac{9}{12}$	
	c $\frac{1}{2} = \frac{7}{14}, \ \frac{4}{7} = \frac{8}{14}$ d $\frac{5}{8}, \ \frac{3}{4} = \frac{6}{8}$ e $\frac{7}{10} = \frac{21}{30}, \ \frac{5}{6} = \frac{25}{30}$ f $\frac{3}{4} = \frac{27}{36}, \ \frac{7}{9}$	$=\frac{28}{28}$
	-10 30, 6 30 -4 -36, 9	36

6 7 8 9	a 0.6 b 0.09 c 0.43 d 0.809 e 0.007 f 0.052 g 0.568 h 0.0023 i 0.094 j 0.101 k 4.387 l 0.0308 m 0.3033 n 0.20005 o 5.555 a 300 b $\frac{3}{10}$ c 30 d $\frac{3}{1000}$ e 3 f $\frac{3}{100}$ g $\frac{3}{10000}$ h 3000 a $\frac{5}{1000}$ b 500 c $\frac{5}{10}$ d $\frac{5}{100}$ e 5000 f 5 g 50000 h $\frac{5}{10000}$ a 0.23 b 0.79 c 0.3 d 0.117 e 4.69	 a 0.4, 0.6, 0.8 b 0.1, 0.4, 0.9 c 0.06, 0.09, 0.14 d 0.46, 0.5, 0.51 e 1.06, 1.59, 1.61 f 0.206, 2.06, g 0.0905, 0.095, 0.905 h 15.05, 15.5, 15.55 4 a 0.9, 0.8, 0.4, 0.3 b 0.51, 0.5, 0.49, 0.47 c 0.61, 0.609, 0.6, 0.596 d 0.42, 0.24, 0.04, 0.02 e 6.277, 6.271, 6.27, 6.027 f 0.311, 0.31, 0.301, 0.4 g 8.880, 8.088, 8.080 k 7.61, 7.061, 7.06, 7.00 5 a 0.4, 0.5, 0.6 b 0.6, 0.5, 0.4 c 0.8, 1.0, 1.4 d 0.11, 0.13, 0.15 e 0.55, 0.5, 0.45 f 2.05, 2.01, 0.40
10	f 0.703 g 0.6 h 0.54 i 0.4672 j 0.36 a 17.465 b 12.096 c 3.694 d 4.22	g 4.8, 4.0, 3.2 h 1.00, 1.25, 1.50 i 1.147, 1.159, 1.171 j 0.375, 0.500, 0.625
11	e 980.034 f 36.42 a $\frac{2}{100}$ b 2 c $\frac{2}{100}$ d 20 e $\frac{2}{10000}$ f 200 g $\frac{2}{10}$ h $\frac{2}{1000}$	EXERCISE 9F 1 a 2.4 b 3.6 c 4.9 d 6.4 e 4.3 2 a 4.24 b 2.73 c 5.63 d 4.38 e 6.52 2 a 6.52 b 6.40 (a 6.6 b 6.52)
EXE	RCISE 9B	3 a 0.5 b 0.49 4 a 3.8 b 3.79 5 a 0.2 b 0.18 c 0.184 d 0.1838
1	a 0.7 b 0.2 c 0.33 d 0.46	6 a 3.9 b 4 c 6.1 d 0.462 e 2.95 f 0.1756
2	a 3.243 b 2.071 c 0.752 d 1.056 e 4.009	EXERCISE 9G
EXE	RCISE 9C	1 a $\frac{1}{10}$ b $\frac{7}{10}$ c $1\frac{1}{2}$ d $2\frac{1}{5}$ e $3\frac{9}{10}$ f 4
1	a \$7.25 b \$24.50 c \$61.10 d \$205.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
•	e \$12.70 f \$120.65 a \$4.47 b \$15.97 c \$7.55 d \$36.00	m $2\frac{3}{4}$ n $1\frac{1}{40}$ o $\frac{1}{25}$ p $2\frac{3}{8}$
2	a 54.47 b 515.97 c 57.55 d 530.00 e $$150.00$ f $$32.80$ g $$85.05$ h $$30.03$	2 a $\frac{4}{5}$ b $\frac{22}{25}$ c $\frac{111}{125}$ d $3\frac{1}{2}$ e $\frac{49}{100}$ f
3	a i €0.35 ii €0.05 iii €4.05 iv €30.00 v €4.87 vi €2.95 vii €38.75 viii €6384.75	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	b €0.40, €34.05, €7.82, €6423.50 c €48.02, €6417.75	3 a $\frac{1}{5}$ kg b $\frac{1}{4}$ hour c $\frac{17}{20}$ kg d $1\frac{1}{2}$ km e $1\frac{3}{4}$
	RCISE 9D	f $2\frac{37}{50}$ m g $4\frac{22}{25}$ tonnes h $6\frac{7}{25}$ L i $\notin 1\frac{1}{4}$ j $\notin 1$
1	a N is 0.7 b N is 2.3 c N is 6.8 d N is 21.4 e N is 11.1 f N is 8.5	k $\epsilon_{3}\frac{13}{20}$ l $\epsilon_{4}\frac{21}{100}$ m $\epsilon_{8}\frac{2}{5}$ n $\epsilon_{5}\frac{1}{8}$ o \pounds_{3}
2	$\begin{array}{c} \bullet \\ \bullet \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	p $\pounds 4\frac{11}{100}$ q $\pounds 18\frac{22}{25}$ r $\pounds 52\frac{1}{4}$ EXERCISE 9H
		1 a 5 b 2 c 25 d 125 e 5 f 4
	$\begin{array}{c} E & F & G & H \\ \hline 13 & 14 & 15 & 16 & 17 \end{array}$	g 2 h 8 i 25 j 4 k 2 l 2 2 a 0.15 b 0.85 c 0.36 d 0.84 e 1.5
3	38.4°C 4 75.5 cm 5 a 4.5 kg b 0.3 L	2 a 0.15 b 0.85 c 0.36 d 0.84 e 1.8 f 2.2 g 0.26 h 0.276 i 0.024 j 0.8
6	a N is 0.15 b N is 0.24 c N is 1.77 d N is 3.59	k 0.25 l 0.072 m 0.544 n 0.936 o 0.0
7	e N is 7.83 f N is 11.75	p 0.204 q 0.375 r 0.1775
	A B C D	3 a $\frac{1}{2} = 0.5$ b $\frac{1}{5} = 0.2, \ \frac{2}{5} = 0.4, \ \frac{3}{5} = 0.6, \ \frac{4}{5} = 0.6$
	4.6 4.7 4.8 4.9 5.0 5.1 b E E C H	c $\frac{1}{4} = 0.25, \ \frac{2}{4} = 0.50, \ \frac{3}{4} = 0.75$
	E F G H 10.3 10.4 10.5 10.6 10.7 10.8	d $\frac{1}{8} = 0.125, \ \frac{2}{8} = 0.250, \ \frac{3}{8} = 0.375, \ \frac{4}{8} = 0.500, \ \frac{5}{8} = 0.625, \ \frac{6}{8} = 0.750, \ \frac{7}{8} = 0.875$
EXE	RCISE 9E	REVIEW SET 9A
1	 a A is 6.7, B is 6.2 and A > B b A is 47.8, B is 47.3 and A > B c A is 3.77, B is 3.78 and A < B d A is 1.953, B is 1.956 and A < B e A is 0.042, B is 0.047 and A < B f A is 0.404, B is 0.402 and A > B 	1 a \$16.95 b \$302.35 2 a 1.8 b 0.54 3 a 0.003 b 0.027 c 0.308 d 1.315 4 a 0.73 b 0.107 c 5.069 5 a $\epsilon 25.35$ b \$107.85 c 5.029 d $4 + \frac{3}{10} + \frac{6}{100}$ or $4\frac{36}{100}$ e $2 + \frac{4}{100} + \frac{9}{1000}$ f $\frac{1}{110}$
2		6 a B is 0.87 b B is 2.374 7 3.2 8 a 3.9 b 3 9 a $\frac{4}{5}$ b $\frac{3}{4}$ c $\frac{3}{8}$ d $\frac{17}{25}$ 10 a 0.8 b 0.15 c 0.625 d 0.275 11 0.026, 0.062, 0.206, 0.216, 0.621 12 0.69, 0.66, 0.63

6, 1.59, 1.61 f 0.206, 2.06, 2.6 h 15.05, 15.5, 15.55 **b** 0.51, 0.5, 0.49, 0.47 **d** 0.42, 0.24, 0.04, 0.02 27 f 0.311, 0.31, 0.301, 0.031 008 h 7.61, 7.061, 7.06, 7.01 6, 0.5, 0.4**c** 0.8, 1.0, 1.2 55, 0.5, 0.45f 2.05, 2.01, 1.97 00, 1.25, 1.50 **j** 0.375, 0.500, 0.625 9 **d** 6.4 **e** 4.3 63 **d** 4.38 **e** 6.52 3.8 **b** 3.79 4 d 0.1838 0.462 e 2.95 f 0.1756 e 3⁹/₁₀ f $4\frac{3}{5}$ **d** $2\frac{1}{5}$ $\frac{13}{20}$ $\frac{1}{20}$ $\frac{7}{100}$ **p** $2\frac{3}{8}$ € <u>49</u> 100 $\frac{1}{25}$ $\frac{7}{00}$ **d** $3\frac{1}{2}$ f $\frac{1}{4}$ **k** $1\frac{12}{125}$ **l** $4\frac{14}{25}$ $3\frac{18}{25}$ 3 **p** $2\frac{11}{50}$ $\frac{17}{20}$ kg **d** $1\frac{1}{2}$ km **e** $1\frac{3}{4}$ g **h** $6\frac{7}{25}$ L **i** $\in 1\frac{1}{4}$ **j** $\in 1\frac{19}{25}$ $\in 8\frac{2}{5}$ **n** €5 $\frac{1}{8}$ **o** £3 $\frac{2}{25}$ $\pounds 52\frac{1}{4}$ **f** 4 **d** 125 **e** 5 **j** 4 **k** 2 25 0.36**d** 0.84 **e** 1.5 0.276**i** 0.024 **j** 0.364 • 0.022 0.544**n** 0.936 0.17752, $\frac{2}{5} = 0.4$, $\frac{3}{5} = 0.6$, $\frac{4}{5} = 0.8$ $\frac{3}{4} = 0.75$ $\frac{3}{8} = 0.375, \ \frac{4}{8} = 0.500,$ $\frac{7}{8} = 0.875$ **2** a 1.8 b 0.54 0.308 **d** 1.315 5.069**c** 5.029 $2 + \frac{4}{100} + \frac{9}{1000}$ $f \frac{2}{1000}$ 74 7 3.2 8 a 3.9 b 3.86 **d** $\frac{17}{25}$ 0.625d 0.275

/IEW SET 9B
a 1.493 b 2.058 2 a 0.3 b 1.23
a 0.44 b 0.033 c 1.002 d 4.105
a 16.574 b $\frac{9}{10} + \frac{2}{100} + \frac{1}{1000}$ or $\frac{921}{1000}$ c $\frac{3}{100}$
d £12.35
a A is 2.46 b A is 0.063
4.44, 4.404, 4.044, 4.04, 0.444 7 1.5, 1.9, 2.3 8 2.3199
a 4.0 b 4.00 10 a $\frac{31}{50}$ b $\frac{9}{20}$ c $\frac{7}{8}$ d $10\frac{2}{5}$
a 0.06 b 1.2 c 0.68 d 0.125
$\frac{1}{8} = 0.125, \ \frac{2}{8} = 0.250, \ \frac{3}{8} = 0.375, \ \frac{4}{8} = 0.500, \ \frac{5}{8} = 0.625$
ERCISE 10A
25, 26 and 16, 17, 18 and 6, 7, 8, 9, 10, 11
4 spiders and 9 beetles $3 \ 2 \times (3+4) - 5 \ 4 \ 23 \notin 1$ coins
386 6 $a = 6, b = 4, c = 3+ 135$
$\underline{1}$ is one solution
521
12 cards 8 10 9 6 boys and 3 girls
Kristina is 13, Fredrik is 11 and Frida is 17
ERCISE 10B
34 2 12 3 6 4 20 5 12 ways 6 15 7 36
10 9 20 10 a 24 b 12 c 4
6 : (Seating arrangements deal with different right hand and left hand neighbours.)
9:42 am 3 43 pages 4 11 pieces 5 Row 9
Phil730 squaresC was 1st, E 2nd, A 3rd, D 4th and B 5th
Martin uses blue, Patel white, Lisa yellow, Owen green,
Natalie red
Fill the 5 L bowl with water. Tip 3 L of this into the 3 L bowl. 2 L remains in the large bowl. Add this to the pasta. Empty the bowls, repeat the process and add another 2 L to the pasta. There is another way. Can you find it?
ERCISE 10D
128 2 20 3 91 lengths 4 108 rails 5 27
128 sections 7 54 diagonals 8 56 pieces
a i 1 ii 3 iii 6 iv 10
b $1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4$ P(P - 1)
c $H = \frac{P(P-1)}{2}$ d 18 336 handshakes
a 435 lines
b Each vertex is like a person. Each line is like a handshake.
ERCISE 10E
4 months ago 2 12 3 15 apples 4 \$70
Nima had 36, Kelly had 15 6 a 88 kg b 89 kg
37 8 9:25 am /IEW SET 10A
7 £10 notes and 4 £20 notes 2 8 different ways 15 (8 + 4 + 2 + 1)
 a 15 (8+4+2+1) b There are 15 losers, so 15 games. c 255 games January 31 5 8


REV	IEW S	ET 10B			
1	10	2 8 m	3 77 {as	$77 \to 49 \to$	$36 \rightarrow 18 \rightarrow 9\}$
4	24 wa	iys	5 155 care	ls	
EXE		114			
1	a 0.		2 1	.13 d 1.1	13 e 27.82
			5.2 h (.92 j 32.955
		.7006 1 4		.444 10	.32 32.300
2	a 0.				2.3 f 2.26
	g 2.	.67 h 0.0	9.02	j 5.593 k	0.001 0.001
3	а	39.012	i 2.134	3.076	iv 8
	Ь	1.101	ii 0.099	11.754	iv 22.694
4	a 64	4.892	27.493	c 12.214	d 21.2919
			f 209.7442		
5	a 5.		1.011	c 4.481	d 167.348
			f 3.1004	g 18.867	h 7.782
			\$5.30	-	£4.60
			•	k €5.97	
6			42.266	c 1.197	d \$118.10
7	a 1	5.867	2.731	c 0.681	d £6.85
8	€17.1	090).37 m 1	0 69.4 kg	11 237.4 m
12	No. h	e has only \$	59.05 and nee	eds another \$3.	45.
		kg 14 3	5.50 Kg	5 13.079 m	10 to.10
EXE	RCISE	11B.1			
1		Number	×10	×100	
	а	0.0943	0.943	9.43	_
	Ь	4.0837	40.837	408.37	
	c	0.0008	0.008	0.08	
	d	24.6801	246.801	2468.01	
	e	\$57.85	\$578.50	\$5785	
		$\times 1000$	$\times 10^4$	$\times 10^{6}$	
	а	94.3	943	94 300	
	b	4083.7	40837	4083700	
	C	0.8	8	800	
	d	24 680.1	246 801	24 680 100	
	e	\$57850	\$578 500	\$57 850 000	
2	a 43	30 b 8	8000 c 5	000 000	d 6
	e 40	6 f 5	58 g 3	609 h 25	0 i 80
	j 33	24 k 9	900 I 8	45 m 24	0 n 208.5
	• 8	940 p 5	53 q (.094 r 71	800
3	a 10	00 b 100) d 100 e	10 f 10
	g 10	00 h 100	0000 i 1	000	
EVF		11B.2			
1	Maria	n. 647.3	352 93 08		d 10.94
	Nun ÷1				1.094
	\div^1				0.1094
	$\div 10$				0.010 94
	÷10				0.0001094
		0.000 1		010 0.1101	0.0001001
2	a 0.	.23 b ().036 c (0.426 d 0.3	3 e 5.8
	f 0.	.58 g 3	89.4 h (0.07 i 0.4	458 j 0.8007
	k 0.	.02405	0.0632	m 5.79	n 0.579
	• 0.	.0579	0.003	q 0.0003	r 0.000 046
-	- 10	- - - 1	00 1	00 d 10	00 10

3 a 10 b 100 c 100 d 1000 e 10 f 10000 g 100 h 1000

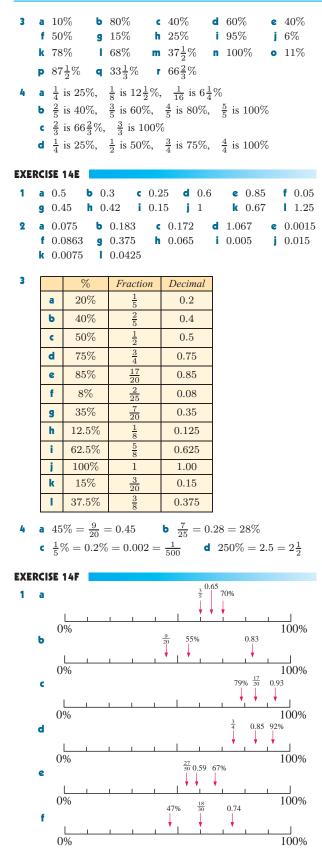
EX	ERC	ISE 11C				
1						
		\$23.2K - \$24.4K d \$70.8K - \$73.2K				
	e					
2	a	Salary between \$38 700 and \$39 900				
	Ь	Salary between \$43 200 and \$44 500				
	C	······				
3	а	• • • • • • • • • • • • • • • • • • • •				
	d	1.49 million e 30.08 million f 9.48 million				
4	а	21 650 000 b 1 930 000 c 16 030 000				
5	а	3 860 000 000 b 375 090 000 000				
	c	21 950 000 000 d 4 130 000 000				
6	a	3.87 bn b 2.71 bn c 97.06 bn d 2.02 bn				
EV		ISE 11D				
1	a					
		0.2 g 0.018 h 0.018 i 0.33 j 0.6				
		0.0063 0.0003				
2	a					
	f	0.0812 g 0.36 h 0.0016 i 0.024				
3	а	95.2 b 9.52 c 0.952 d 0.952 e 0.952				
	f	0.0952 g 0.0952 h 0.000952 i 0.952				
4	a					
	f					
5	a	2.4 b 0.88 c 2.5 d 0.27 e 2.7				
	f	15.2 g 0.72 h 0.0063 i 0.0016 j 0.08				
	k	0.04 l 0.0009 m 0.072 n 1.21 o 0.01				
6	a	£39.51 b \$36.96 c 90 L				
7	\$3.	.30 8 44.8 kg 9 £29 10 \$15.30				
11	6 >	3.9 = 23.4, so Manuel needs to find another 1.6 m.				
12	a	1482 kg b 936 kg c 2418 kg d 5 vans				
	e	\$2762.10				
EX	ERC	ISE 11E				
1		0.8 b 1.5 c 0.42 d 0.51 e 3.02 f 0.41				
1		0.08 h 20.4				
2						
_		€8.50 b 2.15 kg c 0.7 m d 12 bags e £16.08				
3	-	2.65 b 1.22 c 0.85 d 0.425 e 3.25 1.475 e 1.205 h 1.264				
4		$1.0\overline{3}$ b $1.1\overline{6}$ c $0.4\overline{5}$ d $0.82\overline{3}$ e $2.71\overline{6}$				
	f	1.51 g $0.3\overline{714285}$ h $0.8\overline{7857142}$				
EX	ERC	ISE 11F.1				
1	a	0.7 b 0.5 c 0.4 d 0.3 e 0.8 f 0.25				
	9	0.16 h 0.75 i 0.125 j 0.625 k 0.35 l 0.24				
2	a	0.6 b 1.8 c 0.375 d 1.125 e 2.75				
		5.8 g 4.875 h 5.375				
EV		ISE 11F.2				
		0. $\overline{3}$ b 0. $\overline{6}$ c 0.1 $\overline{6}$ d 0. $\overline{142857}$ e 0. $\overline{285714}$				
1						
		$0.08\overline{3}$ g $0.\overline{2}$ h $0.8\overline{3}$ i $0.\overline{27}$ j $0.58\overline{3}$				
2	а	$0.\overline{1}, 0.\overline{2}, 0.\overline{3}, 0.\overline{4}, 0.\overline{5}, 0.\overline{6}, 0.\overline{7}, 0.\overline{8}, 0.\overline{9}$ b $0.\overline{9} = 1$				
3		0.71875 b 0.6875 c 0.2125 d 0.44				
	e	1.1875 f $0.2\overline{142857}$ g $0.1\overline{3}$ h $0.\overline{81}$				
	i	2.23 j 1.94 k 0.461538				

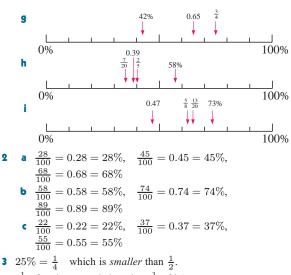
l 0.30625 m 3.416 n 0. $\overline{25203}$ o 0.5 $\overline{1}$

EXE	ERCISE 11G
1	a $\frac{5}{17}, \frac{3}{10}, \frac{7}{22}, \frac{1}{3}, \frac{7}{20}$ b $\frac{3}{8}, \frac{5}{12}, \frac{7}{16}, \frac{5}{9}, \frac{4}{7}$
	c $\frac{10}{19}, \frac{9}{11}, \frac{7}{8}, \frac{8}{9}, \frac{11}{12}$ d $\frac{12}{23}, \frac{10}{19}, \frac{8}{15}, \frac{6}{11}, \frac{11}{20}$
2	a $\frac{2}{3}, \frac{15}{23}, \frac{11}{17}, \frac{7}{11}, \frac{5}{8}$ b $\frac{5}{13}, \frac{8}{21}, \frac{3}{8}, \frac{4}{11}, \frac{6}{17}$
	c $\frac{9}{25}, \frac{7}{20}, \frac{8}{23}, \frac{1}{3}, \frac{5}{16}$ d $\frac{20}{23}, \frac{17}{20}, \frac{16}{19}, \frac{14}{17}, \frac{3}{4}$
3	3.165 m 4 a 11.4 m b 1.425 m
5	a 17 b 0.28 m 6 150 7 \$18.55
RE	/IEW SET 11A
1	a 28.754 b 147.05 c 5.04 d 0.0768
2	
4	1937.88 tonnes 5 a 5 kg b 35 kg
6	a 62 b 215.8 c 0.56 d 0.042
7	a 13.78 b 0.1378 8 a $0.\overline{142857}$ b $0.\overline{5}$ c $1.1\overline{6}$
9	a $\Box = 100$ b $\Box = 1000$ c $\Box = 100$
10	a €11 500 b €12 500
RE	/IEW SET 11B
1	a 1.899 b 2.574 c 8.884 d 1.54
2	37.314 3 a 57.05 sec b 57.21 sec 4 218.793 kg
5	a 63 b 5980 c 0.076 d 0.00942
6	a $\Box = 100$ b $\Box = 1000$
7	a 272.6 b 2.726 c 27.26
8	a 6.16 b i 0.96 ii 0.015 c 14.8 m d \$20.60
9	a 14.065 km b 28.13 km
10	a 0.56 b 0.72 c 4.475
EXE	ERCISE 12A
1	a kilograms b kilometres c metres
1	a kilogramsb kilometresc metresd milligramse metresf kilograms
1	
	d milligrams e metres f kilograms
	dmilligramsemetresfkilogramsgcentimetreshtonnes
EXE	d milligramse metresf kilogramsg centimetresh tonnesERCISE 12Ba 24 cmb 13 cmc 10.2 cme 25.6 cmf 18.5 cm
EXE	d milligrams e metres f kilograms g centimetres h tonnes ERCISE 12B a 24 cm b 13 cm c 10.2 cm d 16.8 cm e 25.6 cm f 18.5 cm a 35°C b 37.4°C c 38.3°C d 35.7°C
EXE 1	d milligramse metresf kilogramsg centimetresh tonnesERCISE 12Ba 24 cmb 13 cmc 10.2 cme 25.6 cmf 18.5 cm
EXE 1 2	d milligrams e metres f kilograms g centimetres h tonnes ERCISE 12B a 24 cm b 13 cm c 10.2 cm d 16.8 cm e 25.6 cm f 18.5 cm a 35°C b 37.4°C c 38.3°C d 35.7°C
EXE 1 2 3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
EXE 1 2 3	d milligrams e metres f kilograms g centimetres h tonnes ERCISE 12B a 24 cm b 13 cm c 10.2 cm d 16.8 cm e 25.6 cm f 18.5 cm a 35° C b 37.4° C c 38.3° C d 35.7° C a $\frac{3}{4}$ full b $\frac{1}{4}$ full c $\frac{9}{16}$ full a 120 km per hour b 95 km per hour c 65 km per hour
EXE 1 2 3 4 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
EXE 1 2 3 4 5 6	dmilligramsemetresfkilogramsgcentimetreshtonnesfkilogramsGcentimetreshtonnesfffa24 cmb13 cmc10.2 cmd16.8 cma24 cmf18.5 cmffffa35°Cb37.4°Cc38.3°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fullffa120 km per hourb95 km per hourf65 km per hourfa45.2 kgb71.6 kgc63.63 kgfa700 mLb350 mLc650 mLERCISE 12C
EXE 1 2 3 4 5 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
EXE 1 2 3 4 5 6 EXE	dmilligramsemetresfkilogramsgcentimetreshtonnesfkilogramsERCISE 12Ba24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cma25.6 cmf18.5 cmd35.7°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per hourc65 km per hourd350 mLc63.63 kga45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLERCISE 19Ca400b3400c250da3000b45000c3600d16 200e
EXE 1 2 3 4 5 6 EXE 1 2	d milligrams e metres f kilograms g centimetres h tonnes ERCISE 128 a 24 cm b 13 cm c 10.2 cm d 16.8 cm e 25.6 cm f 18.5 cm a 35° C b 37.4° C c 38.3° C d 35.7° C a $\frac{3}{4}$ full b $\frac{1}{4}$ full c $\frac{9}{16}$ full a 120 km per hour b 95 km per hour c 65 km per hour a 45.2 kg b 71.6 kg c 63.63 kg a 700 mL b 350 mL c 650 mL ERCISE 12C a 400 b 3400 c 250 d 1560 e 245 f 46 a 3000 b 45000 c 3600 d 16200 e 5460 f 90
EXE 1 2 3 4 5 6 EXE 1 2 3	d milligrams e metres f kilograms g centimetres h tonnes ERCISE 128 a 24 cm b 13 cm c 10.2 cm d 16.8 cm e 25.6 cm f 18.5 cm a 35° C b 37.4° C c 38.3° C d 35.7° C a $\frac{3}{4}$ full b $\frac{1}{4}$ full c $\frac{9}{16}$ full a 120 km per hour b 95 km per hour c 65 km per hour a 45.2 kg b 71.6 kg c 63.63 kg a 700 mL b 350 mL c 650 mL ERCISE 12C a 400 b 3400 c 250 d 1560 e 245 f 46 a 3000 b 45000 c 3600 d 16200 e 5460 f 90 a 50 b 230 c 27 d 125 e 57.8 f 2.5
EXE 1 2 3 4 5 6 EXE 1 2 3 4	dmilligramsemetresfkilogramsgcentimetreshtonnesERCISE 12Ba24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per hourc65 km per hourb350 mLc63.63 kga700 mLb350 mLc650 mLERCISE 19Ca400b3400c250d1560e245f46a3000b45 000c3600d16 200e5460f90a50b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5	dmilligramsemetresfkilogramsgcentimetreshtonnesERCISE 12Ba24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cma25.6 cmf18.5 cmaaa50°Cd35.7°Ca35°Cb37.4°Cc38.3°Cd35.7°Ca34 fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per hourcc65 km per hourb350 mLc650 mLa45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLERCISE 12Ca400b3400c250da3000b45 000c3600d16 200ea3000b230c27d125e57.8f2.5a2b40c45d4.56e750f0.004
EXE 1 2 3 4 5 6 EXE 1 2 3 4	dmilligramsemetresfkilogramsgcentimetreshtonnesSRCISE 12Ba24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cd35.7°Ca $35°C$ b37.4°Cc $38.3°C$ d $35.7°C$ a $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per hourc65 km per hourb350 mLca45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLSection 1560 e245 fa400b3400c250a3000b45 000c3600da50b230c27d125ea2b30c0.35d9.505e284.92fa2b40c45d4.56e750f0.03a3000b75 000c6500d2 000 000000000
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5 6	dmilligramsemetresfkilogramsgcentimetreshtonnesSRCISE 12Ba24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cd35.7°Ca 35° Cb37.4°Cc 38.3° Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per hourcc65 km per hourb350 mLc650 mLa45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLSERCISE 12Ca400b3400c250da3000b45 000c3600d16 200ea50b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004a2b40c45d4.56e750f0.03a3000b75 000c6500d2 000 000e78 200f0.00
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5 6 7	dmilligramsemetresfkilogramsgcentimetreshtonnesSRCISE 128a24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cb37.4°Cc38.3°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per houra45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLa400b3400c250d1560e245f46a3000b45 000c3600d16 200e5460f90a50b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004a2b40c45d4.56e750f0.03a3000b75 000c6500d2000 000e78 200f0.0024a2b35c0.2345d34.567e3.9f0.0024
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5 6	dmilligramsemetresfkilogramsgcentimetreshtonnesERCISE 128a24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cb37.4°Cc38.3°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per houra45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLa400b3400c250d1560e245f46a3000b45 000c3600d16 200e5460f90a50b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004a2b40c45d4.56e750f0.03a3000b75 000c6500d2000 000e78 200f0.0024a2b35c0.2345d34.567e3.9f0.0024a9.2b6.43c47.53d5e <td< th=""></td<>
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5 6 7 8	dmilligramsemetresfkilogramsgcentimetreshtonnesERCISE 128a24 cmb13 cmc10.2 cmd16.8 cma25.6 cmf18.5 cma35°Cb37.4°Cc38.3°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per houra45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLERCISE 19Ca400b3400c250d1560e245f46a3000b230c27d125e57.8f2.5a200b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004a200b230c27d125e57.8f2.5a2b40c45d4.56e750f0.03a200b350c0.2345d34.567e3.9f0.0024a400c45d34.567e3.9f0.0024
EXE 1 2 3 4 5 6 EXE 1 2 3 4 5 6 7	dmilligramsemetresfkilogramsgcentimetreshtonnesERCISE 128a24 cmb13 cmc10.2 cmd16.8 cma24 cmb13 cmc10.2 cmd16.8 cme25.6 cmf18.5 cma35°Cb37.4°Cc38.3°Cd35.7°Ca $\frac{3}{4}$ fullb $\frac{1}{4}$ fullc $\frac{9}{16}$ fulla120 km per hourb95 km per houra45.2 kgb71.6 kgc63.63 kga700 mLb350 mLc650 mLa400b3400c250d1560e245f46a3000b45 000c3600d16 200e5460f90a50b230c27d125e57.8f2.5a2b30c0.35d9.505e284.92f0.004a2b40c45d4.56e750f0.03a3000b75 000c6500d2000 000e78 200f0.0024a2b35c0.2345d34.567e3.9f0.0024a9.2b6.43c47.53d5e <td< th=""></td<>

EXERCISE 13A

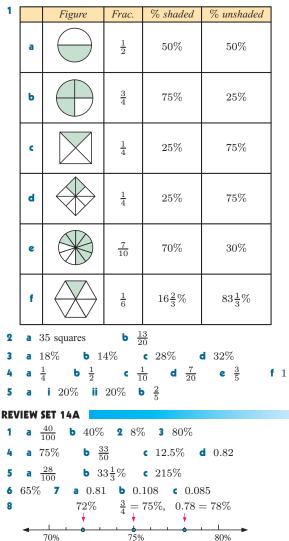
1


0


	Statement	Directed number	Opposite to statement	Directed number
a	20 m above sea level	+20	20 m below sea level	-20
b	45 km south of the city	-45	45 km north of the city	+45
c	a loss of 2 kg in weight	-2	a gain of 2 kg in weight	+2
d	a clock is 2 minutes fast	+2	a clock is 2 minutes slow	-2
e	she arrives 5 minutes early	-5	she arrives 5 minutes late	+5
f	a profit of \$4000	+4000	a loss of \$4000	-4000
9	2 floors above ground level	+2	2 floors below ground level	-2
h	10°C below zero	-10	10°C above zero	+10
i	an increase of €400	+400	a decrease of €400	-400
j	winning by 34 points	+34	losing by 34 points	-34
ft +1, car -3 , parking attendant -2 , rubbish skip -5				

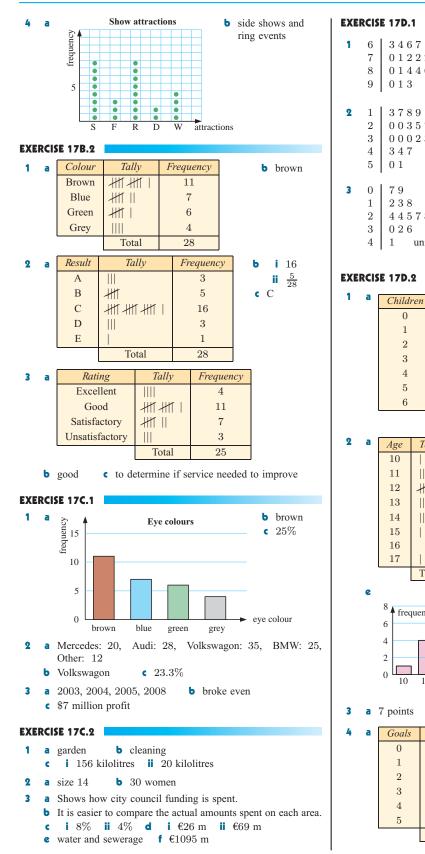
2		+1, car -3, parking attendant -2, rubbish skip -5		
3	А	-2, B -6, C +5, D +3, E 0		
4	а	+11 b -6 c -8 d +29 e -14		
5	а	-30 b $+200$ c -431 d -751 e $+809$		
	f	+39000		
6	а	+7 b -15 c -115 d $+362$ e -19.6		
7	а	+6 b -3 c $+29$ d -7 e -4		
8		-7 b $+5$ c -12 d $+9$ e -23		
9	а	deposit of \$3 b \pounds 13 withdrawal c 5°C rise		
	d	5^{o} fall e 1 km east f remain in same position		
	9	1 floor down h 2 kg loss		
10	а	Day 1: -28 g Day 2: -15 g Day 3: -13 g		
	_	Day 4: +17 g Day 5: +29 g		
	Ь	3399 g		
11	11	m away from the jetty 12 €124		
13	а	2L b 4L c 5R d 9L		
14	a	2R b 1L c 11L		
15	a	$3\downarrow$ b $1\uparrow$ c $13\downarrow$ 16 a $3\downarrow$ b 0 c $2\downarrow$		
17	a	A 35°C, B 5°C, C –10°C, D 25°C, E 10°C, F –5°C		
	Ь	i 15°C ii 20°C iii 30°C iv 35°C		
	c	i 45°C ii 20°C iii 5°C iv 15°C		
	d			
		vi 30°C		
	ERCI	ISE 13B		
1		-8 b 5 c 0 d -11 e 2		
	f	-6.4 g $3\frac{1}{2}$ h -56 i 23 j 23.6		
2				
-	a	5 b 2 c 3 d -4 e -1 f -1 g -3		
-	_	5 b 2 c 3 d -4 e -1 f -1 g -3 -4 i 2		
3	_	-4 i 2		
	h a	-4 i 2		
3	h a a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

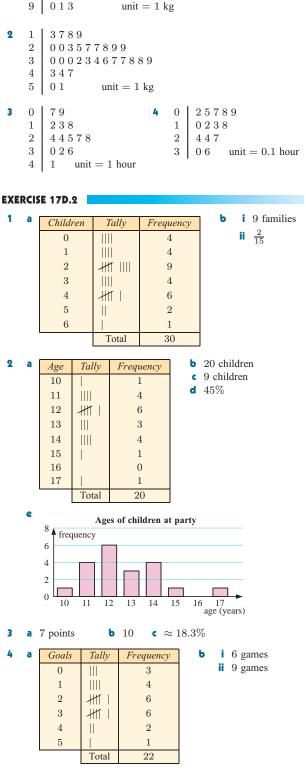
6 **a** 4 > -1**b** -4 > -118 > -8**d** -1 > -11e -6 > -8f -9 > -130 > -8**h** -6 < 0-7 < -5.57 а -23 0 b Ō C Ō d -10-3 4 -6 6 8 a $\{-4, -3, -1, 0, 4\}$ **b** {5, 2, 0, -1, -2} 9 Rachel \$852, Joey \$311, Ross -\$312, Monica -\$592 **10** Moscow -7° C, New York -3° C, London 0° C, Sydney 12°C, Mexico City 15°C **11** a -5, -2, 8**b** -4, -3, 0, 4**c** -3.1, -1.2, 2.5, 4 **d** -10, -9.7, -9.5, -8.9 e $-2\frac{1}{4}, -1\frac{1}{5}, 1, 3\frac{1}{2}$ f $-\frac{7}{8}, -\frac{5}{8}, -\frac{3}{8}, -\frac{1}{8}, \frac{5}{8}$ **12** a i 15 ii -1 iii -20 b i 5 ii 6 iii 32 **13** A 4, B 1, C 0, D -3, E -4 **a** true **b** false **c** true d false e true f true g false h true **14 a** 6 **b** 10 **c** 8 **d** 6 **e** -2 **f** 0 **g** -4 **h** -1EXERCISE 13C **a** 8 **b** -2 **c** 6 **d** -2 **e** 01 **f** 0 **g** 0 **h** 0 **j** 2 **k** 1 **I** 6 **m** 3 4 **n** 6 • 8 **p** 5 **b** -11 **c** -3 **d** -13 f -39 **a** 3 **e** −6 **i** -3 g - 4**h** -103 **k** 1 | -1 $\circ -2$ m - 4n - 7p - 6**3** a 5 **b** 2 c - 2 d 0f - 5 g 0**e** −4 **h** -3**i** 0 j - 5 k - 4 l 4**m** 4 **n** 0 **○** -3 **p** -9 **b** 7°C **a** 7 m below sea level **c** 2 m below sea level d $-5^{\circ}C$ **5 a** -2 **b** -6 **c** 2**d** -3 **e** -2 **f** -2 **g** -8**h** -7 **i** -3**6** \$23 **7 a** 3 **b** 0 **c** -7 **d** -2 **e** -5 **f** -1**EXERCISE 13D 1** a 4 **b** 10 **←**10 **d** -10 **e** −4 **f** 10 **g** 4 **h** -4**i** -6 **j** 6 **k** 16 16 m - 16**n** 6 ● -16 p - 6q -7**r** -6 **s** 4 t -8 **u** -4**v** -10 **₩** -19 **x** -20 2 8th floor 3 a -7**b** 10 **d** 12 f 18 **c** -8 e 7 g - 3**h** -3**i** −15 9 -2**k** −9 p -5m - 14**n** 68 **o** 24 **d** -4**a** 10 **b** 16 **c** -4 **e** 0 f -12I −20 **9** 9 **h** 4 4 **j** 1 k - 25 −1°C


EXERCISE 13E	EXERCISE 14A
1 a 6 b -6 c -6 d 6 e -16 f 16 g -16 h 16 i 77 j 77 k -77 l -77 m 0 n 0 o 18 p 25 2 a 8 b -8 c 2 d -2 e -3 f -3	1 a i $\frac{60}{100}$ ii 60% b i $\frac{46}{100}$ ii 46% c i $\frac{40}{100}$ ii 40% 2 a M 11, C 17, L 10, X 35, V 27 b M $\frac{110}{100}$, C $\frac{17}{100}$, L $\frac{10}{100}$, X $\frac{35}{100}$, V $\frac{27}{100}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c M 11%, C 17%, L 10%, X 35%, V 27% 3 a 50% b 20% c 25% d 10% e 20% f 9% g 25% h 74%
 5 (-2)² = 4, -2² = -4, no 6 a 1 b -1 c 1 d -1 e 1 f -1 -1 raised to even power equals 1, -1 raised to odd power equals -1 	EXERCISE 14B 1 a 14% b 38% c 67% d 95% 2 a 50% b 86% c 25% 3 a $\frac{3}{5} = \frac{60}{100} = 60\%$ b $\frac{1}{4} = \frac{25}{100} = 25\%$ c $\frac{7}{25} = \frac{28}{100} = 28\%$
EXERCISE 13F 1 a 2 b -2 c -2 d 2 e 6 f 6 g -6 h -6 i 1 j -1 k -1 l 1 m 6 n -6 o 6 p -6	4 a 31% b 3% c 37% d 54% e 79% f 50% g 100% h 85% i 6.6% j 34.5% k 7.5% l 35.6%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 5 a 70% b 10% c 90% d 50% e 25% f 75% g 60% h 80% i 35% j 55% k 28% l 76% m 46% n 94% o 100% 6 a Fourteen percent means fourteen out of every hundred. b If 53% of the students in a school are girls, 53% means the fraction ⁵³/₁₀₀.
 q any integer, except 0 r no solution 4 a \$80 000 b −3°C per hour EXERCISE 13G 	7 Number Fraction Denom. of 100 % a 4 $\frac{4}{20}$ $\frac{20}{100}$ 20% b 9 $\frac{9}{20}$ $\frac{45}{100}$ 45%
 a -11 b 10 c -10 d 10 e -18 f -2 g -19 h 56 i -35 j -7 2 €40 000 profit 3 a \$4554 profit b \$759 4 -2°C 5 a B b C c 36 m d £67 800 6 a -1 b -1 c -2 d 2 e -3 f 3 g -9 h 3 	c 9 $\frac{9}{20}$ $\frac{45}{100}$ 45% d 3 $\frac{3}{20}$ $\frac{15}{100}$ 15% e 1 $\frac{1}{20}$ $\frac{5}{100}$ 5% f 10 $\frac{10}{20}$ $\frac{50}{100}$ 50% g 20 $\frac{20}{20}$ $\frac{100}{100}$ 100%
EXERCISE 13H 1 a -14 b 70 c -48 d 17 e -425 f -70 g -24 h -8 i 100 2 a 2 m below b €245 c £2550 d RM 23 600	8 52% 9 60% 10 a i 24% ii 52% iii 24% iv 32% b i 28% ii 36% iii 36% c i 50% ii 25% iii 50%
REVIEW SET 13A 1 a -2 b $7 > -12$ c -1 d $\{-5, -3, -2, 0, 1, 3, 4\}$ e borrowing 4 books f -3 g -12 h 22 i 3 2 a -27 b 4 c -7 d positive e -2 f -5 g -4 h $-6 < 0$ i -1	EXERCISE 14C 1 a $\frac{43}{100}$ b $\frac{37}{100}$ c $\frac{1}{2}$ d $\frac{3}{10}$ e $\frac{9}{10}$ f $\frac{1}{5}$ g $\frac{2}{5}$ h $\frac{1}{4}$ i $\frac{3}{4}$ j $\frac{19}{20}$ k 1 l $\frac{3}{100}$ m $\frac{1}{20}$ n $\frac{11}{25}$ o $\frac{37}{100}$ p $\frac{4}{5}$ q $\frac{99}{100}$ r $\frac{21}{100}$ s $\frac{8}{25}$ t $\frac{3}{20}$ u 2 v $3\frac{1}{2}$ w $1\frac{1}{4}$ x 8
 3 a \$633 b moving 63 m below to 33 m above (96 m) REVIEW SET 13B 1 a going down 4 flights of stairs b -9 c -4, -3, -2 	2 a $\frac{1}{8}$ b $\frac{3}{40}$ c $\frac{1}{200}$ d $\frac{173}{1000}$ e $\frac{39}{40}$ f $\frac{1}{500}$ g $\frac{1}{2000}$ h $\frac{1}{5000}$
d -3 e 2 f -4 g {-6, -4, -2, 0, 5} 2 a 7 b -11 c 5 d -9 e 2 f -6 3 a depositing €26 b i 1 ii 10 iii -15 c £610 d 7 kg	EXERCISE 14D d 49% e 73% 1 a 37% b 89% c 15% d 49% e 73% f 5% g 102% h 117% e 73% 2 a 20% b 70% c 90% d 40% e 7.4% f 73.9% g 0.67% h 0.18% e 7.4%

 $(\frac{1}{4} \text{ of an icccream is less than } \frac{1}{2} \text{ of it.})$

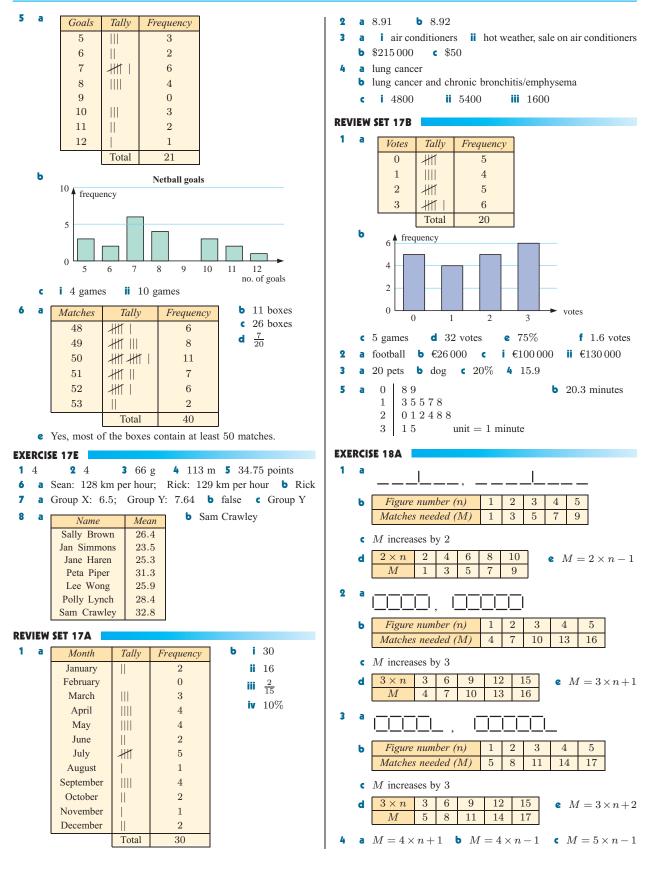
EXERCISE 14G

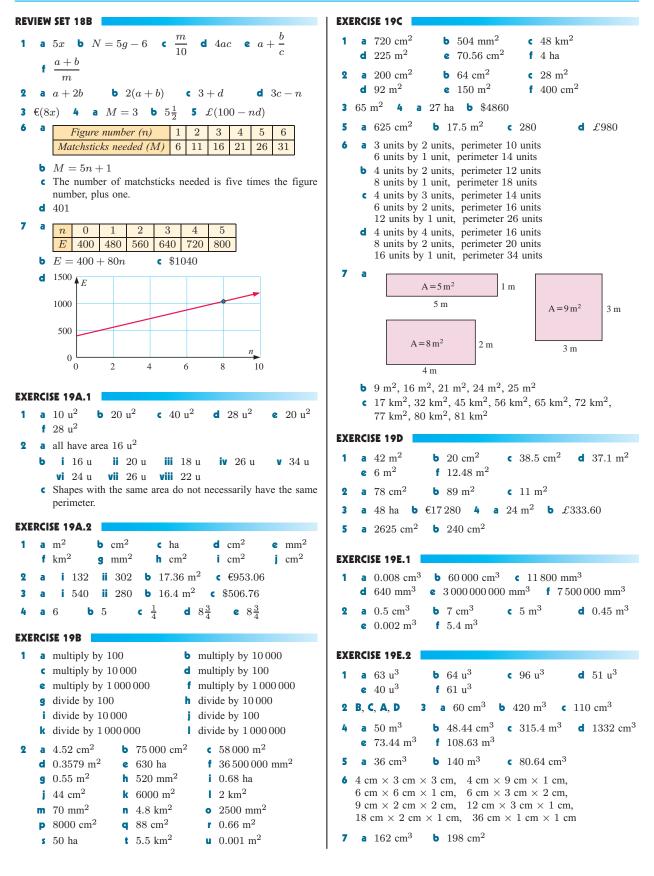


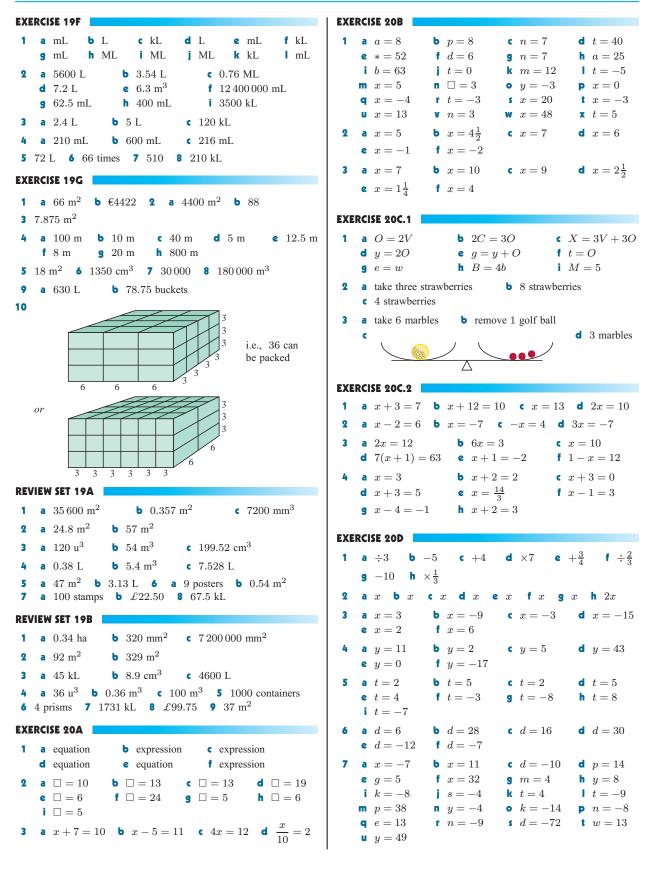

10 480 s = 8 min**a** $\frac{10}{100} = 0.1 = 10\%$ **b** $\frac{35}{100} = 0.35 = 35\%$ **8** 3 round trips **9** 25 **11** 171 s 9 12 7:45 am, 2:05 pm, 8:25 pm (Mon); 2:45 am, 9:05 am, $\frac{62}{100} = 0.62 = 62\%$ C 3:25 pm, 9:45 pm (Tue); 4:05 am (Wed) **a** 20 10 **13** 1440 times b $\frac{1}{5}$ **EXERCISE 15D** 1 a 0313 h **b** 1117 h c 0000 h d 1247 h e 1741 h f 1200 h **h** 2359 h g 2019 h **REVIEW SET 14B a** 34 Xs, 66 Vs **b** $\frac{34}{100}$ Xs, $\frac{66}{100}$ Vs **c** 34% Xs, 66% Vs a 3:00 am **b** 6:30 am 6:00 pm d 12:00 noon 9 1 e 6:15 am f 3:45 pm 9 8:17 pm **h** 11:48 pm 19% **3** $\frac{4}{10} = \frac{40}{100} = 40\%$ 2 a 0930 h **b** 1240 h **c** 1915 h 3 **b** $\frac{2}{5}$ 47% $66\frac{2}{3}\%$ 4 **d** 0.125 More than 60 minutes is not possible. **b** 0713 h is correct. а **b** 3.5% **c** 72% **d** 65% 5 a 27% 6 60% • Greater than 24 hours in a day is not possible. 7 $\frac{4}{25}$ **b** $2\frac{1}{2}$ $\frac{17}{200}$ d $\frac{1}{10\,000}$ a 2:50 pm, 3:50 pm, 4:25 pm, 4:45 pm, 5:15 pm 5 4:25 pm **c i** 5:25 pm **ii** 6:20 pm 8 a 45%**b** 0.0579 Ь 9 $\frac{2}{5}$ =40%. 56%0.75 = 75%EXERCISE 15E **a** 7:21 am **b** 9:08 pm 1 € 0.9 m, 3:20 am 30% 50% 70% 90% d 1.2 m, 1:46 pm $=12\frac{1}{2}\%,$ 52%0.8 = 80%b **a** 6 **b** 8:45 am **c** 5:00 pm ¥ ┶ d **i** 1 h 55 min ii 40 min $e 9\frac{1}{2}h$ f bus A or bus B 10% 30% 50% 70% 90% q bus B 10 a $37\frac{1}{2}\%$ **b** $\frac{1}{4}$ ii departure time **b** 4:50 pm 3 а arrival time **c** 5:27 pm **d** 6:20 pm **EXERCISE 15A** e i 4:11 pm ii 4:36 pm iii 5 min 1 a 125AD **b** 1800 years Japanese Script i 45 min ii 51 min iii 44 min f 2 a Elizabeth II **b** 15 years c 8 years There would be more trains on the track and more passengers for the 5:23 pm train (peak hour). a Zhou Warlords 3 **b** 450 years **c** 450 years EXERCISE 15B **EXERCISE 15F a** 444 min **b** 4663 min **c** 18 216 min **d** 24 977 min 1 1 a 3 pm **b** 8 pm **c** 9 pm **d** 7 am 2 a 2438 s **b** 12 927 s **c** 51163 s **d** 82 331 s 9 a 2:00 am Tuesday **b** 5:00 am Tuesday 3 **a** 1440 min **b** 10.080 min 525 600 min • 9:00 am Tuesday d 12:00 midnight Monday 4 **a** 86 400 s **b** 1 209 600 s **c** 31 536 000 s a 9:00 am Tuesday **b** 6:00 am Tuesday 5 a 1461 days **b** 35 064 h **c** 2103840 min • 5:00 pm Tuesday d 4:00 pm Tuesday a 8 h 30 min **b** 13 h 17 min • 4 h 17 min 6 a 9:45 am Saturday **b** 10:45 pm Saturday d 19 h 23 min **e** 4 h 49 min **f** 8 h 22 min c 12:45 pm Saturday d 5:45 am Sunday 7 **a** 5 days 4 h **b** 23 days **c** 36 days 9 h **d** 90 days 7 h a 2:00 pm Friday **b** 8:00 pm Friday 5 8 a 47 days **b** 22 days 37 min noon Friday d 4:00 am Friday EXERCISE 15C 1 a Wei joined the club on the 17th Dec. 2007. EXERCISE 15G b Jon arrived on the 13th March 2006. a 90 km per hour **b** 70 km per hour • Piri is departing for Malaysia on the 30th July 2010. c 83 km per hour d 94 km per hour d Sam will turn 21 on the 28th May 2014. 2 a 630 km **b** 450 km **c** 900 km d 315 km a 27 days **b** 43 days 2 c 117 days **d** 111 days 2 1026 km h 99 days e 68 days f 179 days **9** 119 days a 255 km **b** 880 km **c** 441 km d 171 km 3 3 **a** 45 days **b** \$6.20 3 h b 6 h c $5\frac{1}{2}$ h d 8 h 20 min e 3 h 15 min а 4 a 195 days **b** €3510 C Yes, €1939 5 21st October 2002 EXERCISE 15H **a** 7:00 am 6 **b** 1:00 am 6:49 am **d** 8:06 pm a 122°F **b** 176°F € 68°F d 23°F e 10:32 pm f 4:09 pm g 11:05 am **h** 6:42 am 2 a 38°C **b** 10°C € 27°C d −18°C i 11:43 am j 10:44 pm Sunday 7 **a** 8 h 19 min **b** 3 h 19 min C 7 h 17 min 4 a $100^{\circ}F \approx 37.8^{\circ}C, 50^{\circ}F = 10^{\circ}C, 80^{\circ}F \approx 26.7^{\circ}C,$ $0^{\circ}F \approx -17.8^{\circ}C$ **d** 12 h 52 min e 20 h 9 min **f** 9 h 37 min $\approx 32.2^{\circ}C$ **g** 26 h 48 min **h** 87 h 54 min

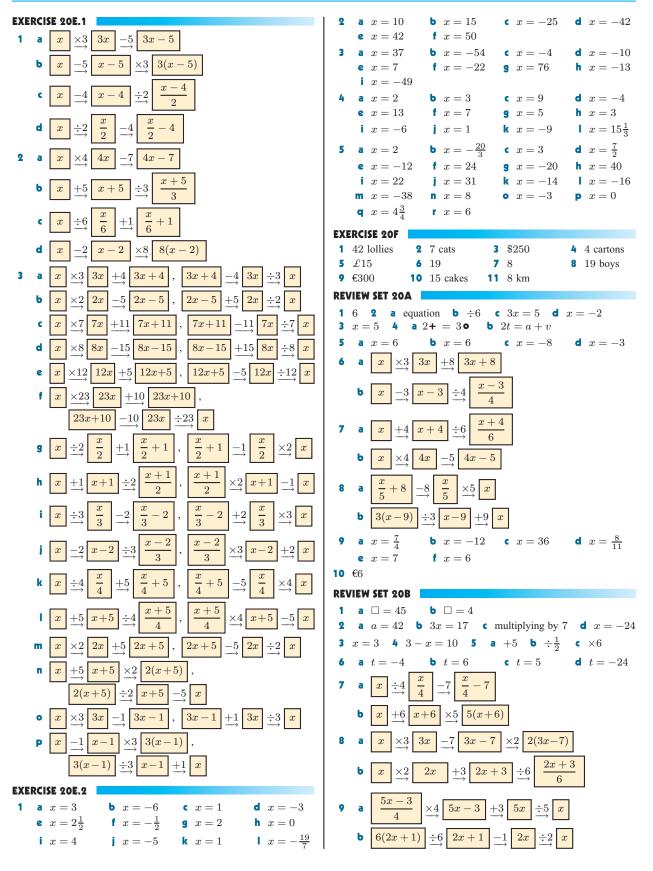
ANSWERS

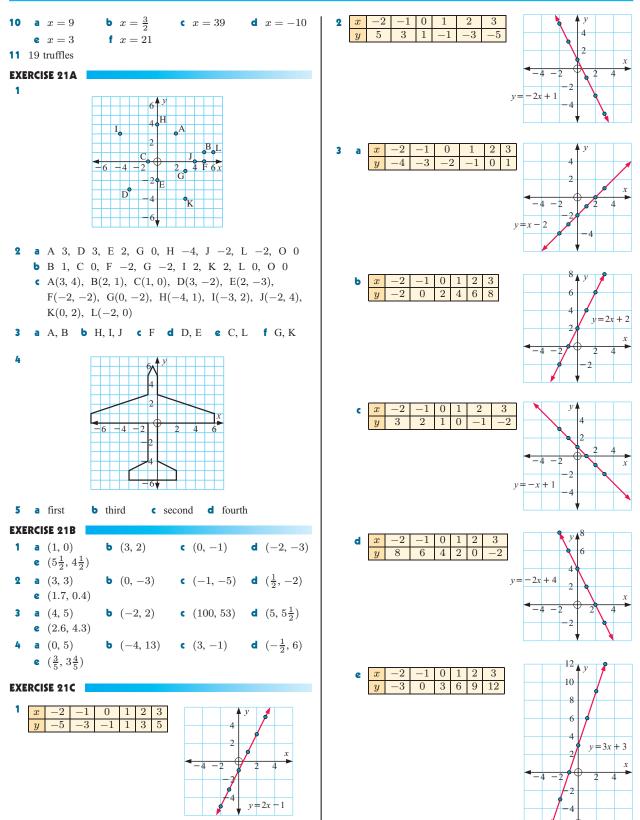
471

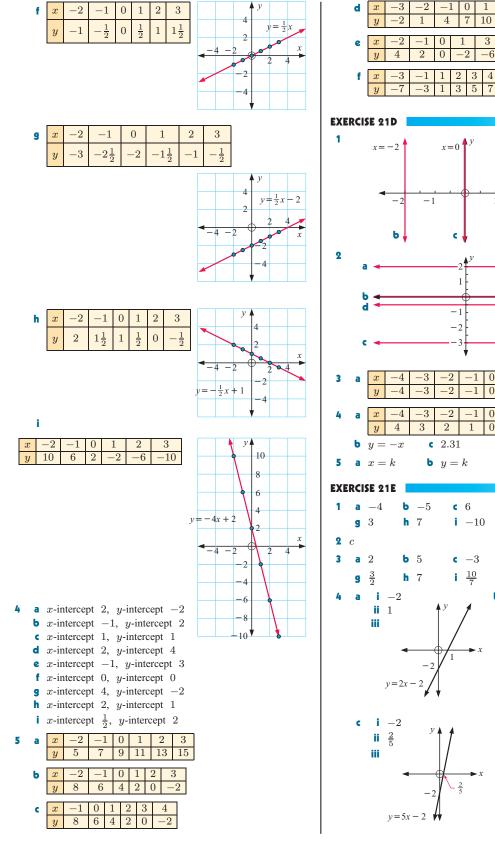

REVIEW SET 15A	EXERCISE 16D
1 a i 1968 ii 1970 iii 1978 iv 1984	1 a £100 b 25% loss 2 a €200 b 4% profit
b i 25 years ii 8 years	3 a \$15 000 b 18.75% profit
2 a 49 days b 720 s c 555 min d 1000 years	4 a RM100 b 40% loss
3 a 20 h 41 min b 3 h 38 min 4 May 31st	5 a €100 b €350 6 a £75 b £200
5 a 176 days b \$2640 c \$360	7 a ¥17000 b ¥83000 8 a €5400 b €12600
6 a i 6:45 am ii 0645 h b i 12:15 am ii 0015 h	EXERCISE 16E
c i 9:30 pm ii 2130 h	1 a \$272 b €345 c \$127.40 d £528
7 a 3:45 pm b i 1 h 35 min ii 2 h 15 min c 1:45 pm	
8 a i 2:00 pm Saturday ii 6:00 am Saturday	e €16.15 f \$455 g \$91.84 h £340
b i 3:00 am Wednesday ii 6:00 am Wednesday	i €32.90 j €376 k \$47.10 l ¥37187.50
9 54 km 10 94 km per hour	EXERCISE 16F
REVIEW SET 15B	1 a \$2 b €80 c £5.60
1 a 1194 min b 19 days 19 h	2 a €15 b \$1.50 c £2.40 d RMB 48
2 a 107 days b 61 h c 81 min d 300 s	3 a \$118 b €56.64 c \$2360 d \$755.20
3 a 13 h 30 min b 6 days 1 h 3 min c 1 h 18 min	4 a £24 b £184 5 a \$131.25 b \$881.25
4 a 80 days b 730 days c 3652 days 5 53	6 a €31.25 b €281.25
6 a 15 min 1.07 s, 15 min 5.42 s b 3 hrs 1 min 1 s c 14 h 19 min	EXERCISE 16G
7 a 4:15 am b 1:00 pm c 11:35 pm	1 a \$150 b £700 c \$1600 d €3600 e \$14000
8 a two minutes to three in the afternoon b 2:58 pm	2 a \$2800 b €8450 c \$12320 d ¥200000
• 1458 h	REVIEW SET 16A
9 a i 1:00 pm ii 2:00 am	1 5% 2 €226.80 3 30 students 4 70 households
b i 11:05 pm Wed ii 11:05 am Wed	5 \$4.50 6 a 75 students b 275 students 7 25%
10 348 km 11 1 h 15 min 12 a 60°C b -5°C	8 81 kg 9 a \$840 b \$4340 10 a £420 b £1680 11 a \$15 b 37.5%
13 a 41°F b 104°F	REVIEW SET 168
EXERCISE 16A	
1 a 20% b 20% c 75% d 25% e 5%	1 a 52% b 29% 2 76% 3 32.5% 4 €3 5 a €126 b €714 6 \$189 7 a \$2800 b \$9800
f 50% g $16\frac{2}{3}\%$ h 12.5% i 5% j 4.8%	8 a 60 students b 140 students 9 30%
k $33\frac{1}{3}\%$ l 6.25% m 50% n 40% o 60%	10 a \$27 b \$297 11 a $\pounds 60$ b $\pounds 340$
p 10% q 0.25% r 12.5%	EXERCISE 17A
2 a 85% b 44% c 72.5% d 90% e 74%	1 a Choose 400 names from the electoral roll.
f 69%	b Select every 100th bottle, for example.c Choose 30 names from a list of students at the school.
3 a 85.4% b 32.5% c 68.5% d 76%	d Select a random page of a dictionary, and randomly select a
4 a 70% b 85% c 22% d 5% e 17.5%	word on that page.
f 40% g 42% h $66\frac{2}{3}\%$ i 174%	2 a Place the tickets in a hat, select one at random.
EXERCISE 16B	b Toss a coin, if it lands heads select A, if it lands tails select B.
1 a 72 ha b 1050 m^2 c 45 cm d 160 t	• Roll a die, and select the number that appears.
e 18 min f 640 cm g 600 kg h 480 mm	d Shuffle the pack, and select the card on top.
i 108 min j 187.5 kL	3 a 10000 ants b 300 ants c 12% d 1200 ants
2 388 students 3 360 kg 4 1215 tonnes	4 a 750 people b 50 people c 34% d 255 people
5 3 h 48 min 6 1.584 m	EXERCISE 17B.1
7 a 40% of a litre b $\frac{1}{4}$ of a metre c $\frac{1}{3}$ of 1000 d 315 g	1 a 50 students b 22 students c 74%
8 202.5 g 9 3.2 L 10 1680 acres	2 a 12 students b 28 students c violin
EXERCISE 16C	3 a Summer Sport
1 a $\$4$ b $€54$ c $\pounds147$ d $€2.20$	tennis ••••
e \$30 f RM 4365 g £597.60 h \$162 i £288 i 254 rmags k £250 l £1250	swimming cricket
i €388 j 354 rupees k £259 l €1350 m RMB 700 n £2.72 o ¥5450	basketball
2 a 25% b 10% c 15% d 5% e 20% f $6\frac{2}{3}$ %	football
g 5% h 25% i $3\frac{1}{3}$ % j $6\frac{2}{3}$ % k 1% l 10%	5 5
• 570 · 2570 · 5370 • 5370 · 170 · 1070	b football

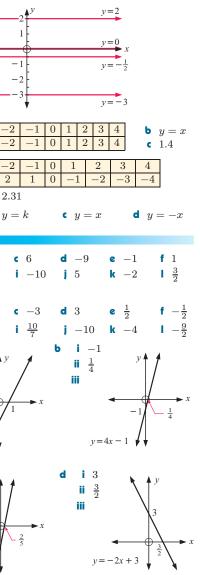



 $0\ 1\ 2\ 2\ 2\ 5\ 8$


 $0\ 1\ 4\ 4\ 6\ 6\ 7\ 7\ 9\ 9$




EXERCISE 18B 1 a cd b cd c abc d $5a$ e $2mn$ f $3ab$	9 a Figure number (n) 1 2 3 4 5 Matchsticks needed (M) 16 19 22 25 28
1 a cd b cd c abc d 5a e 2mn f 3ab g $3t+2$ h $7n-4$ i $7ab$ j $10ac$ k $5+3s$	
$1 \ 6-pt \ m \ 11+pq \ n \ 3r-6 \ o \ ab+ac \ p \ 3c+2d$	b $M = 3n + 13$ c 100 matchsticks
2 a $M = 3n$ b $s = n + 2$ c $M = 5n + 3$	EXERCISE 18F
d $N = 2n - 4$ e $M = 3n + 2$ f $N = 2(n + 1)$	1 a $30h$ dollars b $C = 40 + 30h$
	c i \$70 ii \$137.50 iii \$166
1 a $m + n$ b $a + 3$ c $b - c$ d $\frac{g}{3}$ e $2n$ f $3y$	2 a $42m$ euro b $C = 75 + 42m$ c i $€369$ ii $€2343$
g $a+4$ h $d-2$ i $a+d$ j $r-q$ k $4n$ l $2n+5$	3 a 26 cumecs b $F = 8 + 2h$
2 a $\frac{m+n}{2}$ b $\frac{x+y}{4}$ c $\frac{5}{r+s}$	c Time (h) 0 1 2 3 4 5 6 7 8 9
3 a 24, 3m, am b 4, $d - 5$, $d - c$ c 4, $a - 2$, $a - x$	<i>Flow (cumecs)</i> 8 10 12 14 16 18 20 22 24 26
	4 a $C = 30 + 40h$ dollars b i \$950 ii \$730
d 12, 7 + t, r + t e 300, 100D f 4, $\frac{c}{100}$	5 a $T = 4.8 + 0.2n \text{ min}$ b i 6 min ii 7 min 24 s c 88 min 12 s
4 a $11 - x$ b $86 + y$ c $4xy$ d $\frac{7c}{100}$ dollars	
5 a $n-12$ b $n+6$ c $2n$ d $\epsilon(40x+15y)$	EXERCISE 18G
EXERCISE 18D	1 a i £35 ii £56 iii £67.10
1 a i 17 ii -3 iii -18	b The graph does not show values of d greater than 20.
b i -1 ii -15 iii 4 c i 8 ii 3 iii $6\frac{1}{2}$	2 100 profit (\$ <i>P</i>)
d i 2 ii 8 iii $4\frac{2}{3}$ e i 1 ii -1 iii $1\frac{2}{3}$	80
f i 3 ii $1\frac{2}{5}$ iii $-1\frac{2}{5}$	60
2 a 10, 16, 1 b -7, 18, 38 c 0, $-1\frac{2}{3}$, $-3\frac{1}{3}$	40
d 0, 6, $4\frac{1}{6}$ e 3, -3, $1\frac{1}{2}$ f 20, $-2\frac{1}{2}$, $1\frac{1}{2}$	40
	20 no. of spanner sets (<i>n</i>)
EXERCISE 18E	
1 a n 1 2 3 4 5 b 1 3 5 7 9	
S 4 5 6 7 8 L 4 12 20 28 36	a i \$37 ii \$61 iii \$73 b iii \$112
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 a i 8 cm ii 14 cm iii 32 cm
d t 1 2 5 9 15	b i 8 weeks ii 12 weeks iii 17 weeks
P -1 2 11 23 41	REVIEW SET 18A
2 a i $y = 23$ ii $y = 33$ iii $y = 78$	1 a $2xy$ b $M = 3n + d$ c $ab + 3c$ d $\frac{n}{3}$ e $\frac{a+b}{c}$
b i $y = 9$ ii $y = 16$ iii $y = 65$	f $\frac{100}{x-3}$
c i $y = 21$ ii $y = 42$ iii $y = 66$	$\overline{x-3}$
d i $y = 30$ ii $y = 18$ iii $y = 10$	2 a $2c$ b $3(a+6)$ c $t+5$ d $n-d$ 3 $\pounds(xy)$
e i $y = 36$ ii $y = 22$ iii $y = 12$	4 $(2x + y + 5z)$ dollars 5 a $y = 31$ b $y = 11$
f i $y = 13$ ii $y = 29$ iii $y = 97$	
3 a £170 b £320 c £720	b Figure number (n) 1 2 3 4 5
4 a 12.5 mL b 20 mL c 25 mL	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
5 a Figure number (n) 1 2 3 4 5 6	M = 3n + 1 d i 22 ii 304
Matchsticks needed (M) 4 6 8 10 12 14	
b $M = 2n + 2$ c 128 matchsticks	n 0 1 2 3 4 5 C 20 35 50 65 80 95
6 a Figure number (n) 1 2 3 4 5 6	a $C = 20 + 15n$ b \$425
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
b $M = 2n + 1$ c 151 matchsticks	
7 a Figure number (n) 1 2 3 4 5 Matchsticks needed (M) 4 10 16 22 28	150
b $M = 6n - 2$ c 340 matchsticks	100
8 a Figure number (n) 1 2 3 4 5	
Matchsticks needed (M) 7 12 17 22 27	50
b $M = 5n + 2$ c 402 matchsticks	



2

13

5

-10

 $x = 1\frac{1}{2}$

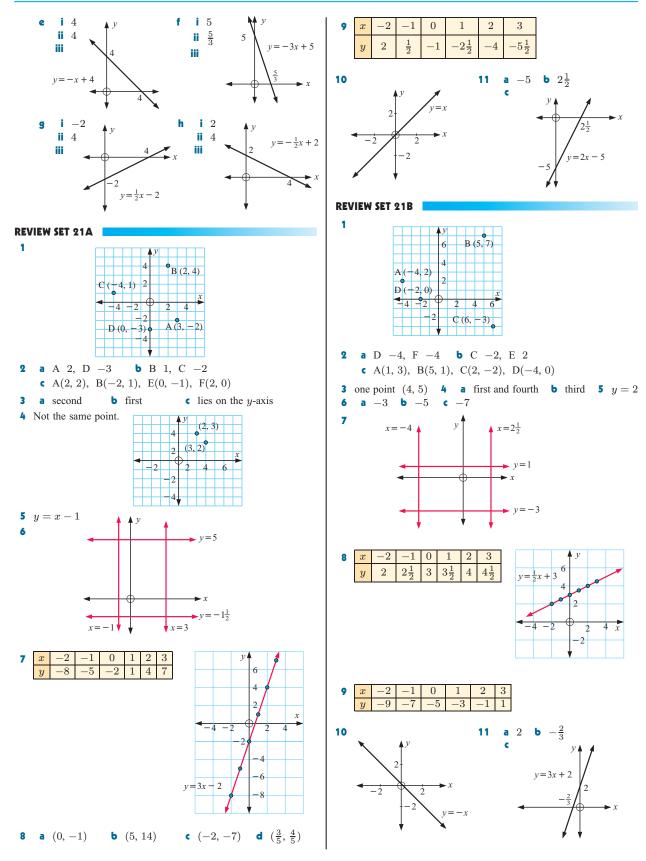
2

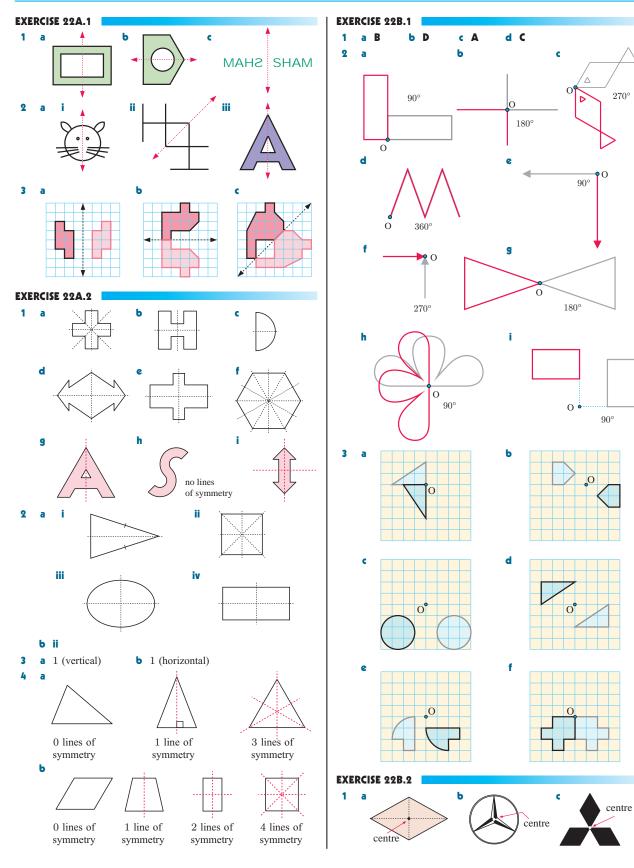
3

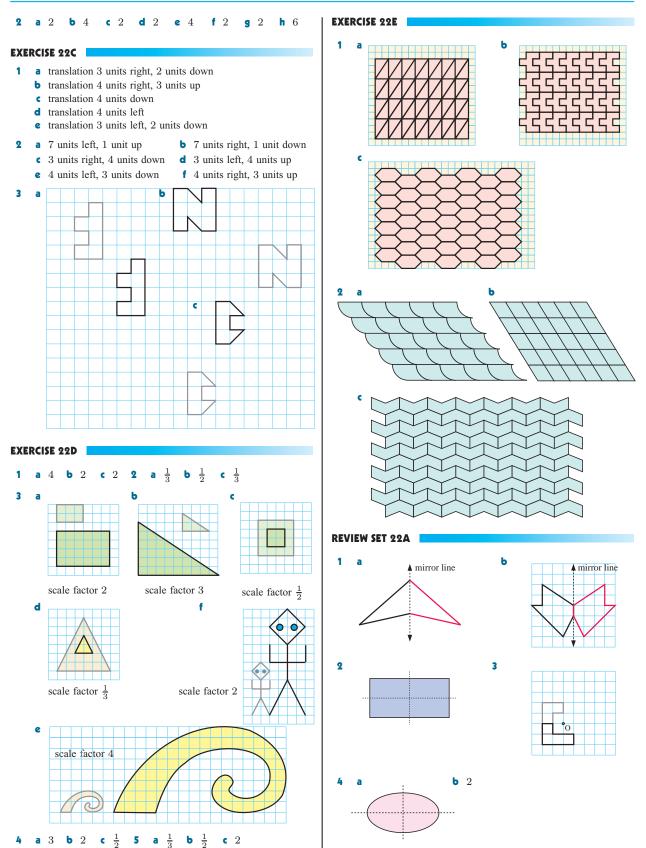
x = 4

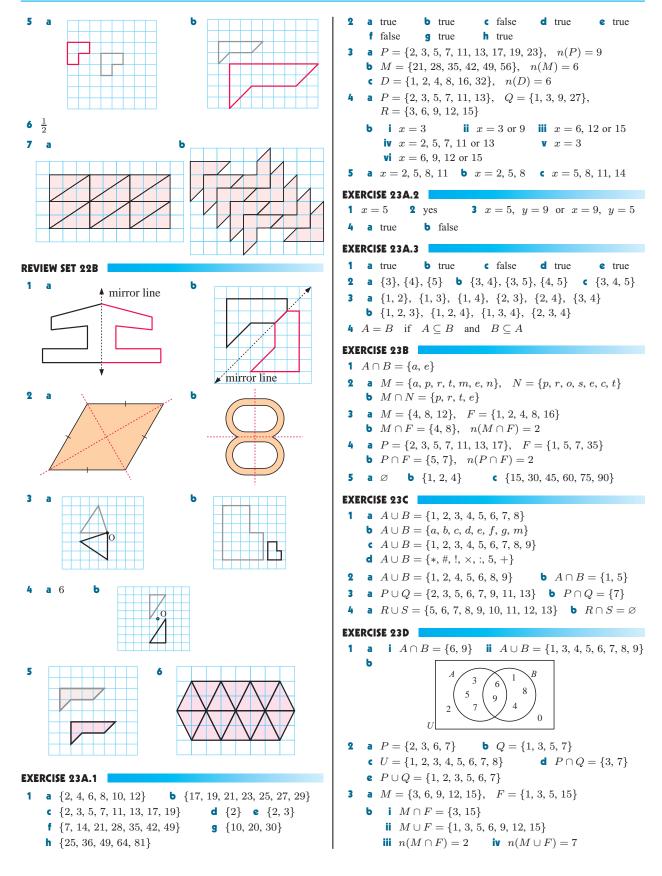
4

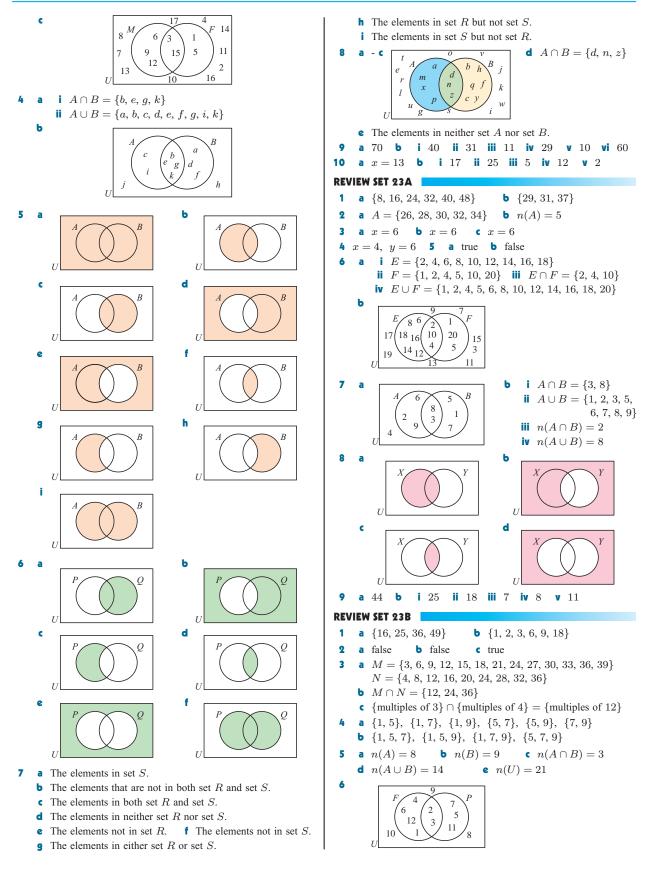
a

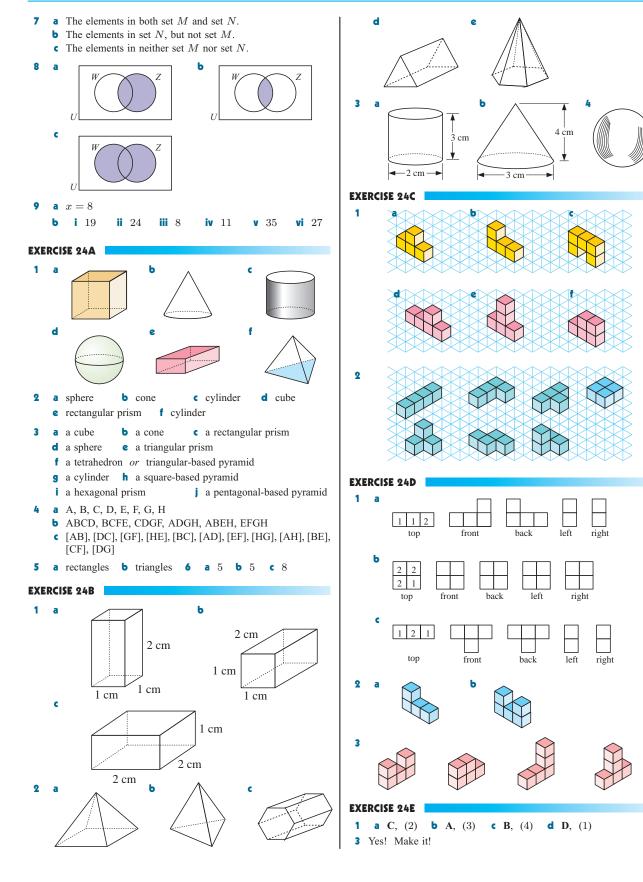

3

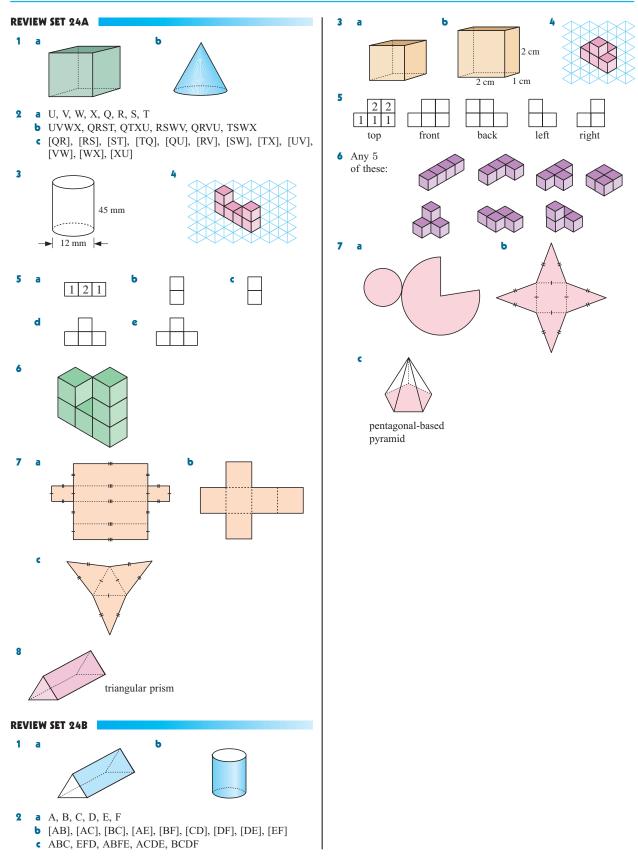

-6


4 7


1


d





INDEX

		IIIdex	
	50	inference	
acute angle	53	intersection	
Ancient Greek system	11	inverse operation	253,
angle	52	isometric projection	
angle of rotation	410	isosceles triangle	
apex	438	kite	
approximation	40	line	
area	350	line segment	
average speed	290	line symmetry	
base number	91	linear graph	
base ten system	11	loss	
capacity	366	lowest common denom	inator
Cartesian plane	392	lowest common multip	
categorical data	315	lowest terms	ic
census	313		
centre of rotation	410	mass	
Chinese-Japanese system	15	Mayan system	
column graph	319	mean	
common fraction	110	mixed number	
		mode	
compass bearing	78	natural number	
composite number	100	negative number	
cone	440	number grid	
congruent figures	405	number line	
coordinates	71	numerator	
cube	439	numerical data	
cube number	97	obtuse angle	
cube root	97	odd number	
cylinder	440	ordered pairs	
decimal number	166	origin	
denominator	108	parallel lines	
difference	86	parallelogram	
directed number	241	percentage	
dividend	88	perimeter	
divisor	88	perpendicular lines	
dot plot	316	pie chart	
edge	140	place value	17,
Egyptian system	11	plane	17,
empty set	427	point graph	
enlargement	415	polygon	
equation	374		
equilateral triangle	130	polyhedron	
Euler's rule	140	population	
even number	98	positive number	
expanded notation	95	power	
exponent	91	power notation	
factor	91 98	prime factor	
formula		prime number	
	333	prism	
frequency table	317	product	
Greenwich Mean Time	288	profit	
hectare	353	proper fraction	
highest common factor	102	pyramid	
Hindu-Arabic system	17	quadrant	

improper fraction

index

	122	quadrilateral	134
	91	quotient	88
	313	random sample	313
	428	ray	50
253	380	reciprocal	157
200,	445	rectangle	134
	130	rectangular prism	363
	130	recurring decimal	211
	49	reduction	415
	50	reflection	404
		reflex angle	53
	407	region	140
	345		129
	303	regular polygon revolution	53
nator	120	rhombus	
	102		134
	116	right angle	53
	228	Roman system	13
	14	rotation	410
	326	rotational symmetry	412
	122	sample	313
	315	scale diagram	226
	17	scale factor	415
	237	scalene triangle	130
	71	significant figures	39
	110	simple interest	308
	108	simplest form	159
	322	solid	438
	53	sphere	440
	98	square	134
	71	square number	96
	71	square root	96
	50	stem-and-leaf plot	322
	134	straight angle	53
	260	subset	426
	223	sum	86
	136	terminating decimal	210
	320	tessellation	417
17	166	tetrahedron	439
17,	50	time line	277
	75	time zone	288
	128	translation	414
	439	trapezium	134
	313	triangle	48
		true bearing	78
	237	union	429
	91 05	universal set	429
	<i>95</i>		
	101	variable Vonn diagram	75
	100	Venn diagram	430
	439	vertex	49, 140
	88	volume	361
	303	whole number	17
	122	<i>x</i> -axis	71
	439	<i>y</i> -axis	71
	392		